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ABSTRACT 
The present systematic review is an effort to explore the different clinical applications and current 

implementations of machine/deep learning in proton therapy. It will assist as a reference for scientists, 

researchers, and other health professionals who are working in the field of proton radiation therapy and 

need up-to-date knowledge regarding recent technological advances. This review utilized Pubmed and 

Embase to search for and identify research studies of interest published between 2019 and 2024. This 

systematic literature review utilized PubMed and Embase to search for and identify studies pertinent to 

machine learning in proton therapy. The time period of 2019 to 2024 was chosen to  capture the most 

recent signficant advances. An initial search on PubMed was made with the search strategy ”‘proton 

therapy’,  ‘machine learning’, ‘deep learning’”, with filters including only research articles from 2019 to 

2024, returning 84 results. Next, ”("proton therapy") AND ("machine learning" OR "deep learning")” was 

searched on Embase, retrieving 546 results. When filtered between 2019 to 2024 and to only research 

articles, 250 results were retrieved on Embase. Reviews, editorials, technical notes, and articles in any 

language other than English were excluded from the broad search on both databases. Filtering by title, 

papers were chosen based on two inclusion factors: explicit application to, or mention of, proton therapy, 

and inclusion of a machine learning algorithm. Assessing by abstract, works irrelevant to specific aspects 

of the proton therapy workflow in the scope of the review were excluded. Upon assessing and evaluating 

full texts for quality, studies were excluded that lacked a clear explanation of model architecture. If 

multiple studies of the same architecture applied to the same workflow step were identified, 

chronologically only the most recent advancement in application was included. An additional 5 studies 

that met all inclusion criteria were identified from references of chosen papers. In total, 38 relevant 

studies have been summarized and incorporated into this review. This is the first systematic review to 

comprehensively cover all current and potential areas of application of machine learning to the proton 

therapy clinical workflow. 

 

 

 

 

 

 

 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 28, 2024. ; https://doi.org/10.1101/2024.10.09.24314920doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

mailto:aparna.kesarwala@emory.edu
mailto:xiaofeng.yang@emory.edu
https://doi.org/10.1101/2024.10.09.24314920
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 

 

Introduction 
The usage of protons in radiation was first proposed in 1946 by Wilson, a Harvard particle 

physicist [1]. The first treatments on human patients began in 1954 at the Berkeley Radiation Laboratory 

[2], and the first therapy center was opened in Boston in 1961. In 1988, the FDA approved proton therapy 

for clinical use. Currently, the National Association for Proton Therapy (NAPT) reports 45 active proton 

therapy centers located across the United States, and a recent clinical investigation found that between 

2012 and 2021, the total annual number of patients treated with proton therapy increased from 5,377 to 

15,829 [3]. Demand for proton therapy continues to rise, due to its increased precision and reduction of 

integral dose. 

The physics behind proton therapy originates from the unique energetic nature of the proton. As 

beams travel through tissues, protons undergo inelastic and elastic Coulombic interactions. Kinetic energy 

is continuously lost through frequent inelastic interactions with atomic electrons. However, most protons 

continue to travel in a nearly straight line through the medium as their rest mass is significantly larger 

than that of an electron and only the electron is ejected. A proton passing close to the nucleus experiences 

a repulsive elastic interaction which, owing to the large mass of the nucleus, deflects the proton from its 

originally straight trajectory [4]. Such interactions are less frequent, but must be considered in treatment 

planning as they result in a change of particle trajectory. As energy loss of the proton beam determines 

range in the patient, an understanding of these interactions in the clinical context is essential. The Bragg 

peak is the fundamental phenomena supporting the efficacy of proton therapy treatment. The Bragg curve 

plots the energy loss of ionizing radiation, such as photons or protons, during its travel through matter. 

For protons, the peak occurs immediately prior to the particles coming to rest. This is the depth where the 

proton will deposit most of its dose [4]. With precise planning, this unique property has the potential to 

spare skin and other healthy tissue from radiation exposure both proximal and distal to the tumor target. 

Conventional photon therapy and proton therapy each possess unique advantages and 

disadvantages. Because they are uncharged particles, photons primarily interact with matter through 

indirect processes such as Compton scattering and the photoelectric effect. These interactions result in a 

relatively uniform deposition of energy along their path through tissue, which leads to broader scatter to 

surrounding tissue and skin in the setting of conventional radiotherapy. Photon therapy is associated with 

resultant side effects, such as radiation dermatitis, due to increased skin exposure [5]. As a result of the 

Bragg peak, proton radiation is delivered with greater precision to the tumor site, sparing healthy 

surrounding tissue and skin relative to conventional photon radiotherapy. Specific techniques such as 

pencil beam scanning and intensity modulated proton therapy have been developed to further optimize 

proton therapy treatment delivery. Proton therapy is currently preferred in pediatric cases and in scenarios 

where tumor location is adjacent to sensitive organs at risk (OARs), such as in cancers of the head and 

neck and central nervous system. It is also useful in geometrically complex treatments with challenging 

dosimetry, such as when treating synchronous bilateral breast cancers. 

Numerous machine learning (ML) applications are currently employed in conventional 

radiotherapy and may easily be adapted to proton therapy [6]. At present, models are employed primarily 

in segmentation, dose calculation and risk management. ML methods to improve clinical decision-making 

are needed. Adapting existing ML protocols for traditional photon treatment to proton applications may 

be expected to improve these processes, enhancing physician efficiency and quality in treatment planning 

and delivery. 

ML, as a subfield of artificial intelligence (AI), encompasses models which learn from datasets to 

generate decisions without being explicitly coded for a repetitive, standard task. ML models may be 
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trained using supervised on unsupervised techniques. Supervised learning provides the model labeled and 

correctly paired training and test datasets, where the correct output is known for each input [7]. These 

methods are typically applied to classification tasks where the goal is to map outputs from a given input, 

such as verifying Bragg peak range or optimizing treatment plans with Knowledge-Based Planning 

(KBP). In contrast, unsupervised learning is commonly applied to complex tasks where labeled datasets 

are not readily available, such as imaging segmentation or contouring. Deep learning (DL) is a subset of 

ML which utilizes neural networks. Inspired by information processing in the brain, neural networks pass 

raw input data through layers of nodes, each comprised of simple mathematical operations, to create an 

output. With additional (deeper) layers, more complex functions, such as image recognition, are possible 

[8]. Convolutional neural networks (CNNs) are specialized DL models equipped to process grid-like data. 

This is beneficial in medical imaging, as CNNs can extract features from the pixels or voxels of patient 

imaging data across several modalities. The layers of a CNN, known as convolutional layers, apply 

kernels to the input image to extract specific features such as contours or patterns across progressively 

smaller spatial scales [9].  

