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ABSTRACT 27 

Objective—This study investigated the genetic and epigenetic mechanisms underlying 28 

the comorbidity patterns of five substance dependence diagnoses (SDs; alcohol, AD; 29 

cannabis, CaD; cocaine, CoD; opioid, OD; tobacco, TD). 30 

Methods—A latent class analysis (LCA) was performed on 31,197 individuals (average 31 

age 42±11 years; 49% females) from six cohorts to identify comorbid DSM-IV SD 32 

patterns. In subsets of this sample, we tested SD-latent classes with respect to 33 

polygenic burden of psychiatric and behavioral traits and epigenome-wide changes in 34 

three population groups.    35 

Results—An LCA identified four latent classes related to SD comorbidities: AD+TD, 36 

CoD+TD, AD+CoD+OD+TD (i.e., polysubstance use, PSU), and TD. In the epigenome-37 

wide association analysis, SPATA4 cg02833127 was associated with CoD+TD, AD+TD, 38 

and PSU latent classes. AD+TD latent class was also associated with CpG sites located 39 

on ARID1B, NOTCH1, SERTAD4, and SIN3B, while additional epigenome-wide 40 

significant associations with CoD+TD latent class were observed in ANO6 and MOV10 41 

genes. PSU-latent class was also associated with a differentially methylated region in 42 

LDB1. We also observed shared polygenic score (PGS) associations for PSU, AD+TD, 43 

and CoD+TD latent classes (i.e., attention-deficit hyperactivity disorder, anxiety, 44 

educational attainment, and schizophrenia PGS). In contrast, TD-latent class was 45 

exclusively associated with posttraumatic stress disorder-PGS. Other specific 46 

associations were observed for PSU-latent class (subjective wellbeing-PGS and 47 

neuroticism-PGS) and AD+TD-latent class (bipolar disorder-PGS). 48 

Conclusions—We identified shared and unique genetic and epigenetic mechanisms 49 

underlying SD comorbidity patterns. These findings highlight the importance of modeling 50 

the co-occurrence of SD diagnoses when investigating the molecular basis of addiction-51 

related traits. 52 
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INTRODUCTION 54 

Substance dependence (SD) is a significant public health concern, affecting more than 55 

40 million individuals in the United States 1. The most prevalent SDs are related to 56 

alcohol (AD), cannabis (CaD), cocaine (CoD), opioid (OD), and tobacco (TD). Patients 57 

with SDs often exhibit misuse of more than one substance, which complicates treatment 58 

and recovery efforts 2. The comorbidity of SDs exacerbates a range of negative health 59 

outcomes, making it critical to understand the patterns of SD comorbidities 2, 3. The 60 

heterogeneity of SD comorbidity patterns poses a major challenge in identifying the 61 

mechanistic underpinnings of these disorders. SD patterns can stem from a range of 62 

factors, including shared genetic predisposition, environmental influences, and 63 

sociocultural context. Genome-wide association studies (GWAS) and epigenome-wide 64 

association studies (EWAS) uncovered mechanisms contributing to the predisposition to 65 

SDs 4-10.  To date, these previous efforts largely focused on single SDs, limiting our 66 

understanding of the real world in which patients are generally affected by multiple SDs.  67 

This study identified comorbidity patterns among AD, CaD, CoD, OD, and TD using a 68 

latent class analysis (LCA, a method that aims to identify more homogeneous 69 

subgroups in heterogeneous data). Then, we investigated SD-latent classes with 70 

respect to methylation changes and polygenic burdens related to psychiatric and 71 

behavioral traits (FIGURE 1). The findings shared and unique epigenetic and genetic 72 

profiles that underlie SD comorbidity patterns. 73 

 74 

METHODS 75 

Cohorts 76 

We investigated six cohorts with information regarding DSM-IV diagnoses of AD, CaD, 77 

CoUD, OD, and TD (TABLE 1). In addition to the Yale-Penn cohort11-15, we analyzed five 78 

datasets available from NCBI’s Database of Genotypes and Phenotypes (dbGaP): 79 

‘Study of Addiction: Genetics and Environment’ [phs000092] 16, ‘Genome-Wide 80 

Association Study of Heroin Dependence’ [phs000277] 17, ‘Genetic Architecture of 81 

