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Abstract 

Large language models (LLMs) have the potential to enhance the verification of health claims. However, 

issues with hallucination and comprehension of logical statements require these models to be closely 

scrutinized in healthcare applications. We introduce CliniFact, a scientific claim dataset created from 

hypothesis testing results in clinical research, covering 992 unique interventions for 22 disease 

categories. The dataset used study arms and interventions, primary outcome measures, and results 

from clinical trials to derive and label clinical research claims. These claims were then linked to 

supporting information describing clinical trial results in scientific publications. CliniFact contains 1,970 

scientific claims from 992 unique clinical trials related to 1,540 unique publications. Intrinsic evaluation 

yields a Cohen's Kappa score of 0.83, indicating strong inter-annotator agreement. In extrinsic 

evaluations, discriminative LLMs, such as PubMedBERT, achieved 81% accuracy and 79% F1-score, 

outperforming generative LLMs, such as Llama3-70B, which reached 52% accuracy and 39% F1-score. 

Our results demonstrate the potential of CliniFact as a benchmark for evaluating LLM performance in 

clinical research claim verification. 

 

Keywords: natural language processing; large language model (LLM); clinical trial; clinical research; 

claim verification; fact checking; deep learning. 
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1. Background & Summary 

Large language models (LLMs) have demonstrated remarkable success in several natural language 

processing tasks in the health and life sciences domain1. Due to parameter scaling, access to specialized 

corpora, and better human alignment techniques, performance has significantly improved in recent 

years2. Yet, they still struggle with factual accuracy in various domains3. LLMs may produce factual errors 

that contradict established knowledge available at the time4. These inaccuracies and errors are 

particularly concerning in critical fields like healthcare, where incorrect information can have severe 

consequences5. 

To mitigate issues with factual accuracy and vulnerability to hallucinations, the incorporation of domain-

specific knowledge when evaluating LLMs has been proposed6. This stems from the fact that factual 

accuracy7 and vulnerability to hallucinations8 in LLMs can vary significantly across domains9. Models 

fine-tuned for a general purpose tend to outperform in the general domain6 while models fine-tuned 

for specific domains, such as medicine (e.g., Meditron10, Med-PaLM11), often outperform general-

purpose models in those areas.  

Another critical challenge for LLMs is their ability to perform logical reasoning12. This is particularly 

important in clinical research, where scientific claims are posed as logical statements, such as ‘the 

intervention X is more effective than placebo for a specific outcome'13, that are either true or false. 

Evaluating these claims requires a strong understanding of hypothesis testing and causal inference14. 

However, the nature of LLMs, which are trained to predict tokens within a context15, makes them 

struggle with complex logical statements16, even making unfaithful reasoning17. 

Research has shown that LLMs can be easily misled by irrelevant information18. Chain-of-thought (CoT) 

prompting can improve multi-step reasoning by providing intermediate rationales19. Concerns remain 

regarding the faithfulness and reliability of these explanations, as they can often be biased or 

misleading20. Furthermore, while methodologies such as self-correction can improve reasoning 

accuracy, current models still struggle to correct their errors autonomously without external feedback21. 

In some cases, their performance degrades after self-correction21. Integrating LLMs with symbolic 

solvers for logical reasoning22 and hypothesis testing prompting for improved deductive reasoning23 are 

proposed to address these limitations. 

Claim verification datasets play a crucial role in assessing the factual accuracy of LLMs across various 

domains24. FEVER25, a general-domain dataset, was created by rewriting Wikipedia sentences into 

atomic claims, which are then verified using Wikipedia's textual knowledge base. FEVER also introduces 

a three-step fact verification process: document retrieval, evidence selection, and stance detection. In 

the political domain, the UKP Snopes corpus26, derived from the Snopes fact-checking website, includes 

6,422 validated claims paired with evidence text snippets. For the scientific domain, SciFact27 includes 
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1.4K expert-written biomedical scientific claims paired with evidence containing abstracts annotated 

with labels and rationales while Climate-FEVER28 contains 1,535 claims sourced from web searches, with 

corresponding evidence from Wikipedia. 

Specifically to the health and life science domains, PUBHEALTH29 gathers public health claims from fact-

checking websites and verifies them against news articles. ManConCorpus30 contains claims and 

sentences from 259 abstracts linked to 24 systematic reviews on cardiovascular disease. The COVID-19 

pandemic and its infodemic effect7,31 have further motivated the development of specialized datasets. 