A common form of DL that has been applied in the planning stage of radiotherapy treatment 

delivery is the Generative Adversarial Network (GAN). This type of network was originally created in 

2017 by Goodfellow et al. and is a novel approach to unpaired image-to-image translation superior to 

traditional DL models when generating synthetic images [10]. The GAN architecture consists of two 

connected neural networks, a generator which creates synthetic data, and a discriminator which evaluates 

the resemblance to the real data. These two neural networks are trained simultaneously, using an 

adversarial framework that ultimately guides the generator to improve performance with each iteration, 

producing increasingly realistic data that challenges the discriminator. Training is complete when the 

min-max loss function is optimized. GANs are particularly useful in complex image translation tasks, 

such as converting images from one modality to another (e.g. CT to MRI). U-Nets, CNNs with a U-

shaped architecture, are particularly suited to tasks in image segmentation, due to their ability to extract 

and retain image details across several spatial scales [11]. Such a network is able to be trained on few 

images, and performs segmentation-related tasks very quickly. 

 

Methods 

This review utilized Pubmed and Embase to search for and identify research studies of interest 

published between 2019 and 2024. This systematic literature review utilized PubMed and Embase to 

search for and identify studies pertinent to machine learning in proton therapy. The time period of 2019 to 

2024 was chosen to  capture the most recent signficant advances. An initial search on PubMed was made 

with the search strategy ”‘proton therapy’,  ‘machine learning’, ‘deep learning’”, with filters including 

only research articles from 2019 to 2024, returning 84 results. Next, ”("proton therapy") AND ("machine 

learning" OR "deep learning")” was searched on Embase, retrieving 546 results. When filtered between 

2019 to 2024 and to only research articles, 250 results were retrieved on Embase. Reviews, editorials, 

technical notes, and articles in any language other than English were excluded from the broad search on 

both databases. Filtering by title, papers were chosen based on two inclusion factors: explicit application 

to, or mention of, proton therapy, and inclusion of a machine learning algorithm. Assessing by abstract, 

works irrelevant to specific aspects of the proton therapy workflow in the scope of the review were 

excluded. Upon assessing and evaluating full texts for quality, studies were excluded that lacked a clear 

explanation of model architecture. If multiple studies of the same architecture applied to the same 

workflow step were identified, chronologically only the most recent advancement in application was 
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included. An additional 5 studies that met all inclusion criteria were identified from references of chosen 

papers. In total, 38 relevant studies have been summarized and incorporated into this review. 

 

Results 

1. ML for Patient Selection and Predictive Outcome Modeling in Proton Therapy  

ML models are being developed to improve the efficiency of pre-screening processes and 

determining which modality of radiotherapy will result in the least adverse effects. Pre-selection enables 

patient informatics to be compared to an established criteria protocol that assesses whether or not an 

individual is eligible for, or will respond better to, proton therapy versus photon radiotherapy. This 

automated method enables more patients to be pre-screened in a shorter amount of time as well as 

eliminating any physician bias in the selection process. It is also possible to utilize a predictive model to 

choose proton or photon therapy based on post-radiation toxicity prediction as a marker of preferability.  

 

 1.1 Pre-screening for Therapy Selection 

Kouwenberg et al. [12] developed a pre-selection algorithm specifically designed for intensity 

modulated proton therapy (IMPT) for head and neck cancer patients. The group found that the proposed 

algorithm significantly reduces time and labor costs by utilizing ML and automated planning. The 

algorithm created a fully-automated IMPT plan for patients with a prior model-based selection (MBS) 

approach for photon treatment. A Gaussian naive Bayes classifier for MBS outcome prediction was 

trained on the dosimetric differences between the IMPT auto-generated plan and the previous photon 

plan, as well as on the outcomes of the MBS approach. The training process was curated to strongly avoid 

generating false negatives of IMPT eligible patients. The variables for training compared the differences 

in xerostomia, dysphagia, and feeding tube dependency for the photon therapy and IMPT plan, and 

whether or not the MBS approach deems the individual eligible. After training, a three-dimensional 

decision boundary was generated based on the xerostomia, dysphagia, and feeding tube dependency 

measurements. The boundary separates pre-selected patients eligible for proton therapy from those that 

were not pre-selected by the model, and is given by the conditional probability generated from the 

Gaussian classifier that outlines whether the patient eligible for proton therapy was larger than the 

decision threshold. Such efficient models provide valuable insight as to whether an individual patient 

would be selected for proton therapy prior to any other further treatment planning, conserving both time 

and money.  

 An alternative model, titled AI-PROTIPP (Artificial Intelligence Predictive Radiation Oncology 

Treatment Indication to Photons/Protons), features a U-Net architecture and is able to quantitatively 

assess which treatment method is superior depending on patient factor inputs [13]. The model is able to 

predict dose distributions for both photon and proton therapy, and use Normal Tissue Complication 

Probability (NTCP) to determine which therapy would result in the least side effects. This model was 

employed in clinical cases of patients with oropharyngeal cancer, and resulted in 87.4% accuracy of 

treatment selection based on the parameters given. AI-PROTIPP effectively uses NTCP data to predict 

dose distributions, select treatment plans, and reduce the time needed for manual comparisons. Similar to 

AI-PROTIPP, Chen et al. [14] generated two 3D U-Nets to predict photon and proton doses for patients 

with localized prostate therapy. They selected NTCP models of grade 2 or higher to determine proton 

therapy partiality. The deep-learning based dose prediction technique returned with 90%-93.5% selection 

accuracy based on the NTCP model parameters. These studies demonstrate that DL methods can 
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accurately predict dosage and distinguish NTCP differences between photon and proton plans to select the 

superior modality for the patient [12-14]. Clinically, ML applied to this area has the potential to greatly 

decrease time spent on plan comparison down to as little as 5 seconds, expediting the start of patient 

treatment. 

Geng et al. conducted a multicenter study using a KBP ML model to evaluate and improve 

radiotherapy plan quality in a clinical trial for non-small-cell lung cancer (NSCLC) [15]. The trial aimed 

to compare the effectiveness of IMPT versus traditional IMRT, with a focus on reducing toxicity to 

OARs. The KBP model was utilized to assess the quality of both IMPT and IMRT plans across the 

various centers, showing that while proton therapy often demonstrated dosimetric advantages, it also had 

greater variability in plan quality compared to photon therapy. This study highlights the KBP model's 

utility in QA, and its potential for enhancing radiotherapy plans in multicenter clinical trials. The research 

group also plans to publish both photon and proton KBP models for broader use in radiotherapy plan 

optimization and QA, one of the first for proton therapy.  