Smoking and Smoking Cessation’ [phs000404]18, ‘CIDR, NCI, NIDA Sequencing of 82 
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Targeted Genomic Regions Associated with Smoking’ [phs000813] 18, and ‘Nicotine 83 

Addiction Genetics and Correlates’ [phs001299] 19. Overall, we analyzed SD data 84 

collected from 31,197 individuals (average age 42±11 years; 49% females). 85 

 86 

Latent Class Analysis 87 

LCA was performed in R version 4.1 using the poLCA R package  20for the primary 88 

investigation and Mplus software 21for validation. The number of latent classes was 89 

identified based on the lowest Akaike Information Criterion (AIC), Bayesian Information 90 

Criterion (BIC), Likelihood ratio/deviance statistic (G2), and Pearson Chi-square 91 

goodness of fit statistic (χ2). The probability threshold to assign participants with SDs in 92 

classes was identified using MANOVA by comparing the probability of SD cases across 93 

the latent classes identified in the best-fitting model. 94 

 95 

Genetic Data 96 

Genotype data from the six studies was cleaned by removing individuals with 97 

mismatched biological sex, low genotyping rate, heterozygosity, and relatedness. Single 98 

nucleotide polymorphisms (SNPs) were removed based on minor allele frequency 99 

(MAF<1%), Hardy-Weinberg equilibrium (p<1×10-6), and sample missingness (<10%). 100 

Continental genetic ancestry was estimated against a combined reference panel 101 

including 1000 Genomes Project and Human Genome Diversity Project 22. Genetic 102 

relatedness and within-ancestry principal components were generated using KING 23. 103 

Genotype data from each study was imputed using TopMed Imputation server 24. 104 

Because large-scale psychiatric/behavioral GWAS are present only for populations of 105 

European descent, we limited the PGS analysis to this population group. After quality 106 

control (QC), genetic data from 7,659 individuals of European descent were available 107 

for PGS testing. 108 

 109 

Epigenetic Data 110 
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DNA methylation data were available for a subset of the Yale-Penn participants (n=886). 111 

Briefly, DNA was extracted from whole blood of Yale-Penn participants collected at the 112 

time of recruitment using Paxgene Blood DNA Kit (Qiagen, MD, USA).  Bisulfite 113 

conversion of the extracted DNA was performed using the EZ-96 DNA methylation kit 114 

(Zymo Research, CA, USA) and subsequently processed on the Infinium ® 115 

MethylationEPIC BeadChip array (Illumina, San Diego, CA USA) which assesses the 116 

methylation status of over 850,000 CpG sites. Raw signal intensity data (IDAT) files 117 

from the array were uploaded and processed in R Studio. These files provided beta 118 

values, indicating DNA methylation levels at specific CpG sites, with values ranging 119 

from 0 (unmethylated) to 1 (fully methylated). Primary QC steps removed CpG sites with 120 

low detection p-values, missing beads, close proximity to SNPs, multi-hit sites, and non-121 

autosomal sites. The beta values of the remaining CpG sites were normalized using the 122 

beta mixture quantile (BMIQ) method 25. Batch effects were identified using singular 123 

vector decomposition. Technical batch effects related to array and slide were corrected 124 

using ComBat function in sva R package 26. DNA Methylation data were used to 125 

estimate blood cell-type compositions (i.e., CD8+T, CD4+T, natural killer, B, monocytes, 126 

and neutrophils) 27, and smoking status 28.  127 

 128 

Epigenome-wide association analysis 129 

After QC, we tested 657,226 CpG sites for differential methylation with respect to SD-130 

latent classes in three population groups (European-descent, EUR, n=481; African-131 

descent, AFR n=339; Admixed-Americans, AMR n=66). Association analysis for CpG 132 

sites was performed on M-values (transformed beta values) using empirical Bayes 133 

methods implemented in the limma R package 29. The analysis was adjusted for age, 134 

sex, genotype-derived principal components 1-10, methylation-based smoking score 28, 135 

and proportions of blood cell types (i.e., CD8+T, CD4+T, natural killer, B, monocytes, 136 

and neutrophils). Inflation was calculated using the QQperm R package 30. For the 137 

ancestry-stratified EWAS of each SD-latent class, the minimum sample size was 15. 138 