HealthVer32 is a medical-domain dataset derived by rewriting responses to questions from TREC-

COVID33, verified against the CORD19 corpus34. Similarly, COVID-Fact35 targets COVID-19 claims by 

scraping content from Reddit and verifying them against scientific papers and documents retrieved via 

Google search. CoVERt36 enhances claim verification in the clinical domain by providing a new COVID 

verification dataset containing 15 PICO-encoded drug claims and 96 abstracts, each accompanied by 

one evidence sentence as rationale. These datasets are either focused on lay claims29,32,35, which require 

simpler reasoning skills, or, when focused on complex clinical research claims, they are disease-specific, 

e.g., COVID-1936 or cardiovascular30 and of reduced scale (O(101) claims)30,36. Thus, they are limited to 

evaluating the factuality of complex clinical research claims by LLMs. 

To reduce this gap, we propose CliniFact, a large-scale claim dataset to evaluate the generalizability of 

LLMs in comprehending factuality and logical statements in clinical research. CliniFact claims were 

automatically extracted from clinical trial protocols and results available from ClinicalTrials.gov. The 

claims were linked to supporting information in scientific publications available in Medline, with 

evidence provided at the abstract level. The resulting dataset contains O(103) claims spanning across 20 

disease classes. This new benchmark offers a novel approach to evaluating LLMs in the health and life 

science domains, with specific challenges to understanding claims at the logical reasoning and 

hypothesis testing levels. 

 

2. Methods 

We utilized the ClinicalTrials.gov database as our primary data source, which comprises an extensive 

collection of registered clinical trials and their respective results. From each selected clinical trial, we 

systematically extracted key components to create the research claim, including the primary outcome 

measure, intervention, comparator, and type of statistical test. These components form the basis for 

generating one or more claims from each trial. We used the corresponding PubMed abstracts linked to 

these clinical trials as evidence to make judgments on the claims. In the following, we detail the dataset 

construction process.  
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2.1 Resources 

The dataset uses information from two resources maintained by the U.S. National Library of Medicine: 

ClinicalTrials.gov and PubMed. ClinicalTrials.gov is a comprehensive online database that provides up-

to-date information on clinical research studies and their results. These clinical trials serve as the most 

reliable medical evidence for evaluating the efficacy of single or multiple clinical interventions37. 

PubMed primarily includes the MEDLINE database of references and abstracts on life sciences and 

biomedical topics. The empirical evidence for clinical trial outcomes is often described in the results of 

clinical research studies published in medical journals indexed by PubMed38. 

 

2.3 Data acquisition and pre-processing 

On January 15th, 2024, we downloaded a total number of 57,422 clinical trials from CT.gov 

(https://clinicaltrials.gov/search) that met the following criteria: i) Study Status: Terminated or 

Completed; ii) Study Type: Interventional; and iii) Study Results: With results. The resulting dataset is a 

compressed zip file containing individual raw JSON files of each study named by the clinical trial 

identifier (NCTID). 

2.4 Dataset construction 

In the following, we formally describe the claim generation process. An overview of the pipeline is 

illustrated in Figure 1, and an example of the extracted fields is illustrated in Table 1. 

Claim extraction: Let 𝐷 represent the filtered ClinicalTrials.gov database we downloaded, with each 

clinical trial represented as 𝑐𝑡′  𝐷. From the 𝑐𝑡′ set, we extracted the intervention, outcome measures, 

and comparator information from the subset of clinical trials 𝑐𝑡 limiting the selection to trials with bi-

arm groups (see details in Section 2.4.1) and reporting p-value results for the primary outcome 

measures. For the 𝑐𝑡 set, we then extracted the primary outcome measures 𝑂𝑛 (𝑐𝑡) , with their 

corresponding intervention 𝐼𝑛 (𝑐𝑡) , comparator 𝑃𝑛 (𝑐𝑡) , and type of statistical test 𝑇𝑛 (𝑐𝑡) . These 

components are utilized to construct one or more claims 𝐶𝑛 (𝑐𝑡) for each clinical trial, where n can vary 

between 0 and N. We represent the generation of the claim 𝐶𝑛 (𝑐𝑡) as function 𝑓, such that:  

 𝐶𝑛 (𝑐𝑡) = 𝑓(𝑂𝑛 (𝑐𝑡),  𝐼𝑛 (𝑐𝑡), 𝑃𝑛 (𝑐𝑡), 𝑇𝑛 (𝑐𝑡)). (1) 