 

 1.2 Toxicity Prediction and Strategy 

Padannayil et al. [16] applied a ML algorithm to improve toxicity prediction and to specifically 

reduce radiation dermatitis for IMPT. Radiation dermatitis is a common side effect of all radiotherapy 

modalities characterized by skin inflammation and redness. It has been reported that up to 67.4% of 

nasopharyngeal carcinoma patients experience Grade 2 (medium) radiation dermatitis [17], therefore, 

finding ways to mitigate its severity is of high importance. The group developed an unsupervised k-means 

clustering ML algorithm that was trained on previous head and neck cancer patients treated with 

IMPT. The algorithm created clusters based on dermatitis severity (low, medium, or high grade) and 

treatment parameters to locate patterns found between the two. By optimizing the distance between 

clusters, the algorithm was able to group patients according to how likely they are to develop varying 

grades of radiation dermatitis depending on their treatment parameters. By implementing this model 

which optimizes where the proton beam is placed, the algorithm is able to lower the skin dose of radiation 

while maintaining comparable treatment outcomes to traditional photon therapy.  

 

2. Simulation & Treatment Planning  

 The clinical workflow of radiotherapy relies heavily on manual inputs and standardized protocols 

for simulation and treatment planning, critical components that guarantee safe and effective treatment 

delivery. While current methodologies are effective, they may be time-consuming, require substantial 

processing power, and fall susceptible to patient-specific variability. With the incorporation of ML, many 

of these areas may be automated and optimized to tailor each nuance of treatment planning to the 

individual patient case.  

 

2.1 Auto-planning and Treatment Plan Optimization 

 A 3-dimensional cycle generative adversarial network (CycleGAN) was trained on CT and MRI 

data pairs from a training cohort composed of patients with base-of-skull tumors [18]. The clinical study 

consisted of 50 patients, split into two non-overlapping cohorts, one for training and one for study 

purposes. Post-training, synthetic CT (sCT) scans were generated by the algorithm and compared against 

the initial CT scans where the mean error ranged from 38.65 HU to 65.12 HU. Proton plans with 2 beams 

each were generated based on the initial CT scans as well as the sCT images, and were compared based 
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on dose-volume histogram endpoints and proton distal range along the beams. Quantitative results 

showed that the algorithm-generated sCT was in agreement with the ground truth CT; the dosimetric 

evaluation of the dose-volume histogram endpoints did not have statistically significant differences, and 

96% of the proton ranges were clinically accepted. Shafai-Erfani et al. showcased an algorithm that is 

capable of generating clinically-acceptable sCT images and highlighted the potential for MRI-based 

proton treatment planning, which was subsequently built upon by Zimmerman et al. [19]. 

A DL algorithm capable of generating sCT images independent of MRI sequence data was 

created in 2022 [19]. 47 meningioma patients treated with pencil beam scanning (PBS) therapy were split 

into training, validation and test cohorts. MRI sequences in combination with planning CT (pCT) data 

were used to train a 3D U-Net framework with ResNet-Blocks, a type of CNN block in which the output 

from one layer is added into a deeper layer. The training outcome was assessed by metric, dosimetric, and 

spot difference map accuracy in comparison to the original treatment plans. The synthetic dose parameters 

of the proposed model agreed within 1% of the real-world original plans, and 98% of the spots on the spot 

difference maps had less than 1 cm difference from the original plan. The novel MRI sequence 

independent sCT generator created by Zimmerman et al. suggests that “the training phase of neural 

networks can be disengaged from specific MRI acquisition protocols” [19]. 

Incorporating KBP pipelines improved with ML into commercial treatment planning may 

decrease inter-plan variability. KBP in the modern day best refers to data-driven approaches in treatment 

planning, incorporating clinicians’ knowledge into precise algorithms. Post-processing and dose 

mimicking are critical steps to create clinically acceptable ML-planned IMPT plans. Borderias-Villarroel 

et al. [20] investigated the quality of such plans utilizing four different KBP pipelines. The four models 

were generated from two sets of conditions; post-processing or no post-processing, isodose-based or 

commercial RayStation dose mimicking. Using data from 60 oropharyngeal cancer patients, the study 

trained 11 dose prediction models and results produced comparable target coverage and improved OAR 

preservation compared to manual plans. However, post-processing appeared to compromise the 

robustness of the plan. The combination of no post-processing and RayStation dose mimicking produced 

the IMPT plan with the best robustness with sufficient OAR sparing. 

 

2.2 Target Delineation and Segmentation 

 Contouring OARs is a laborious, manually-intensive task in the clinical workflow. Studies have 

shown that contours created by AI are more consistent than those completed manually by oncologists 

with the same level of NTCP [21]. Applying related technology to the clinical workflow of proton therapy 

is therefore preferable to ensure patients receive the highest quality treatment plan. Segmentation of the 

target and OARs utilizing ML has not been explored for proton therapy treatment specifically. At the 

current time, all published ML algorithms related to contouring in treatment planning pertain to 

conventional radiation methodologies. Nielsen et al. is the only group to have evaluated a CNN and local 

AI to contour OARs specifically for future proton therapy [21]. Specific ML models have been developed 

for adaptive proton therapy purposes, but the planning stage remains underdeveloped.   

Van der Veen et al. explored how DL models can be implemented in the identification and 

delineation of OARs in head and neck cancer radiotherapy treatment [22]. While this study does not 

directly address the applications to proton therapy but rather radiotherapy broadly, the technology has 

great potential for practical application. Precise delineation of tumors in the head and neck is crucial 
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during treatment planning to ensure that the radiation is sufficiently covering and concentrated on the 

tumor while sparing surrounding healthy tissue. OAR delineation in the majority of cases is auto-

contoured with physician confirmation, but some difficult areas may be delineated manually. The study 

assesses how a CNN, a type of DL model, can automatically delineate OARs from patient CT or MRI 

scans used in treatment planning. Using a CNN can significantly decrease the time it takes to delineate the 

tumor from OAR while simultaneously improving consistency when trained on a large dataset. The 

authors discuss potential limitations as well: the availability of vast training datasets is still expanding, 

and the necessity of carefully validating the algorithm’s accuracy remains for successful implementation.  

 

 2.3 Dose Prediction, Deposition & Verification 

PBS dose calculation often may be inaccurate due to approximations used to work around 

heterogeneities in tissue, but the result is provided quickly. The doses are calculated using the water 

equivalent path length along the center of the proton beam, and the medium is treated as infinite and 

homogeneous. However, tissue is rarely homogenous in clinical reality, leading to range uncertainties and 

inaccurate modeling of multiple Coulomb scattering. Despite being the current gold standard and 

extremely accurate, Monte Carlo (MC) dose calculation suffers from slow processing due to tracking each 

individual particle. To mitigate the tradeoff between accuracy and time when utilizing PBS dose 

calculation or MC simulations, incorporating ML algorithms may improve the shortcomings of either 

method.  

To boost the accuracy of PBS dose planning while maintaining the short time scale, Wu et al. 

created a DL model that converts a PBS dose to a MC dose using the initial PBS data and the CT images  

[23]. The model was trained on data from four tumor sites; head and neck, liver, prostate, and lung. The 

group found that, “Training the model on data from all tumor sites together and using the dose 

distribution of each individual beam as input yielded the best performance for all four tumor sites” [23]. 