The meta-analysis across all ancestries was performed using GWAMA 31 to improve 139 

statistical power. For each EWAS cross-ancestry meta-analysis, genomic control 140 
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correction was applied to epigenome-wide association statistics when lambda was 141 

>1.05. Differentially methylated regions were identified using the dmrff R package 32. 142 

Regions were defined as consisting of 2 to 30 CpG sites within 500 base pairs. False 143 

discovery rate (FDR q<0.05) was used to adjust for multiple testing. The CpG sites were 144 

further investigated using information available from the EWAS Catalogue33 (available 145 

at https://www.ewascatalog.org/). We also assessed brain-blood concordance of the 146 

CpG sites identified using BECon application 34.  147 

 148 

Polygenic Score Analysis 149 

PGSs were derived from GWAS of attention deficit/hyperactivity disorder (ADHD; 150 

N=225,534) 35, anxiety (N=1,096,458) 36, autism spectrum disorder (N=46,350) 37, 151 

bipolar disorder (N=413,466) 38, depression (N=1,035,760) 39, educational attainment 152 

(N=765,283) 40, neuroticism (N=380,000) 41, posttraumatic stress disorder (PTSD; 153 

N=1,222,882) 42, schizophrenia (N=320,404) 43, and subjective well-being (N=298,420) 154 
44. The polygenic scores were calculated using PRS-CS45, with the 1000 Genomes 155 

reference panel for linkage disequilibrium, scaled to have mean of 0 and a unit of 1 156 

standard deviation. In each cohort, PGSs were tested with respect to SD-latent classes, 157 

including age, sex, and top-ten within-ancestry principal components as covariates. For 158 

each SD-latent class, cohort-specific PGS associations were meta-analyzed using meta 159 

R package46. Bonferroni-corrected threshold of p<1.25�10-3 was used to adjust for the 160 

number of PGS association tests performed (n=40).  161 

 162 

RESULTS 163 

Latent class analysis of SDs 164 

With respect to comorbidity patterns among DSM-IV based AD, CaD, CoD, OD and TD, 165 

the model with five latent classes was identified as the best fitting because of the lowest 166 

value combination of AIC, BIC, G2, and χ2 metrics (SUPPLEMENTARY TABLE 1). 167 

Considering a posterior probability≥70% (FIGURE 2; SUPPLEMENTARY FIGURE 1), we 168 

stratified the sample of 31,197 subjects across the five SD-latent classes. Because of 169 
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the high case-posterior probability for AD and TD (97% and 75%, respectively), 6,487 170 

participants were included in the AD+TD-latent class. A total of 1,170 participants were 171 

assigned to the CoD+TD-latent class, because of the high case-posterior probability of 172 

these SDs (85% and 70%, respectively). We also observed 2,090 participants related to 173 

a polysubstance use disorder (PSU)-latent class, which had high case-posterior 174 

probabilities for AD (95%), CoD (99%), OD (100%), and TD (96%). An additional latent 175 

class including 1,162 individuals showed high posterior probability only for TD (100%). 176 

Finally, there were 11,759 participants assigned to a latent class with high control-177 

posterior probability for all SDs (i.e., 89% AD, 80% CaD, 94% CoD, 72%TD, 99% OD). 178 

CaD did not show high case-posterior probability in any of the SD-latent classes 179 

(SUPPLEMENTARY TABLE 2).  180 

 181 

Epigenome-wide association study of SD latent classes  182 

Relative to the control-latent class group, we performed cross-ancestry EWAS meta-183 

analyses of AD+TD, CoD+TD, PSU-latent classes in 886 individuals, identifying seven 184 