Claim-evidence pairing: For each 𝑐𝑡  𝐷, there may be an associated scientific abstract 𝐸(𝑐𝑡) from 

PubMed reported by the authors of the study in ClinicalTrials.gov. We link 𝐸(𝑐𝑡) to each corresponding 

claim 𝐶𝑛 (𝑐𝑡) to create a claim-evidence pair (𝐶𝑛 (𝑐𝑡), 𝐸(𝑐𝑡)). In this context, 𝐸(𝑐𝑡) represents the 

evidence from the PubMed abstract used to make judgements on the claim 𝐶𝑛 (𝑐𝑡). An 𝐸(𝑐𝑡) might 

have two statuses depending on the type of information it provides: i) background, if it provides 
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background information to the clinical trial, and ii) result, if it describes results for the clinical trial. This 

information is provided by the study authors and will be used further to label the claim-evidence pairs 

(𝐶𝑛 (𝑐𝑡), 𝐸(𝑐𝑡)). 

Claim-evidence labeling: The labeling process for the claim-evidence pairs involves two key steps. First, 

for each claim 𝐶𝑛 (𝑐𝑡), we assign a positive or negative label 𝐿1( 𝐶𝑛 (𝑐𝑡)) based on the p-value reported 

for its respective primary outcome measure. A positive label is assigned if the p-value indicates a 

statistically significant result, while a negative label is assigned if the p-value indicates a lack of statistical 

significance. Following conventional statistical thresholds, we considered p-value < 0.05 as statistically 

significant. Second, we consider the link nature between the clinical trial and the scientific abstract. If a 

clinical trial 𝑐𝑡 is linked to a scientific abstract 𝐸(𝑐𝑡) that reports results for the trial, we further filter 

these instances to include only those where exactly one abstract is linked to the clinical trial. For these 

cases, the label for the claim-evidence pair 𝐿2(𝐶𝑛 (𝑐𝑡)，𝐸(𝑐𝑡)) is defined as “evidence” if the claim 

𝐶𝑛 (𝑐𝑡)  is positive, and “inconclusive” if the claim 𝐶𝑛 (𝑐𝑡)  is negative. Conversely, if the scientific 

abstract 𝐸(𝑐𝑡) linked to the clinical trial provides background information, we include all the linked 

abstracts, and the label for the claim-evidence pair 𝐿2(𝐶𝑛 (𝑐𝑡)，𝐸(𝑐𝑡))  is defined as “not enough 

information” (NEI). 

Figure 1: Overview of the CliniFact dataset construction pipeline with three major modules: claim 

extraction, claim-evidence pairing, and labeling. 

 

 

Table 1: Example of the extracted fields in CliniFact. 

NCTID NCT00234065 

PMID 20833591 

Outcome Title Numbers of Patients With First Occurence of Stroke 

Outcome Time Frame 
From start of treatment to end of follow-up period ( follow-up periods : 

29 months [Standard Deviation 16, range 1-59 months]) 

Intervention Cilostazol 

Comparator Aspirin 
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Type of Statistical Test Non-Inferiority or Equivalence 

Publication Title 
Cilostazol for prevention of secondary stroke (CSPS 2): an aspirin-

controlled, double-blind, randomised non-inferiority trial. 

Publication Abstract 

[…] Interpretation: Cilostazol seems to be non-inferior, and might be 

superior, to aspirin for prevention of stroke after an ischaemic stroke, 

and was associated with fewer haemorrhagic events. Therefore, 

cilostazol could be used for prevention of stroke in patients with non-

cardioembolic stroke. […] 

Hypothesis Label Evidence 

 

2.4.1 Primary outcome-arm group pairs for claim generation 

To extract primary outcome measures and arm group information from the clinical trial database 𝐷, we 

focused exclusively on clinical trials 𝑐𝑡  𝐷  that included bi-arm groups of types Experimental and 

Comparator. In a clinical trial, an arm refers to a group of participants that receives a particular 

intervention, treatment, or no intervention according to the trial’s protocol39. The arm type represents 

the role of each arm in the clinical trial. For generating the clinical research claim, we used the term 

intervention to represent the Experimental arm group and comparator to represent the Comparator 

arm group, with mappings provided in Supplementary Table S1. The intervention and comparator 

terminologies are grounded in the PICO framework, i.e., population, intervention, comparator, and 

outcome40.  