The average gamma passing rate, a QA measure, was >88% between the converted PBS dose and the MC 

dose, and the conversion time was less than 4 seconds. Such results demonstrate high accuracy and rapid 

speed, combining the strengths of both planning techniques. The group reports that the model is able to be 

applied to new datasets through transfer learning, and may efficiently be added to the clinical workflow of 

proton therapy treatment planning.  

Proton Source Model Commissioning (PSMC) is a critical component of the planning workflow 

which aims to optimize the match between calculated dose and delivered dose in PBS therapy. Presently, 

PSMC ensures accurate dose calculation via MC simulations. Nominal energy refers to the average or 

expected energy value of the protons in the simulation, while the energy spread is the range of energies 

around the nominal energy. Setting up, or calibrating, the nominal energy and energy spread parameters 

in the PSMC is difficult as these parameters are not able to be easily solved from an equation. To 

facilitate these calculations, a CNN known as “PSMC-Net” was developed [24]. PSMC-Net was trained 

on a range of 33 clinical-level energies, from 75-225 MeV. For each of the 33 energies, a dataset was 

generated with 15 nominal energies, 10 spreads, and the corresponding 150-calculated depth doses 

(IDDs). 130 of the data pairs were used for training, 10 for validation, and 10 for testing. Results showed 

that the gamma pass rate between the MC and measured IDDs was 99% when PSMC-Net was 

implemented. Without PSMC-Net, the gamma pass rate reduced to ~54%. This difference in plan quality 

showcases the significant improvement in accuracy and efficiency of the PSMC process when 

commissioning a CNN-based proton source model.  
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Linear energy transfer (LET) refers to the rate at which energy is transferred per unit length. X-

rays in photon therapy would be classified as low LET and cause smaller amounts of DNA damage, 

compared to particles with higher LET, such as alpha particles that subsequently cause greater damage. 

Protons are advantageous in radiation therapy due to their characteristic Bragg peak, which creates a 

mixed radiation field of both low LET components further from the tumor and high LET components at 

the tumor site. MC simulations are utilized as the gold standard to predict yield and LET at a certain depth 

of the proton treatment plan to assess biological effectiveness. These simulations are difficult to validate 

experimentally. Gao et al. implemented a method to verify LET via an entirely synthetic computational 

approach for proton stereotactic body radiation therapy (SBRT) [25]. To date, this is the first time a KBP 

methodology has been adopted in the context of LET distributions. Utilizing the dose distribution map, 

the DL framework predicts the LET distribution map of the protons to better estimate the relative 

biological effectiveness (RBE). The framework utilized data from 50 prostate cancer patients receiving 

proton SBRT, and featured a 5-fold cross-validation method, dividing the patient dataset into five subsets. 

In each iteration, one subset was used for testing while the remaining four were used for training, 

ensuring each patient's data was tested exactly once. The proposed model consists of two sub-networks; 

two U-net based generators that create a synthetic LET map image from the dose map image, and two 

discriminations which minimize judgement error. The supervised CycleGAN model demonstrated 

superior performance to other GAN-based models with a mean absolute error (MAE) of 0.096 ± 0.019 

keV μm−1. This model may significantly improve the efficacy of proton therapy by improving treatment 

plan quality through RBE optimization, aided by the provision of highly accurate LET information. 

  

2.4 Range Prediction, Calculation & Verification 

An alternative method to estimate proton beam range is the use optical camera systems equipped 

with scintillators. Scintillators are materials that absorb ionizing radiation, or the energy from charged 

particles, and convert it into short bursts of visible photons or UV light. Such devices are excellent 

candidates for dosimetric or range QA measures in radiation therapy. As passive detectors, scintillators 

provide a non-invasive, safe option for clinical usage. Additionally, the devices are able to provide real-

time feedback with high spatial resolution provided by the sensitive ability to capture minute light 

emissions. They are cost-effective, adaptable to different radiation energies, and generally compatible 

with optical imaging systems. 

Utilizing ML to hybridize dosimetric and range predictions, Ranjith et al. developed artificial 

neural networks (ANN) able to predict six variables related to dosimetric parameters: proton beam spot 

size in the x-axis, y-axis, major axis, minor axis, and relative x and y-axis positional errors [26]. All of the 

ANN models utilized a multi-layer perception (MLP) network with one input layer, three hidden layers, 

and an output layer. Trained on data from 9000 proton spots, all predicted spot size location and relative 

positional errors were compared with scintillator-measured data as reference. The ANN models resulted 

in lower prediction errors compared to the scintillators, and demonstrated excellent beam spot size 

predications as well as positional errors. 

Lee et al.’s study appears to be one of the first combining scintillators with DL as a QA measure 

for both range and dose [27]. The group remarks the difficulty previous methods have had with 

analytically deriving dose distribution from scintillation images manually due to quenching and optical 

effects. Their study introduces a a 2D residual U-net DL approach to predict beam range and spread-out 

Bragg peak (SOBP) using a scintillation light distribution (LD) captured in a water phantom. These 

predictions were reached via 2D map conversion of the LD maps into dose maps. The training and 

validation set was comprised of 8659 image pairs generated via MC simulations with varying proton 
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beam conditions, and the LD was “reconstructed using photons backpropagated from the aperture as a 

visual lens” [27]. The model showed high accuracy with beam range and SOBP width resolutions of 0.02 

mm and 0.19 mm, respectively, and deviations of less than 0.1 mm and 0.8 mm from reference 

simulations. Results demonstrated good agreement in gamma analysis, validating the feasibility and 

accuracy of this DL-based QA method in clinical practice. 

 

 2.5 HU-to-SPR Conversion (CT/DECT) 

 Derived from the nature of proton interactions, stopping power is an essential aspect of treatment 

planning which measures how quickly protons lose kinetic energy as they travel through a medium. 

Linear stopping power is proportional to the density of electrons in the absorbing material due to energy 

loss resulting from Coulombic interactions between the proton and atomic electrons. Linear stopping 

power is the property that determines where the Bragg peak occurs. The stopping power ratio (SPR) is the 

ratio of the linear stopping power of the tissue to the stopping power of water [4]. This is an essential 

parameter in determining how protons will interact with different bodily tissues, such as air, bone, fat, or 

muscle. To calculate dose distribution, Hounsfield Units (HU) from CT images are converted into SPR 

values in order to estimate the linear stopping power of tissues, ensuring precise proton dose delivery in 

the patient. Conventionally, HU-to-SPR conversion is achieved with a calibration curve relating the two 

units based on known relationships. ML is increasingly being implemented in this clinical step to increase 

conversion accuracy, reduce systematic errors, and improve time efficiency. 

