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Abstract
Electronic health record (EHR)-based phenotype risk scores (PheRS) leverage individuals’
health trajectories to infer disease risk. Similarly, polygenic scores (PGS) use genetic
information to estimate disease risk. While PGS generalizability has been previously studied,
less is known about PheRS transferability across healthcare systems and whether PheRS
provide complementary risk information to PGS.

We trained PheRS to predict the onset of 13 common diseases with high health burden in a total
of 845,929 individuals (age 32-70) from 3 biobank-based studies from Finland (FinnGen), the
UK (UKB) and Estonia (EstB). The PheRS were based on elastic-net models, incorporating up
to 242 diagnoses captured in the EHR up to 10 years before baseline. Individuals were followed
up for a maximum of 8 years, during which disease incidence was observed. PGS were
calculated for each disease using recent publicly available results from genome-wide
association studies.

All 13 PheRS were significantly associated with the diseases of interest. The PheRS trained in
different biobanks utilized partially distinct diagnoses, reflecting differences in medical code
usage across the countries. Even with the large variability in the prevalence of various
diagnoses, most PheRS trained in the UKB or EstB transferred well to FinnGen without
re-training. PheRS and PGS were only moderately correlated (Pearson’s r ranging from 0.00 to
0.08), and models including both PheRS and PGS improved onset prediction compared to PGS
alone for 8/13 diseases. PheRS was able to identify a subset of individuals at high-risk better
than PGS for 8/13 disease.
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Our results indicate that EHR-based risk scores and PGS capture largely independent
information and provide additive benefits for disease risk prediction. Furthermore, for many
diseases the PheRS models transfer well between different EHRs. Given the large availability of
EHR, PheRS can provide a complementary tool to PGS for risk stratification.

Introduction
With the advent of large-scale genetic studies and the widespread availability of electronic
health record (EHR) data, it is possible to combine these resources to more efficiently predict
the risk of a wide range of diseases1–3 . Disease risk estimation can guide the efficient allocation
of screening, preventative interventions, and treatments in the early stages of diseases. Two
lines of research have emerged in the past years. Some researchers have focused on machine
learning approaches for EHR data 2,4and showed some promising results in deriving EHR-based
predictors for pancreatic cancer5 and cardiovascular disease6–8 , among others. Many studies
have focused on genetic data. Polygenic scores (PGSs) use combined information from a
person's genome to estimate their genetic risk of developing a specific disease or trait.
Numerous studies have examined the predictive ability of PGS across multiple diseases, and
there is an extensive discussion about their clinical and public health value9–24 .

EHR and PGS-based prediction models have different strengths and limitations. EHRs allow
access to a vast variety of data, including but not limited to disease diagnosis history, laboratory
measurements, free text reports, and various socio-economic information25. However, EHRs are
also known to be noisy1,2, and the models are expected to suffer from poor generalizability
because of differences in data availability, as well as in clinical and recording practices across
healthcare systems2,3,5,25–28 . So far, most research has been conducted on a single EHR with
limited work on validating the models in different EHR systems and countries2,27,29,30. Recent
studies, however, show promising results when validating EHR-based predictors in a different
healthcare system in the US and UK. For example, an EHR-based prediction model trained in a
US study (BioMe) outperformed conventional clinical guidelines in predicting coronary artery
disease (CAD) susceptibility, and the results could be externally replicated in the UK Biobank
(UKB)7,8. A similar recent study successfully transferred an EHR-based model trained in the
BioMe study for the prediction of autoimmune diseases to All of US, another US-based study.
Another systematic effort to train deep learning-based prediction models on the UKB EHR data
for 1.568 diseases showed that when transferring these models to the All of Us study, 1.347
(85.9%) of the models improved disease onset prediction over a baseline model with age and
sex31.