In the study design section, arm groups are labeled as Experimental and Comparator, but these labels 

are not in the result section. The titles of arm groups also vary between the two sections. Thus, to label 

the arm groups in the result section as intervention or comparator, we followed the approach proposed 

by Shi et al.41. In this approach, we mapped arm group titles in the result section to the most similar one 

in the study design section by calculating the cosine similarity of their embeddings created using 

BioBERT42. 

Efficacy label: We extract the efficacy label 𝐿1( 𝐶𝑛 (𝑐𝑡)) for the primary outcome 𝑂𝑛 (𝑐𝑡) from the 

measure analysis in the outcome measure information module. Each primary outcome 𝑂𝑛 (𝑐𝑡) paired 

with arm groups 𝐼𝑛 (𝑐𝑡), 𝑃𝑛 (𝑐𝑡) may have one or multiple associated analyses, some of which include 

p-values representing the statistical significance of the results. We only extracted the analyses with p-

values and compiled the p-values into a list for each primary outcome-arm group pair. We assigned a 

positive efficacy label to an outcome-group pair if any p-value in its associated list is smaller than 0.05, 

indicating statistical significance. We assigned a negative efficacy label if all p-values were equal to or 

greater than 0.05, indicating statistical non-significance. We extracted 8,679 primary outcome-arm 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 8, 2024. ; https://doi.org/10.1101/2024.10.08.24315103doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.08.24315103
http://creativecommons.org/licenses/by/4.0/


7 
 

group pairs, of which 4,179 were labeled as positive and 4,500 as negative, for 5,751 unique clinical 

trials. 

Type of statistical test: Each primary outcome-arm group pair could be associated with a type of 

statistical test. We categorize these types into the ones outlined in the study data structure of 

ClinicalTrials.gov43. The outlined types include Superiority, Noninferiority, Equivalence, Noninferiority or 

Equivalence, and Superiority or Other. A Superiority test evaluates if a new treatment is better than 

another (e.g., standard treatment or placebo) by rejecting the null hypothesis of no difference44. A 

Noninferiority test shows that the new treatment is not significantly worse than the existing one, within 

a predefined margin44. An Equivalence test demonstrates that two treatments are statistically 

equivalent, with differences falling within a clinically insignificant margin44. Noninferiority or Equivalence 

tests first establish noninferiority, and then assess equivalence45. Lastly, Superiority or Other tests may 

also evaluate noninferiority or equivalence if superiority is not shown46. 

Clinical research claim: A scientific claim is a verifiable statement. The claim should be atomic (about 

one aspect of the statement), decontextualized (understandable without additional context), and 

check-worthy (the veracity can be confirmed)47. In natural language, a clinical research claim can be 

expressed as a scientific claim in a format of ‘<Intervention> is <Type of Statistical Test> to 

<Comparator> in terms of <Outcome>.‘ For example, for study NCT00234065 shown in Table 1, we could 

reframe the outcome-group pair to the following claim 𝐶𝑛 (𝑐𝑡): Cilostazol is Non-Inferior or Equivalent 

to Aspirin in terms of Numbers of Patients With First Occurrence of Stroke From start of treatment to 

end of follow-up period (follow-up periods: 29 months [Standard Deviation 16, range 1-59 months]). 

The Intervention and Comparator terms are sourced from the Arm/Group Title, while the Outcome is 

the combination of Outcome Measure Title and Outcome Measure Time Frame available in the clinical 

trial protocol (Table 2). 

 

Table 2: Fields extracted for clinical research claim generation. 

Section Definition Path 

Study Identification Clinical Trial Identifier A.nctId 

Arm Groups and 

Interventions 

Arm Type B.armGroups.type 

Intervention Type B.interventions.type 

Outcome Measure 

Information 

Arm/Group Title C.groups.title 

Arm Description C.groups.description 

Type of Statistical Test C.analyses.nonInferiorityType 

Outcome Measure Type C.type 

Outcome Measure Title C.title 
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Outcome Measure Time 

Frame 
C.timeFrame 

Estimated Value C.analyses.paramValue 

Method C.analyses.statisticalMethod 

Study Identification: A = protocolSection.identificationModule 

Arm Groups and Interventions: B = protocolSection.armsInterventionsModule 

Outcome Measure Information: C = resultsSection.outcomeMeasuresModule.outcomeMeasures 

 

2.4.2 Clinical trial-publication linkage 

Publications corresponding to clinical trials were identified by their PubMed Identifiers (PMIDs) 

provided in the Publications section of the clinical trial results and categorized by reference types. As 

shown in Table 3, we created a CSV file detailing the clinical trial-publication relationships by extracting 

the NTC ID, PMID, and reference type from the filtered ClinicalTrials.gov database 𝑐𝑡 ∈ 𝐷. A total of 

1,550 clinical trial-publication links were used in the balanced dataset, including 868 background links 

and 682 results links. 