Wang et al. present a noise-robust learning-based method to predict RSP maps from DECT 

images for proton therapy [28]. DECT images may be utilized to derive the RSP maps by obtaining the 

energy dependence of proton interactions, however the maps are easily compromised due to noise levels 

and artifacts from physics-based mapping methods. Utilizing ML to reduce the noise when predicting the 

RSP maps shows great clinical potential. The model developed utilized a residual attention cycle-

consistent generative adversarial network (ccGAN), similar to a CycleGAN, to “bring DECT-to-RSP 

mapping close to a 1-to-1 mapping by introducing an inverse RSP-to-DECT mapping” [28]. In 

simulation, 20 head-and-neck cancer patients with DECT images were evaluated. A leave-one-out cross-

validation strategy evaluated ground truth RSP values which served as learning targets against results 

from the proposed model. The predicted RSP maps from the model resulted in a mean square error of 

2.83% and a MAE less than 3%. Even with additional simulated noise in the DECT datasets, the model 

maintained a comparably accurate performance, while the traditional physics-based method faced 

decreased accuracy due to the noise. Regarding DVH metrics, clinical target volumes were less than 0.2 

Gy with no statistical significance, with OAR metrics around 1 Gy. The results highlight the excellent 

accuracy of the predicted RSP maps generated by the ML model and the potential for improving 

treatment planning and dose calculation.  

Translating CT numbers into material properties contributes to uncertainty in dose calculations. A 

physics-constrained DL-based multimodal imaging (PDMI) framework was proposed to bridge the gap 

between proton range uncertainty and material density of different tissue types [29]. This model 

integrated physics, DL, MRI, and DECT to generate accurate mass density maps, and built upon previous 

work by the same group investigating a similar physics-informed DL framework [30]. The prior network 

successfully generated accurate mass density and relative SPR maps from DECT images from 

anthropomorphic adult male, female, and child phantoms with unspecified tissue models. Building upon 

this work, the new study modeled adipose, brain, muscle, liver, skin, spongiosa, and hydroxyapatite bone 

in phantoms, and MRI images were taken of each. From the PDMI framework, an empirical model and 
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various residual networks were generated. Parameters included training with and without a physics 

constraint, and the utilization of MRI and DECT images or solely DECT images. Supervised learning 

further enhanced the ResNet model trained with a physics constraint compared to the ResNest trial 

without. Additionally, the ResNet utilizing both MRI and DECT images opposed to solely DECT 

predicted the densities of each tissue most closely to established literature. As of currently, this novel 

framework is the first approach to inform DL models with both physics insights and MRI data to derive 

accurate mass density maps. 

A present concern when considering radiotherapy plans for children is to avoid extraneous 

radiation, including substitution of MR for CT imaging whenever possible. A group affiliated with St. 

Jude Children’s Research Hospital worked to create synthetic relative proton stopping power (sRPSP) 

images from MRI sequences utilizing a particular GAN model [31]. Utilizing pCT and MR images from 

195 pediatric brain tumor patients, 17 ccGAN models were trained on paired CT-converted RPSP and 

MRI datasets. T1-weighted, T2-weighted, and FLAIR MRI were tested in 17 total combinations, with or 

without preprocessing, to cover all optimal training sequences for the models. The intended purpose of 

the model was to transform the patient MRIs into sRPSP images by learning from the paired CT dataset. 

To evaluate the performance of the ccGAN and potential for clinical use, the group developed an online 

QA tool to ensure the safe integration of MR-only proton planning into practice. The generated sRPSP 

images were converted to sCT, then the QA technique adjusted the sCTs to match a standard reference 

template created from the training dataset to identify areas where the sCT deviated from the ground-truth 

CT by >100 HUs. Additionally, a gamma intensity analysis was conducted for similar purposes to analyze 

the accuracy of the sCT. The group concluded that accurate sRPSP images from T1-weighted and T2-

weighted MRI were able to be generated by the ccGAN, with the QA tool highlighting regions of 

inaccuracy to remove unsuitable sRPSP images from clinical use.  

 

3. In-Vivo Monitoring and Adaptivity in Proton Therapy 

 Continual adaptation and replanning are crucial components of both photon and proton therapy, 

and demonstrate reductions in NTCP and improved target coverage [32]. The two primary adaptive 

therapy techniques include offline replanning, which occurs when a new plan is generated between 

fractions and online replanning, which occurs while the patient is on the treatment table. ML has the 

potential to benefit both areas of adaptive proton replanning, which currently are time-consuming and 

potentially require additional irradiation to the patient through repetitive imaging. 

 

3.1 Anatomy Changes 

As noted by Wang et al., the sculpting ability benefits of IMPT are countered by increased 

sensitivity to anatomical variations during and between treatment sessions [33]. As of 2021, anatomic 

changes were still not effectively accounted for during pediatric treatment plans. Such limitations may 

result in suboptimal delivery to the tumor or increased dosage to OARs. Adaptive anatomy planning is 

resource intensive and usually requires additional CT simulation, where in pediatric patients, increased 

radiation exposure is not preferable. DL may improve this area of clinical workflow by allowing sCTs to 

be derived from offline on-treatment MRI images to calculate dose delivery based on daily anatomy, as 

well as flagging cases which may require adaptation.  

The group developed a novel CycleGAN model with self-attenuation with abilities to identify 

pediatric patients that would benefit from adaptive replanning [33]. The goal of creating such a model, 

opposed to utilizing a conventional CycleGAN, is to assess if the addition of self-attenuation generates 
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more accurate sCTs for children with brain tumors between the ages of 2 and 21. The goal of introducing 

self-attenuation to a conventional CycleGAN is to enhance boundary delineation of bone-air tissue 

interfaces, specific to common pediatric brain tumors, and to reduce noise. The training dataset was 

composed of both CT and T1-weighted MRI images of 125 children with brain tumors. Seven patients 

between the ages of 2 and 14 that underwent adaptive planning due to anatomy changes discovered via 

MRI during proton therapy comprised the test dataset. Results were obtained by comparing the MRI taken 

during proton therapy with the model-generated sCT and the replanning CT (ground truth). The HU MAE 

with the self-attenuation CycleGAN was 65.3 ± 13.9 versus 88.9 ± 19.3 for the conventional CycleGAN, 

demonstrating improved accuracy by the proposed model. The self-attenuated model also demonstrated 

improved gamma passing rates and appropriately triggered plan adaptation in all test patients.  

 Similar to the study utilizing a CNN to contour OARs in conventional radiation planning [22], 

Elmahdy et al. utilized a CNN to automatically segment the bladder from CT scans of IMPT prostate 

cancer patients online [34]. This study focuses on online adaptive IMPT, where the patient’s anatomy is 

continuously tracked to generate real-time treatment adjustments in the case of observed changes. In the 

case of prostate cancer, the goal of this algorithm was to monitor changes in bladder or prostate shape or 

location to minimize OAR dosage. Particular attention was paid to accurate segmentation of the bladder 

and adjacent structures (prostate, seminal vesicles, and lymph nodes). The group acknowledges 

commercially available automatic recontouring applications for adaptive therapy, but reaffirms their 

current status as a black box for clinicians.  