CpG associations (FIGURE 3; SUPPLEMENTARY FIGURE 2; SUPPLEMENTARY TABLES 3-6).  185 

TD-latent class was excluded from this analysis because of the small sample size. After 186 

FDR multiple testing correction (FDR q<0.05), SPATA4 cg02833127 (location: 1st exon, 187 

5’UTR) was associated with the three SD-latent classes investigated (i.e., AD+TD β=-188 

0.49, P=9.9�10-50; CoD-TD β=-0.3, P= 2.93�10-11; PSU β=-0.24, P=3.19�10-11). Four 189 

additional CpG sites were associated with the AD+TD-latent class: SIN3B cg06815056 190 

(location: TSS200; β=0.23, P=2.91�10-7), ARID1B cg19436567 (location: 1st exon; 191 

β=0.22, P=1.47�10-7), SERTAD4 cg20270863 (location: TSS200, 5’UTR; β=0.16, 192 

P=3.42�10-7) and NOTCH1 cg13725899 (location: gene body; β=0.16, P=8.69�10-8). 193 

Two additional FDR-significant CpG associations were detected with respect to 194 

CoD+TD latent class: MOV10 cg08355353 (Location gene body; β=0.43, P=1.08�10-7) 195 

and ANO6 cg09909775 (Location: 1stExon, 5’UTR; β=0.50; P=2.03�10-7). Considering 196 

information available from the EWAS catalog (SUPPLEMENTARY TABLE 7), these CpG 197 

sites were previously identified in the context of aging (cg08355353, cg06815056, 198 

cg13725899, cg19436567, and cg02833127), rheumatoid arthritis (cg06815056), 199 
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Alzheimer’s disease (cg13725899), renal carcinoma (cg20270863), and molecular 200 

regulation (cg06815056, cg13725899, and cg19436567).   201 

We observed cross-ancestry heterogeneity in the association between SPATA4 202 

cg02833127 and AD+TD-latent class (I2=88%, heterogeneity p<2�10-4) where the 203 

effect was more negative in EUR (β = -0.60, 95%CI=-0.67 – -0.52) than in AFR (β = -204 

0.33, 95%CI=-0.43 – -0.23). Conversely, no cross-ancestry heterogeneity was observed 205 

in SPATA4 cg02833127 association with CoD+TD and PSU-latent classes and also for 206 

the other FDR-significant CpG associations (heterogeneity-p>0.05; FIGURE 3).  207 

In addition to CpG association, we also observed one FDR-significant differentially 208 

methylated region (chr10:102120371-102120478; Z=5.466; P= 4.60x10-8) related to 209 

PSU-latent class, spanning 2 CpG sites (cg15320455 – TSS200; cg17106419 – 210 

TSS200) within LDB1 gene (SUPPLEMENTARY TABLE 8). 211 

Comparing brain-blood methylation patterns of the identified CpG sites 212 

(SUPPLEMENTARY FIGURE 2), we observed correlation estimates in the top-90th 213 

percentile for MOV10 cg08355353 (rho=0.36 in the Brodmann area (BA) 7), SERTAD4 214 

cg20270863 (rho=0.38 in BA20), SIN3B cg06815056 (rho=-0.45 in BA20), SPATA4 215 

cg02833127 (rho=-0.44 in BA7), and ARID1B cg19436567 (rho=0.49 in BA10; rho=-216 

0.35 in BA20) 217 

 218 

Polygenic burden associations with SD-latent classes 219 

Assessing the pleiotropy across SD-latent classes, we observed different patterns of 220 

psychiatric-behavioral PGS associations (FIGURE 4; SUPPLEMENTARY TABLE 9). After 221 

Bonferroni multiple testing correction (p<1.25�10-3), PTSD was the only PGS 222 

associated across the four SD-latent classes (SUPPLEMENTARY TABLE 9). TD-latent 223 

class was only associated with PTSD PGS (Odds ratio, OR=1.32, p=7.24�10-4). In 224 

contrast, PSU, AD+TD, and CoD+TD latent classes showed shared PGS associations 225 

with ADHD (positive relationship), anxiety (positive relationship), educational attainment 226 