 

Table 3: Fields used to create clinical trial-publication pairs. 

Module Definition Path 

Study Identification Clinical Trial Identifier A.nctId 

Reference 

 

PubMed Identifier B.pmid 

Reference type B.type 

Study Identification: A = protocolSection.identificationModule 

Reference: B = protocolSection.referencesModule.references 

 

2.4.3 Claim-evidence pairs generation  

Using the extracted relationships between clinical trials and scientific publications, we linked claims to 

their corresponding publications to generate claim-evidence pairs. Each clinical trial may correspond to 

one or multiple publications categorized as either background or results. For results publications, we 

focused on clinical trials linked to a single publication. In these cases, if a claim 𝐶𝑛 (𝑐𝑡) had a positive 

label, we labeled the claim-evidence pair as evidence. Conversely, if the claim had a negative label, we 

labeled the claim-evidence pair as inconclusive. For background publications, we labeled the claim-

evidence pair as NEI regardless of whether the clinical trial was linked to one or multiple background 

publications. Using the PubMed API, we downloaded titles and abstracts of publications using PubMed 

unique IDs (PMIDs). We excluded samples with incomplete abstracts that are less than 15 words. The 
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statistics for the number of words for the extracted primary outcomes and publications are illustrated 

in Table 4. 

 

Table 4: Number of words for the text fields. 

Text Fields Mean Min Max 

Outcome Title 9 1 38 

Outcome Time Frame 7 1 43 

Publication Title 16 2 68 

Publication Abstract 247 22 1,013 

 

3. Data Records 

The dataset included 570 evidence, 415 inconclusive, and 8,196 not enough information (NEI) claim-

evidence pairs. We further balanced the class distribution by down sampling the NEI class to 985 

samples to match the total number of evidence and inconclusive samples. Our final dataset contains 

1,970 primary claim-evidence pairs of 992 unique clinical trials and 1,540 unique publications. We show 

examples of evidence, inconclusive and NEI paired clinical research claims and abstracts in Table 5. The 

distribution of labels in the train, validation, and test splits is provided in Table 6.  

 

Table 5: Examples of evidence, inconclusive and not enough information (NE) paired clinical research 

claims and abstracts. 

Claim Publication title + abstract Label 

Cilostazol is Non-Inferior or 

Equivalent to Aspirin in terms of 

Numbers of Patients With First 

Occurrence of Stroke From start 

of treatment to end of follow-up 

period (follow-up periods: 29 

months [Standard Deviation 16, 

range 1-59 months]). 

[…] Interpretation: Cilostazol seems to be non-

inferior, and might be superior, to aspirin for 

prevention of stroke after an ischaemic stroke, 

and was associated with fewer haemorrhagic 

events. Therefore, cilostazol could be used for 

prevention of stroke in patients with non-

cardioembolic stroke. […] 

Evidence 

Nerve Block is Superior or Other 

to Periarticular Injection in 

terms of Post-Operative Pain 

Afternoon on post-operative 

Day 1, approximately 14:00. 

[…] RESULTS: Mean pain scores on the afternoon 

of POD 1 were not different between groups (PNB 

group: 2.9 [SD 2.4]; PAI group: 3.0 [SD 2.2]; 95% 

confidence interval, -0.8 to 0.6; p=0.76). Mean 

Inconclusive 
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pain scores taken at three times points on POD 1 

were also similar between groups. […] 

Topiramate is Superior or Other 

to Placebo in terms of Percent 

Drinking Days (%DD) Weekly, 

weeks 1-12, average. 

Combined pharmacotherapies and behavioral 

interventions for alcohol dependence: the 

COMBINE study: a randomized controlled trial. 

[…] 

NEI 

 

Table 6: Distribution of labels in train, validation, and test splits. 