 The proposed CNN is able to predict deformation vector fields which are required for accurate 

contour propagation by detecting spatial transformations between the reference CT image and the real-

time treatment imaging [34]. The CNN was trained on manually-delineated images and corresponding 

deformation vector fields of 20 prostate cancer patients. As the network makes the continuous comparison 

between the two images, this enables adaptations in the treatment plan to be generated based on the 

patient’s anatomical variations during the treatment session. Their results found that the combined CNN 

and image registration technique improved the target delineation accuracy significantly with a dice 

similarity coefficient of 88% compared to manual attempts. The CNN-propagated contours met dose 

coverage constraints in 86%, 91%, and 99% of cases for the prostate, seminal vesicles, and lymph nodes, 

respectively. The group reported that 80% of the automatically generated treatment plans were directly 

usable without manual correction, improving clinical efficiency and potentially reducing adverse side 

effects by sparing healthy tissue. 

 

 3.2 Range  

Protoacoustic signals in proton therapy are acoustic waves generated when protons interact with 

tissues. According to the Bragg peak, protons suddenly and rapidly deposit energy at a certain depth, 

causing a local transient increase in temperature and pressure [35]. This minute expansion generates 

protoacoustic signals, which may be detected with ultrasound sensors. The clinical relevance relates to 

recreation of the Bragg peak and real-time monitoring of proton beam range, ensuring that the beam is 

depositing at the intended target depth. Protoacoustic signal denoising is quickly gaining traction in the 

field of proton therapy research, and ML techniques are readily being incorporated.  

While the protoacoustic technique is able to determine the Bragg peak location in vivo, it requires 

a large dose delivery in order to achieve an adequate signal-to-noise (SNR) ratio and high number of 

signaling average (NSA). Such large doses are not suitable for clinical use. A novel DL model 

demonstrated enhancement of the SNR of protoacoustic measures as well as improving Bragg peak 
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location identification accuracy in range verification scenarios [36]. Three accelerometers were placed on 

cylindrical polyethylene phantoms to record protoacoustic signals during simulated treatment. Device-

specific stack autoencoder (SAE) denoising models were trained to denoise low NSA signals. The 

supervised SAE outperformed the unsupervised SAE in Bragg peak range verification. Clinically, this 

model shows promise to decrease unnecessary dosage in the patient by accurately measuring the Bragg 

peak in vivo. 

Expanding upon the range of applications of ML in online range monitoring, Jiang et al. proposed 

a novel architecture capable of denoising acoustic, protoacoustic, and electroacoustic signals both 

quantitatively and qualitatively [37]. Radiation-induced acoustic imaging generally requires a substantial 

number of recorded frames to achieve a satisfactory dose deposition average, exposing the patient to 

increased dose. The proposed model is a general deep inception convolution neural network, or a GDI-

CNN. The model features radiation-induced acoustic signal denoising capabilities, which results in a 

reduced number of frames required for averaging. The group details that “the network employs 

convolutions with multiple dilations in each inception block, allowing it to encode and decode signal 

features with varying temporal characteristics” [37]. Such characteristics expand the reach of the 

network’s abilities to different radiation sources. Compared to prior inception networks, this study 

implements convolutions with different dilations, rather than different filter sizes, resulting in increased 

inception field size and decreased computational assumptions. The inputs of the model were the few-

averaged noisy signals, which in turn outputs high-SNR denoised signals. For the protoacoustic radiation 

therapy trial, four of the five data were employed for model training, with the remainder used for 

validation. The performance of the GDI-CNN was assessed in comparison with experimental data of 

protoacoustic signals; it realized proton range accuracy parallel to 1500-frame-average results with only 

20-frame-average measurements inputted. These results improved range verification frequency from 0.5 

to 37.5 Hz in proton therapy. Additionally, it demonstrated lower mean-squared errors and higher peak-

SNR, improving the reach of real-time proton therapy monitoring.  

 

 3.3 Dosimetry 

Protoacoustic imaging specifically focuses on generating images based on the acoustic signals 

generated by protons. This specific application of protoacoustic signaling is beneficial as it offers in vivo 

3D dose verification; however, it is limited by the narrow angle of the ultrasound transducer. Jiang’s 

group developed a DL model featuring a deep cascaded CNN (DC-CNN) to improve proton-acoustic 

image reconstruction using proton-acoustic signals detected by a matrix array [38]. The framework was 

validated on data from 81 prostate cancer patients’ IMPT therapy plans, and dosage was calculated with 

RayStation. A matrix ultrasound array was simulated near patient treatment site to measure 

radiofrequency signals during dose delivery. To address how realistic the simulation may be, tissue 

heterogeneity and attenuation were considered by adding noise to the signals. The proposed model was 

trained on 204 samples from 69 patients and tested on 26 samples from 12 separate patients. 3D pressures 

and dose maps were generated, and qualitatively and quantitatively compared with the ground truth. The 

results showed that the proposed DC-CNN reconstructed high-quality 3D pressure images from the 

proton-acoustic images, potentially enabling 3D dose verification during treatment.  

Pastor-Serrano et al. propose DoTA, a DL based millisecond speed dose calculation algorithm 

capable of accurately predicting pencil beam proton dose depositions [39]. The two current physics-based 

tools to calculate proton doses are analytical pencil beam algorithms (PBA) and MC simulations, which 

respectively feature better speed or precision. MC methods and PBAs are currently unable to synthesize 
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the particle transport simulations in sub-second times necessary for next generation real-time adaptive 

radiotherapy. The importance of accurate particle transport calculations results from IMPT requiring MC 

simulations and PBAs to compute the spatial distribution of physical dose delivered by the many 

individual protons. Based upon previous long short-term memory (LSTM) networks [40, 41], the 

proposed algorithm sequentially calculates proton pencil beam dose distributions from relative SPR 

slices, and does not require a separate model per beam energy [39]. DoTA takes a novel approach by 

featuring an attention-based transformer backbone, which dispenses of convolutions and connects the 

encoder and decoder. This architecture is simpler than many other transduction models, which accounts 

for the additional speed that may benefit adaptive replanning.  

With the parametric DoTA model, dose distributions from individual proton beamlets are able to 

be predicted from patient geometries (x) and beam energies (ɛ̝) with remarkable speed. The essential 

concept behind the algorithm is that it captures particle transport physics from provided data and learns 

the appropriate function y(θ)= f(x, ɛ̝) through a series of artificial neural networks with parameters (θ). 

Performance was based on speed and accuracy comparison to standard clinically used methods, such as 

PBA or MC ground truth dose distributions. In summary, DoTA predicted dose distributions from single 

pencil beams 100 times quicker than widely used PBAs. The distributions yielded a gamma pass rate of 

99.37 ± 1.17, close to standard MC accuracy in a fraction of the computational time. DoTA outperformed 

previous PBA and MC approaches with a 10% improvement in gamma pass rate, and features speed close 

to commercial GPU MC methods, critical for adaptive replanning events. 