(inverse relationship), and schizophrenia (positive effect) with comparable effect sizes 227 

(SUPPLEMENTARY TABLE 9). In addition to shared pleiotropic mechanisms, we also 228 
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observed specific PGS associations. PSU-latent class was uniquely associated with 229 

PGS of neuroticism (OR=1.21; P=2.62�10-6) and subjective wellbeing (OR=0.86; 230 

P=2.12�10-4) with opposite effect directions. AD+TD-latent class was uniquely 231 

associated with bipolar disorder-PGS (OR=1.14; P=1.39�10-5).  232 

Because PGS associations were estimated from the meta-analysis of cohorts with 233 

different characteristics (TABLE 1), we also estimated cross-cohort heterogeneity within 234 

the PGS effects. After Bonferroni correction, there was significant heterogeneity 235 

(heterogeneity Q-P<1.25�10-3) in the association between PTSD PGS and AD+TD-236 

latent class (I2=0.89 ; tau2=0.05; Q=28.4, Q-df=3, Q-p=3�10-6) and between 237 

educational attainment PGS and TD-latent class (I2=0.84; tau2=0.12; Q=18.9, Q-df=2, 238 

Q-P=2.81�10-4). In the first, the heterogeneity was driven by two-studies, phs000404 239 

and phs001299 (SUPPLEMENTARY TABLES 9 AND 10). The meta-analyzed effect 240 

association between educational attainment PGS and TD-latent class was only 241 

nominally significant (OR=0.82, P=0.01) and its Bonferroni-significant heterogeneity was 242 

driven by two studies, Yale-Penn and phs000092 (SUPPLEMENTARY TABLES 9 AND 10). 243 

 244 

DISCUSSION 245 

SDs have a pervasive negative impact on individuals, families, and society at large. 246 

More severe consequences are experienced by individuals with co-occurring SDs, 247 

which represent the largest portion of affected individuals47. To date, most genomic 248 

studies modeled singular SD cases without considering co-occurring SDs 9, 10. Recently, 249 

large-scale GWAS datasets have been used to investigate the shared pathogenesis 250 

across SDs and related phenotypes48, 49. While the findings of these studies increased 251 

our understanding of the molecular mechanisms responsible for polysubstance 252 

comorbidities, more efforts are needed to dissect the dynamics underlying different 253 

patterns of SD co-occurrence. Applying LCA, previous observational studies of 254 

nationally representative samples, treatment-seeking populations, and cohorts enriched 255 

for SD cases identified latent classes reflecting different polysubstance patterns 50-54. 256 

Building on this evidence, we identified four SD-latent classes in a sample of >30,000 257 
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individuals and then investigated genetic and epigenetic mechanisms associated with 258 

the different SD comorbidity patterns. 259 

Investigating epigenome-wide differences, our study revealed several differentially 260 

methylated sites with shared and distinct associations across SD-latent classes. 261 

SPATA4 cg02833127 was consistently hypomethylated among cases in the AD+TD, 262 

CoD+TD, and PSU latent classes. This CpG site has been associated with aging 263 

trajectories from birth to late adolescence with methylation decreasing later in life 55. 264 

SPATA4 locus has been also identified in a large-scale GWAS of educational 265 

attainment40. While the function of this locus is still unknown, a study observed aging-266 

related changes in mice overexpressing this gene 56. In this context, SPATA4 267 

cg02833127 association across SD-latent classes points to the possible impact of SD 268 

comorbidities on aging-related regulatory mechanisms. We observed cross-ancestry 269 

heterogeneity in the association of this CpG site with AD+TD latent class with greater 270 

effect in EUR than AFR. This supports that SD comorbidities may affect biological 271 

pathways differently among population groups. Alternatively, cross-ancestry 272 

heterogeneity of the association between SPATA4 cg02833127 and AD+TD latent class 273 

may reflect the contribution of environmental factors acting differently across population 274 

groups. 275 

The AD+TD-latent class was uniquely associated with four additional CpG sites. Among 276 

them, NOTCH1 cg13725899 was previously identified by multiple EWAS57-60. Two of 277 

which were conducted using brain tissues and linked this CpG site with fetal brain 278 

development 58and Alzheimer’s disease 60. Other NOTCH1 CpG sites have been 279 

reported in EWAS of AD 7 and tobacco smoking 61. The NOTCH1 locus was also 280 

identified in GWAS of brain-related outcomes, including cortical thickness and 281 