Set Evidence Inconclusive NEI All 

Train 366 262 632 1,260 

Validation 83 67 166 316 

Test 121 86 187 394 

All 570 415 985 1,970 

% 29 21 50 100 

 

In Figure 2, we show the clinical research claims stratified by the studied condition. Using the MeSH 

annotations provided by ClinicalTrials.gov, clinical research claims were associated with disease classes 

using the MeSH tree code (3 digits). In total, 20 disease categories (out of the 27 categories available in 

MeSH) are included in our dataset. It is important to note that a single clinical trial may be mapped to 

multiple disease classes according to the MeSH terminology. Therefore, when reporting the number of 

clinical research claims per disease, the total sample count may exceed the number of claims.  

Figure 2: Clinical research claims stratified by study condition. 
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4. Technical Validation 

4.1 Extrinsic evaluation 

Given the claim 𝐶𝑛 (𝑐𝑡)  and the abstract 𝐸(𝑐𝑡) , we investigated the performance of several 

discriminative and generative LLM to predict the label 𝐿2( 𝐶𝑛 (𝑐𝑡)，𝐸(𝑐𝑡)) for the claim-evidence pair. 

We treated it as a multiclass classification problem, where the output indicates whether the abstract 

states that there is evidence for the claim, that it is inconclusive, or that the abstract does not provide 

information for the claim (NEI). For the discriminative LLMs, we concatenated a claim 𝐶𝑛 (𝑐𝑡) and its 

corresponding abstract 𝐸(𝑐𝑡) with the special token [SEP] to form an input sequence [CLS, 𝐶𝑛 (𝑐𝑡), SEP, 

𝐸(𝑐𝑡)] and fed this input to the LLM. The model takes a sequence of tokens with a maximum length of 

512 and produces a 768-dimensional sequence representation vector. For input shorter than 512 

tokens, we added paddings (empty tokens) to the end of the text to make up the length. For input longer 

than 512 tokens, we truncated the abstract 𝐸(𝑐𝑡) from the beginning to make the input sequence fit 

into the 512 tokens. We provided the truncation algorithm in Supplementary Figure S1. For the 

generative LLMs, we concatenated a claim 𝐶𝑛(𝑐𝑡) and its corresponding abstract 𝐸(𝑐𝑡) with the prompt 

shown in Table 7. In the zero-shot approach, we computed the probability of generating the token TRUE, 

FALSE, or NONE, and the token with the highest probability was the response. We fine-tuned the 

generative LLMs on the training split, evaluated their performance on the validation split, and selected 

the model with the lowest cross-entropy loss. 

Table 7: Prompt for generative language models. 
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Instruction 

Given a scientific claim and an abstract, determine if the abstract reports 

positive results (TRUE), inconclusive results (FALSE), or offers no information 

(NONE) about the claim. 

The task is to classify the pair claim abstract as follows: 

TRUE: if the abstract provides positive support for the claim. 

FALSE: if the abstract provides negative or inconclusive support for the claim. 

NONE: if the abstract provides contextual or background information without 

directly reporting results about the claim. 

Input 
Claim: […] 

Abstract: […] 

Response […] 

 

We show the results of discriminative and generative LLMs on the test split in Table 8. The fine-tuned 

discriminative LLMs outperformed zero-shot and fine-tuned generative LLMs in the clinical research 

claim assessment. Specifically, PubMedBERT achieved the highest accuracy of 81.0% and an F1-macro 

score of 78.8%, showing improved effectiveness in processing biomedical text (p-value < 0.001, 

McNemar-Bowker Test), likely due to its domain-specific training. Other discriminative models like 

BioBERT and RoBERTa also performed well, with 78.2% and 77.4% accuracy, respectively. In contrast, 

zero-shot generative LLMs exhibited significantly lower performance, with OpenBioLLM-8B achieving 

the highest at 42.1% accuracy and an F1-macro of 30.5%, indicating limited capability in assessing 

biomedical claims without task-specific fine-tuning. Upon fine-tuning, generative LLMs showed notable 

improvements; for instance, Llama3-70B's accuracy increased from 35.5% to 51.8%, and its F1-macro 

score from 23.0% to 39.7% (p-value < 0.001, McNemar-Bowker Test). Similarly, OpenBioLLM-70B 

improved from 35.0% to 49.7% accuracy after fine-tuning (p-value < 0.001, McNemar-Bowker Test). 