PGS are less likely to suffer from measurement errors compared to EHR-based models,
however, they are known to be poorly transferable across ancestries, thus risking increasing
health disparities14,32. PGS are also not routinely measured in the healthcare setting, although
some healthcare systems have piloted programs to return PGS to individuals33,34. Further, as
PGS keep improving through larger and more representative genome-wide association studies,
there is a growing interest in the integration of other predictors and risk factors to better capture
the disease risk of individuals. Some studies have been recently published integrating, for
example, proteomics35,36 or metabolomics-based risk scores37,38 with PGS. Compared to omics,
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EHR data has the advantage that it is already routinely electronically collected in many
countries and does not require invasive and often relatively expensive additional
measurements3. Importantly, there is a gap in our understanding of how PGS complement both
established clinical risk factors and EHR-based risk scores. Numerous studies have investigated
the additive value of PGS with clinical risk factors for a subset of diseases, including type 2
diabetes (T2D) and CAD9,16,39. For EHR-based risk scores and many other diseases the added
benefit of PGS for disease onset prediction and risk stratification remains understudied.

In this study, we aimed to directly compare, within and across studies, the predictive
performance and transferability of EHR-based scores vs. PGS using a longitudinal prospective
design. We conducted this comparison across 13 common diseases and 3 large biobank-based
studies with high-quality EHR: UK Biobank40 (UKB, United Kingdom), FinnGen41 (Finland) and
Estonian Biobank (EstB, Estonia)34. We created the EHR-based scores using the PheRS
(Phenotype Risk Score) framework42,43 with PheRS derived from longitudinal diagnostic codes
translated into consistent disease diagnoses using phecodes44.
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Figure 1: Study overview.
Panel A Outline of the study design. A separate study is conducted for each of the 13 diseases

in the three biobank-based studies. Each study consists of an observation and a prediction
period, separated by a 2-year washout period. Each disease's case and control definitions were
based on diagnoses acquired in the prediction period (1/1/2011 - 31/12/2018). We removed all
individuals diagnosed before our baseline (1/1/2011) and only considered adults aged 32-70 in
2011 (see Methods for more details). Panel B: We compared the PGSs with PheRSs - trained
on phecodes recorded during the observation period (1/1/1999 - 31/12/2008). The PGS were

based on recent publicly available GWAS summary statistics using MegaPRS. Ultimately, each
individual was assigned 13 different PGS and PheRS scores describing their risk of getting a
disease diagnosis during the prediction period. We trained the PheRS on 50% of individuals

separately in the three studies (FinnGen, UKB, EstB). In each study, we then used the other half
of the population as a test set where we used the scores as predictors in Cox-proportional

hazards models45 (Cox-PH). Panel C: Number of new diagnoses for each disease during the
prediction period (1/1/2011 - 31/12/2018) for each of the 13 diseases in the three cohorts

(green: EstB, yellow: FinnGen, brown: UKB). This figure was created with the help of
BioRender.com.

Results
Study overview.
We included 845,929 individuals (Supplement Table 1) aged 32 to 70 on 01/01/2011 (Figure
1A). These individuals belong to 3 biobank-based studies (FinnGen, UKB, EstB) linked with
national registers or EHRs. The individuals gathered a total of 293,019 new diagnoses during an
8-year prediction period (01/01/2011 - 31/12/2018) across 13 common and high-burden
diseases: prostate cancer, breast cancer, colorectal cancer, lung cancer, type 2 diabetes (T2D),
atrial fibrillation (AF), major depression (MDD), coronary heart disease (CHD), hip osteoarthritis
(hip OA), knee osteoarthritis (knee OA), asthma, gout, and epilepsy. We observed the highest
number of events for knee OA (N=43,767) and the lowest for lung cancer (N=4,796, Figure 1C,
Supplement Table 2).