Alzheimer’s disease62, 63. The protein product of this gene plays an important role in a 282 

signaling pathway involved in neurodevelopmental processes64. NOTCH1 may play a 283 

role in SD pathogenesis through its negative regulation of GABA receptors 65. Also, the 284 

other genes mapping to AD+TD-associated CpG sites (i.e., ARID1B and SIN3B) appear 285 

to play important regulatory roles in the central nervous system66, 67. Additionally, there 286 
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were DNA methylation changes in ARID1B and SIN3B have been previously linked to 287 

cigarette smoking 68-71 and alcohol use 72-74.  288 

The CoD+TD latent class showed specific epigenetic associations in ANO6 and 289 

MOV10. The latter locus has been linked to regulatory processes related to neuronal 290 

development and function75. Multiple GWAS identified MOV10 in relation to cortical 291 

surface area, cortical thickness, and brain connectivity76-78. In contrast, ANO6 gene 292 

does not appear to play a specific role in brain function, but is involved in phospholipid 293 

regulation occurring in various biological systems79. Previous EWAS identified other 294 

ANO6 and MOV10 CpG sites as associated with tobacco smoking 80, 81.   295 

In addition to identifying individual CpG sites, we also observed a differentially 296 

methylated region mapping to LDB1 that was associated with the PSU-latent class. This 297 

locus appears to be required for the early development of the dorsal telencephalon and 298 

the thalamus 82. Additionally, LDB1 regulates gene expression in olfactory sensory 299 

neurons 83. The brain gene expression of this locus has been identified as negatively 300 

correlated with cocaine-seeking response in rats 84.   301 

Overall, our EWAS findings support the association of SD-latent classes with genes 302 

involved in brain developmental processes. The applicability of our blood-based findings 303 

into brain mechanisms is supported by the high blood-brain correlation observed for 304 

several of the CpG sites identified (i.e., MOV10 cg08355353, SERTAD4 cg20270863, 305 

SIN3B cg06815056, SPATA4 cg02833127, and ARID1B cg19436567). In some cases, 306 

genes we identified here (but with different CpG sites) were reported as associated by 307 

previous EWAS of tobacco smoking. Because we controlled for the effect of tobacco 308 

smoking on DNA methylation, the epigenetic associations identified in our study likely 309 

reflect SD comorbidities rather than the co-occurrence of tobacco smoking. Indeed, we 310 

did not identify any association between SD-latent classes and AHRR locus, which is 311 

the most established epigenetic biomarker for tobacco smoking 85. 312 

We also identified genetic associations linking SD comorbidity patterns to other 313 

psychiatric disorders. PTSD was the only PGS showing Bonferroni significant 314 

association across the four SD-latent classes. This may support the role of mechanisms 315 

related to trauma response across SD comorbidity patterns. This is also in line with the 316 
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well-known impact of stress response on biological mechanisms involved in SD 317 

pathogenesis86. TD-latent class was only associated with PTSD PGS. This may be due 318 

to the small sample size of the TD-latent class. Alternatively, it may also reflect the 319 

limited pleiotropy of this SD pattern with other mental illnesses. With respect to the other 320 