 

4. Future directions  

Significant advances have been recently made incorporating ML into the proton therapy clinical 

workflow. However, this is still an emerging area of investigation gaining momentum as proton therapy 

becomes more commonplace. While great strides have been made in method applicable to all 

radiotherapy generally, proton therapy-specific models have been less frequently published. Areas of 

priority for future development are discussed in the following section. 

 

 4.1 Quality Assurance 

At present, ML-assisted QA methods are sparse in proton therapy. QA is laborious in all high-

precision radiation therapy modalities, and is comprises management of beam delivery mechanisms, beam 

parameters, and instrumentation. Currently, ML algorithms have been applied to improving gamma pass 

rates and predicting beam data in proton therapy, but no publications directly address ML for proton QA. 

Prerequisites for a quality plan, such as accurate delineation of the target and OARs, is beyond the scope 

of most QA procedures [15]. According to the AAPM Task Group 224, QA procedures have been 

outlined for three proton therapy techniques: scattering, uniform scanning, and PBS [42]. This is an area 

of work where ML may be incorporated to improve the accuracy, efficiency, and consistency in QA. Ono 

et al. reported on the applications of AI for QA in radiotherapy as of 2024, and proton therapy is absent 

[43]. Current focus areas include feature extraction and selection, mechanical hardware setup QA, and 

gamma passing rate calculations. With the recently developed QA procedure outlines by Task Group 224 

[42], ML may now be addressed as it has been with various other radiotherapy techniques. Connecting 

back to ML for in-vivo monitoring, an underdeveloped area, projects can continue to be pursued to further 

improve real-time treatment monitoring by analyzing live delivery of dosage. Additionally, AI may be 
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harnessed to provide streamlined QA workflows by automating manual routine tasks, such as data entry 

or documentation.  

 

4.2 Cost Calculation  

A large barrier to proton therapy treatment is cost. Proton therapy is expensive and may be 

inaccessible to patients not geographically located near a treatment center. By training on patient 

geographic and socioeconomic data and associated treatment outcomes, ML could be leveraged to 

improve equity or personalize the costs of proton treatment. From an institutional perspective, these same 

data could be used to assess opportunities for growth. Verma et al. investigated the health economics of 

proton therapy in terms of sustainability and cost-effectiveness [44]. As this study was conducted purely 

from a health economics perspective, ML was not utilized. A significant concern brought to attention is 

the inherent inaccuracy of cost-effectiveness analyses due to the inability to account for all aspects of 

operation, such as electricity and maintenance, beam delivery time, and number of patients treated on a 

given day. The group reported that Markov and MC modeling have been utilized to address cost 

tabulations and comparisons, but all modeling studies have limitations due to probabilistic assumptions. 

As of 2016 when the study was conducted, the group reports that proton therapy for the routine treatment 

of breast cancer was not shown to be cost-effective. ML may greatly improve the accuracy and efficiency 

of cost-effectiveness analyses by reliably accounting for additional factors otherwise neglected through 

manual calculation [44]. Additionally, as demonstrated in previously discussed studies, ML is able to 

improve MC simulations in various aspects [23, 39, 45]. However, such an approach has not yet been 

accounted for in proton therapy economic analysis. 

 

4.3 Outcome Studies  

Prognostic research is sparse in the context of both proton therapy and ML. The recent nature of 

proton therapy compared to the history of data available for conventional photon therapy is a primary 

limiting factor. ML has been utilized to predict toxicity and side effects [16, 46, 47], but not overall 

treatment prognostics in proton therapy. The integration of DL radiomics and circulating tumor cell 

counts has demonstrated improved accuracy in predicting the risk of reoccurrence for NSCLC patients 

treated with stereotactic body radiotherapy (SBRT). Jiao et al. accomplished this feat by building DL 

models on clinical measures and CT data from 421 NSCLC patients [48]. The models were able to not 

only predict recurrence risks, but were able to stratify patients into specific outcome subgroups based on 

the CTC counts. The proposed model achieved a concordance index of 0.880.  It is promising for such a 

novel methodology to be applied to proton therapy subsequently, gleaning valuable predictions for 

physicians to consider throughout the treatment process. In particular, such a technique may serve 

beneficial in adaptive replanning.  

 

 4.4 Challenges 

The recent nature of proton therapy compared to the history of data available for conventional 

photon therapy is a limiting factor in the incorporation of ML. There are many large, high-quality datasets 

available for conventional radiation therapy, but few for proton therapy. This limits most training and 

testing data for proton therapy to clinical work, as deidentified and declassified patient datasets are not as 

common. Additional challenge arises from the variation in the nature of the physics. Proton therapy 

harnesses the complex power of the Bragg peak to provide targeted therapy with decreased side effects. 

However, with such benefit comes difficulty in applying existing ML algorithms used in conventional 
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radiotherapy to proton therapy. ML applications are common in other areas of radiation therapy, but the 

challenge in adapting and applying them to proton therapy is inherent to the predicate physics and 

hardware differences. 

 

Discussion 

 Many variations and applications of machine learning (ML) have appeared in the proton therapy 

workflow over the past five years with promise of improving efficiency, accuracy, and efficacy of 

treatment. U-Net architectures are prevalent in the patient pre-screening process, and convolutional neural 

networks (CNNs) and CycleGANs frequent dose and range prediction in treatment planning. For adaptive 

monitoring, advanced deep learning architectures such as general deep inception convolution neural 

networks (GDI-CNNs) and deep cascaded CNNs (DC-CNNs) improve real-time dose verification and 

range monitoring. However, certain areas such as target segmentation in treatment planning, cost analysis, 

and quality assurance measures lack notable ML contributions and are scopes of future interest. In 

conclusion, with the increased clinical interest in proton therapy, ML algorithms have been incorporated 

into both the clinical and research workflows to facilitate treatment and discovery. 
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Clinical Application Reference ML Model Dataset Model Task 

Pre-screening Kouwenberg et al. (2021)[12] Gaussian naïve 

Bayes classifier 

 

 

45 head and neck 

cancer patient photon 

plans 

Pre-determine eligibility for 

IMPT and auto-plan if eligible 

 

 Huet-Dastarac et al. (2023)[13] AI-PROTIPP (U-

Net CNN) 

60 oropharyngeal 

cancer patient proton 

and photon plans 

 

Advise which radiation 

modality results in least 

adverse effects 

 Chen et al. (2024)[14] Two 3D U-Nets 95 localized prostate 

cancer patients 

Guide photon or proton plan 

partiality from NTCP models 

and dose prediction 

 

 Geng et al. (2023)[15] KBP ML model NSCLC patients Compare effectiveness of 

IMPT vs. IMRT plans  

 

 Chamseddine et al. (2023)[46] Shallow CNN, 

Ensemble learning 

(CNNE) 

117 hepatocellular 

cancer patient proton 

and photon plans  

 

Liver toxicity prediction to 

guide modality selection  

Toxicity Prediction Padannayil et al. (2023)[16] Unsupervised k-

means clustering  

44 head and neck 

cancer patient dose 

surface histograms 

Optimize proton beam 

placement to decrease skin 

irradiation based  

 

Plan Optimization Shafai-Erfani et al. (2019)[18] 3D CycleGAN 50 base-of-skull tumor 

MRI and CT pairs 

 

Generate sCT images from 

MRI 

 Chen et al. (2022)[49] 3D and 2D U-Net 

GANs 

206 nasopharyngeal 

carcinoma patients 

MR and paired CT 

images 

 

Generate sCT images from 

MRI for IMPT 

 Zimmerman et al. (2022)[19] 3D U-Net with 

ResNet-Blocks 

47 meningioma patient 

MRI sequences and 

pCT data 

 

Generate sCT images 

independent of MRI sequence 

data  

 Borderias-Villarroel et al. 