Construction of PGS and PheRS.
We constructed the PGS and PheRS separately for each disease (Figure 1B). PGS were
previously derived by the INTERVENE consortium46. PheRS were based on phecodes47

recorded during a 10-year observation period (01/01/1999 - 31/12/2009; Figure 1A), separated
from the prediction period (01/01/2011 - 31/12/2018) by a 2-year washout period. In total, we
considered 242 phecodes with a prevalence of at least 1% in any study. Each PheRS model
was trained separately to predict disease occurrence in the prediction period using 50% of the
individuals in each study. We used an elastic net model, a type of regularized regression
method that combines the properties of both Ridge (L2) and Lasso (L1) regression43. The effect
of age, sex and the ten first genetic principal components (PCs) were regressed out from both
PheRS and PGS to make the scores comparable. A more detailed description of the PheRS
construction can be found in the Methods. Disease prevalence during the prediction period
(01/01/2011 - 31/12/2018, Figure 1C) varied substantially across the 3 studies. For example, we
found a higher prevalence of knee OA in the EstB (12.3%, N=14,180) compared to FinnGen
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(4.8%, N=12,874) and the UKB (3.6%, N=16,713), while T2D diagnoses show a lower
prevalence both in the EstB (3.6%, N=104,161) and UKB (3.6%, N=16,850) compared to
FinnGen (6.8%, N=18,099; Supplement Table 2).

PheRS were significantly associated with all 13 diseases.
We evaluated the association between PheRS and 13 diseases independently from age and
sex using Cox proportional hazard models (Cox-PH) on a test set in each study. All PheRS were
significantly associated (p<0.05) with higher disease risk (Figure 2A, Supplement Table 3) with
the largest association for gout (meta-analyzed hazard ratio (HR) per 1 standard deviation (SD)
of PheRS=1.55; 95% confidence interval (CI): 1.43-1.67), T2D (HR=1.47; 95% CI: 1.36-1.59),
and lung cancer (HR=1.47; 95% CI: 1.39-1.55). Further, adding the PheRS to a baseline
model with age and sex significantly (p<0.05; two-tailed p-values based on the z-scores of
the c-index differences) improved the predictive accuracy (c-index) in all three studies for
7/13 diseases: asthma, MDD, T2D, knee OA, hip OA, gout, and AF (Figure 2B,
Supplement Figure 1A-1, Supplement Table 4). The improvement persisted for 4 of these
diseases (asthma, MDD, T2D, knee OA) in all of the three studies when compared to a
baseline including additionally highest achieved education level and the Charlson
comorbidity index48,49 (CCI; Supplement Figure 1A-2). Overall, integrating education and CCI
only led to minor improvements in the model’s discriminative ability (Supplement Figures 2&3).

We found that, in FinnGen, all PheRS were correlated, mostly positively, with the total number of
phecodes an individual had recorded (Persons’ r ranging from 0.77 for asthma to -0.43 for
breast cancer; Supplement Figure 1C). To further test whether this meant that the PheRS are
more predictive in older individuals who have had more time to accumulate diagnoses in their
EHR, we stratified the FinnGen test set to a younger group aged 32-51 and an older group aged
52-70 years. However, unexpectedly, we found a significantly stronger association of the PheRS
in the younger age group for 4/13 disease and only for breast cancer was the relative risk in the
older group significantly larger than for the younger group, while no differences were observed
in the remaining diseases (Supplement Figure 4).
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Figure 2: PheRS performance across studies.
Panel A: Association between PheRS and disease onset during the prediction period

independent of age and sex. The HRs and 95% CIs in each study - FinnGen: yellow, UKB:
brown, EstB: green - and meta-analyzed results (red). The HRs are shown for an increase of the

PheRS by 1 standard deviation (SD) after regressing out age and sex. Panel B: Increase in
predictive accuracy when adding the PheRS to a baseline model with age and sex. The

meta-analyzed c-indices and 95% CIs of the baseline model (x-axis) compared to a model with
added PheRS (y-axis).