Nevertheless, they remain sub-optimal as compared to discriminative LLMs, despite a much higher 

number of parameters. 

 

Table 8: Results of discriminative and generative language models on the test split. 

Training approach Model Accuracy (%) F1-macro (%) 

Discriminative (fine-

tuned) 

BERT Base (Uncased) 72.6 69.0 

RoBERTa Base 77.4 73.3 

BioBERT Base v1.1 (Cased) 78.2 73.8 

PubMedBERT Base (Uncased) 81.0 78.8 

MPNet Base v1 (QA) 74.9 70.9 
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Generative (zero-shot) 

Llama3-8B 33.2 19.8 

Llama3-70B 35.5 23.0 

Meditron-7B 30.7 15.7 

Meditron-70B 33.2 22.9 

OpenBioLLM-8B 42.1 30.5 

OpenBioLLM-70B 35.0 28.3 

Generative (fine-tuned) 

Llama3-8B 38.3 26.9 

Llama3-70B 51.8 38.7 

Meditron-7B 30.7 15.7 

Meditron-70B 30.7 15.7 

OpenBioLLM-8B 45.4 34.5 

OpenBioLLM-70B 49.7 39.7 

 

We illustrate a detailed comparison of precision, recall, and F1-macro between the best discriminative 

and generative LLMs - PubMedBERT and OpenBioLLM-70 - across the classes evidence, inconclusive, and 

NEI in Figure 3(a). PubMedBERT consistently demonstrated superior and balanced performance across 

all metrics and classes. In contrast, OpenBioLLM-70B exhibited significant variability in its performance. 

The class evidence has a high recall of 86.8% but a lower precision of 39.5%, resulting in an F1-score of 

54.3%. This result shows that the OpenBioLLM-70B, although finetuned, tends to predict evidence 

labels.  

Figure 3: Performance and stratified analysis of the best discriminative and generative models. 
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Figure 3(b) shows the analysis of the best discriminative and generative LLMs across samples with 

different statistical test types. PubMedBERT consistently outperformed OpenBioLLM-70B in all 

categories and achieved its highest scores in the Non-inferiority or Equivalence (Accuracy: 90.0%, F1-

macro: 84.1%) and Superiority (Accuracy: 89.6%, F1-macro: 86.3%) categories. Equivalence tests were 

the most challenging, with a performance of only 45.8% F1-macro. In contrast, OpenBioLLM-70B 

showed lower performance across all the types of statistical test, with its best results in the Non-

inferiority category (Accuracy: 75.0%, F1-macro: 51.9%). 
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Figure 3(c) illustrates the performance of the leading discriminative and generative LLMs across 22 

disease categories. PubMedBERT consistently outperformed OpenBioLLM in most disease classes. 

PubMedBERT's best performance was in the disease category "Congenital, Hereditary, and Neonatal 

Diseases and Abnormalities" (C16), where it achieved a perfect F1-macro of 100%. Conversely, its lowest 

performance is in "Eye Diseases" (C11), with an F1-macro of 55.6%. OpenBioLLM-70's highest F1-macro 

of 50.5% was achieved in the "Neoplasms" (C04) category. Its weakest performance occurred in the 

"Chemically Induced Disorders" (C25) class, where it recorded an F1-macro of 22.9%. 

 

4.2 Intrinsic evaluation 

To assess the intrinsic performance of our models, we conducted an evaluation using the subset from 

the CliniFact test set. Two researchers manually annotated 53 instances. We observed strong inter-

annotator agreement (Cohen’s Kappa score = 0.83), confirming the quality of the dataset annotations. 

The best performing model (PubMedBERT) exhibited high agreement with the human annotators 

(Cohen’s Kappa scores of 0.74 and 0.70). Moreover, the model achieved an accuracy of 85% and 83%, 

with corresponding F1-macro scores of 79% and 74%. 

 

Usage Notes 

CliniFact provides a benchmark for evaluating the accuracy of large language models (LLMs) in verifying 

scientific claims specific to clinical research. Researchers can utilize the dataset to develop and fine-tune 

models aimed at improving natural language understanding, logical reasoning, and misinformation48 

detection in healthcare. Additionally, the dataset facilitates the comparison of performance across 

various types of LLMs. 

 

Code Availability 

The entire process, from developing the CliniFact dataset to conducting experiments, was carried out 

using the Python programming language. The complete code and dataset are available on 

https://github.com/ds4dh/CliniFact. 
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