PGS associations shared among the remaining SD-latent classes, the relationships 321 

observed with respect to neurodevelopmental disorders (i.e., ADHD and schizophrenia) 322 

appear to converge with the EWAS findings, highlighting the potential role of altered 323 

neurodevelopmental processes in the shared pathogenesis among SD comorbidity 324 

patterns. Consistent with this hypothesis, previous studies highlighted how early-life 325 

adversity affects the development of brain reward and stress circuits increasing 326 

addiction vulnerability 87. 327 

In addition to shared pleiotropic mechanisms, we also observed PGS associations 328 

specific to certain SD-latent classes. Bipolar-disorder PGS was uniquely associated with 329 

the AD+TD latent class. Multiple studies pointed to neural reward circuit dysfunction as 330 

the risk factor shared between bipolar disorder and SDs 88. The PSU-latent class 331 

showed two specific PGS associations: negative association with subjective well-being, 332 

and positive association with neuroticism. These may be related to poorer outcomes 333 

that are seen in individuals affected by the comorbidities of four SDs than those 334 

observed in subjects with only two comorbid SDs89, 90. In a previous study, a genetically 335 

inferred addiction factor shared across AD, TD, CaD, and TD was highly genetically 336 

correlated with neuroticism 90. 337 

Our study has multiple limitations. The cohorts investigated were specifically recruited to 338 

study SD genetics, overrepresenting the samples for cases. This may reduce the 339 

generalizability of the SD-latent classes identified. The PGS analysis was limited to 340 

individuals of European descent, because of the lack of large-scale GWAS to derive 341 

statistically powerful PGS for other population groups. In the epigenome-wide analysis, 342 

we conducted a cross-ancestry meta-analysis assessing heterogeneity among the 343 

population groups. However, we had limited power to investigate ancestry-specific 344 

epigenetic effects. Similarly, we focused only on five main SDs because of the limited 345 
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information on other substances in the cohorts investigated (e.g., hallucinogens, 346 

inhalants, sedatives, and amphetamines).  347 

Notwithstanding these limitations, the present study provides new insights into genetic 348 

and epigenetic mechanisms contributing to in SD comorbidity patterns. Our findings 349 

support the potential role of brain developmental processes on SD pathogenesis and 350 

suggest possible mechanisms that differentiate the co-occurrence of different SD 351 

combinations. Building on this evidence, further studies are needed to extend these 352 

findings elucidating the dynamics underlying polysubstance use disorders. 353 
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Table 1: Characteristics of the cohorts investigated. 

 N Age, 
mean±SD Female % AD, N CaD, N CoD, N OD, N TD, N 

phs000092 4,121 39±9 54 1,946 753 1,130 304 1,856 

phs000277 3,515 46±10 42 55 4 0 0 205 

phs000404 1,527 37±6 59 204 222 149 21 1,239 

phs000813 2,969 52±7 60 516 354 210 57 1,844 

phs001299 3,508 50±14 51 493 134 6 32 1,367 

Yale-Penn 15,557 40±12 46 7,481 3,897 8,662 4,379 8,219 

Total 31,197 42±11 49 10,695 5,364 10,157 4,793 14,730 

 385 
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FIGURE LEGENDS 387 

Figure 1. Study Design. An overview of the study design showing five substance 388 

dependence (SD) diagnoses assessed in six different cohorts and used to identify latent 389 

classes related to their comorbidities. Each of the SD latent classes was compared 390 

against the control group in the epigenome-wide association study and estimating 391 

genetic burden of ten psychiatric and behavioral traits. 392 

Figure 2. Distribution of case- and control-posterior probability across SDs in the 393 

five-latent class model. The x-axis (top) shows each of the substance dependence 394 

diagnoses, and the y-axis shows the probability value of cases and controls for each of 395 

the five SDs across each latent class shown on the left. Details of the statistical 396 

comparisons are shown in Supplementary Figure 1. 397 

Fig 3.  Epigenome-wide association study of SD latent classes. Forest Plots show 398 

meta-analyzed effect sizes of the significant CpG sites across ancestral groups; EUR – 399 

European descent; AFR – African descent; AMR – Admixed Americans. 400 

Fig 4. Association of polygenic scores of psychiatric and behavioral traits with SD 401 

latent classes. Forest plot showing meta-analyzed associations of ten traits with SUD 402 

latent classes. The x-axis shows odds ratio as points and 95% confidence intervals as 403 

lines. The Bonferroni-significant associations are marked with green, while others are 404 

indicated in grey. Details regarding PGS associations are shown in Supplementary 405 

Table 9. 406 
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