(2023)[20] 

Four KBP ML 

models 

60 oropharyngeal 

cancer patients 

Optimize post-processing and 

dose-mimicking for ML-

created IMPT plans 

 

 Bruggen et al. (2023)[50] MLO 25 oropharyngeal 

cancer patients 

 

Generate IMPT plans 

Target Segmentation Nielsen et al. (2023)[21] nnU-Net (CNN), 

deformable image 

registration, local 

AI 

 

63 head and neck 

cancer patients 

Contour OARs for proton 

plans 

Dose Calculation Wu et al. (2021)[23] 3D HD U-Net 290 (90 head and neck, 

93 liver, 75 prostate 

and 32 lung) cancer 

patients 

Conversion of a PBS dose to a 

MC dose to boost accuracy of 

PB dose calculation 

 

 Liu et al. (2023)[24] PSMC-Net (CNN) Range of 33 clinical-

level beam energies 

(75-225 MeV) 

Optimize calibration of 

nominal energy and energy 

spread parameters in PSMC 

 Grewal et al. (2020)[51] Gaussian process 

regression (GPR), 

shallow neural 

network (SNN) 

 

4,231 Randomized 

patient QA 

measurements 

Predict OF and MUs 
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 Stasica et al. (2023)[52] Deep CNN (VGG-

16) 

ImageNet database, 

2,899,816 proton 

clusters, 853,717 

electron clusters, 

3,143,149 photon 

clusters 

 

Accurately recognize protons 

and validate LET spectra 

 Gao et al. (2024)[25] Supervised 

CycleGAN 

50 prostate cancer 

patient dose maps 

 

Predict LET distribution map 

for proton SBRT 

 Tang et al. (2024)[53] 3D Cascaded UNet 275 4-field prostate 

proton SBRT plans, 

rendering 1,100 fields 

 

Calculate dose-averaged LET 

Range Calculation Ranjith et al. (2024)[26] Artificial neural 

network (ANN) 

9000 proton spots Predict beam spot size in 

varying axial positions 

 

 Uh et al. (2023)[54] CycleGAN with 

deformable image 

registration 

CBCT, same-day CT, 

and pCT of 81 

pediatric patient 

abdominal cavities 

 

Estimate proton ranges 

through abdominal cavity gas 

pockets by generating sCT 

images from CBCT 

 Lee et al. (2023)[27] 2D residual U-Net 8,659 image pairs 

from MC simulations 

Predict beam range and 

spread-out Bragg peak  

 

HU-to-SPR  Wang et al. (2021)[28] ccGAN 20 head and neck 

cancer patient DECT 

images  

 

Predict RSP maps from DECT 

images 

 Chang et al. (2023)[29] PDMI (Physics-

constrained DL-

based multimodal 

imaging), 

Supervised ResNet 

 

7 tissue substitute MRI 

phantoms 

Generate mass density maps 

from MRI and DECT 

 Charyyev et al. (2022)[55] Residual attention 

GAN 

70 simultaneous 

SECT/DECT images 

from head and neck 

cancer patients  

 

Develop DECT images from 

SECT  

 Wang et al. (2022)[31] ccGAN 195 pediatric brain 

tumor pCT and MRI 

 

Create synthetic RSP from 

MRI sequences 

Adaptivity Wang et al. (2022)[33] CycleGAN with 

self-attentuation 

125 pediatric brain 

tumor CT and T1-

weighted MRI 

Identify patients that would 

benefit from adaptive 

replanning due to anatomical 

variations 

 

 Elmahdy et al. (2019)[34] CNN 20 prostate cancer 

patient manually-

delineated images and 

deformation vector 

fields 

 

Online recontouring of 

bladder and prostate from CT 

scans of IMPT patients 

 

 Thummerer et al. (2022)[56] Deep CNN 45 thoracic cancer 

patient 4D-CBCTs 

 

Convert sparse view 4D-

CBCTs into 4D-sCTs 

 Zhang et al. (2022)[57] SWFT-Net (DL) 1,706 head and neck 

cancer patient data 

Increase speed of plan 

adjustment due to anatomical 

changes 
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 Wang et al. (2023)[36] Device-specific 

stack autoencoder 

(SAE) denoising 

models 

  

512 raw proton pulses 

to phantoms  

 

Denoise acoustic signals and 

reduce Bragg peak range 

uncertainty in-vivo 

 

 Jiang et al. (2023)[37] General Deep 

Inception CNN 

(GDI-CNN) 

 

1500 protoacoustic 

pulses 

Denoise acoustic signals in-

vivo 

 Lerendegui-Marco et al. 

(2022)[58] 

Boosted decision 

trees, ANN 

5×10⁶ simulated 

gamma-ray events 

between 200 keV and 

7 MeV 

 

Identify full-energy gamma 

events and enhance signal-to-

total ratio in-vivo  

 

 Pietsch et al. (2023)[45] 3D-CNNs 12 head and neck 

cancer plans, 1 head 

phantom, 386 

simulated treatment 

deviation scenarios 

  

Automatically classify and 

detect range deviations 

 

 Sato et al. (2023)[59] Fully connected DL 

models and CNNs 

Total 10,083 simulated 

proton beams between 

120-220 MeV 

 

Verify Bragg peak positioning 

without in-beam PET 

 

 Jiang et al. (2022)[38] Deep cascaded 

CNN 

204 prostate cancer 

radiofrequency signals 

 

3D dose verification in vivo 

 Pastor-Serrano et al. (2022)[39] DoTA (DL based 

millisecond speed 

dose calculation 

algorithm) 

30 CT scans from 

prostate, lung and head 

and neck cancer 

patients 

 

Predict pencil beam dose 

distributions in real time 

 Zhang et al. (2024)[60] 2D-Unet 186 PBS patient 

therapy plans 

 

Predict dose from pCT data 

 

 Harms et al. (2020)[61] CycleGAN 23 head and neck 

cancer DECT images 

CBC-guided adaptive IMPT 

dose planning 

 

 

Table 1: Datasheet summary of current ML applications and associated data sources at various stages of 

proton therapy clinical treatment. 
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