PheRS transfer well between studies.
We examined PheRS transferability by comparing, in FinnGen, externally- and internally-trained
PheRS. Externally-trained PheRS were trained on the training set of the UKB and EstB study
and tested on the same test set as the FinnGen internally-trained PheRS. Externally-trained
PheRS were moderate to strongly correlated with internally-trained PheRS (average Pearsons’
r=0.45, range -0.09-0.74; Figure 3A, Supplement Table 5). Not surprisingly, PheRS that were
poor predictors of the disease were also poorly correlated between their internally-trained and
externally-trained versions (i.e. colorectal and breast cancer). Most externally-trained PheRS
were significantly associated with disease risk in FinnGen (Figure 3B) and showed significant
improvements in c-index over age and sex (Supplement Figure 5). In some instances, as in the
case of the PheRS models for MDD and CHD trained in the UKB and the gout models trained in
the UKB and EstB, externally-trained PheRS c-index improvements were not significantly
different from those achieved by the FinnGen internally-trained PheRS. Nonetheless, we
observed that most PheRS disease associations were significantly lower with the
externally-trained PheRS (Figure 3B).

Figure 3: PheRS validation in FinnGen.
Panel A: Correlation (Persons’ r) between the internally-trained PheRS in FinnGen and the

externally-trained PheRS, tested in FinnGen. Externally-trained PheRS were trained in 50% of
individuals in UKB (y-axis) and EstB (x-axis). Panel B: Association of FinnGen internally-trained
PheRS with each disease compared to the externally-trained models. HRs and 95% CIs of the
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FinnGen-trained PheRS (x-axis) vs. the externally-trained PheRS (y-axis), with EstB on the left
and UKB on the right. The HRs are shown for a 1-SD increase of the PheRS after regressing

out age and sex.

Phecode importance varies across studies.
Despite good PheRS transferability, we found marked differences in the prevalence of different
phecodes between the studies (Supplement Table 6). When considering codes with a
prevalence of at least 1%, only 20% of phecodes (N=49) could be observed in all three studies
(Figure 4A). These differences can be partially explained by different types of diagnostic
information from the EHR available in each study. For example, the inclusion of primary care
diagnoses in the EstB study leads to a higher number of phecodes, with 32% (N=77) unique to
that study (Figure 4A+B). The FinnGen and UKB studies, on the other hand, only utilized
diagnoses from secondary care.

The set of phecodes unique to each study included important predictors for many of the
diseases. To highlight one example in each study, we found neuralgia (code 766) to be among
the top 20 predictors for hip OA, CHD, and MDD in the EstB. In FinnGen, schizophrenia (code
295) was an important predictor in T2D, lung cancer, and epilepsy; and in the UKB, tobacco use
disorder (code 318) was among the most important predictors for hip OA, T2D, lung cancer,
CHD, and MDD. However, other predictors such as hypertension (code 401), overweight (code
278), alcohol abuse (code 317), and peripheral nerve disorders (code 351) were prevalent
diagnoses in all three studies and showed a large consistent effect across diseases (Figure
4B+C, Supplement Table 7).

We took a closer look at the top predictors in the individual PheRS models. Figure 4D shows
the shared and study-specific predictors in the PheRS models for major depression (MDD).
We found that the top predictors in each PheRS captured three main categories: substance
abuse, sleep disorders and pain-related problems. The most consistent phecode related to
substance abuse in all three studies was alcohol abuse (code 317; FinnGen rank 3, UKB rank 2,
and EstB rank 4), while other diagnoses such as tobacco use disorder (code 318) were only
captured in the UKB study (rank 3). The most important predictors related to pain disorders in
FinnGen were intervertebral disc disorders (code 722, rank 4) and migraine (code 340, rank 5),
while in the UKB it was back pain (code 760, rank 4) and in the EstB peripheral nerve disorders
(code 351, rank 9) and other headache syndromes (code 229, rank 10). Nevertheless, while
the list of most important predictors varied, each of the PheRS models also captured other
pain-related diagnoses with lower ranks. Supplement Figure 6 shows, for 6 additional diseases,
how common and study-specific phecodes contribute to PheRS prediction.
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Figure 4: Phecode prevalence and coefficients in each study.
Panel A: A Venn diagram showing the number of phecodes present in each of the three studies
and shared between all combinations of the three studies. We only considered phecodes with a

prevalence >1% in each study. Yellow color indicates FinnGen-specific codes, brown
UKB-specific codes, green EstB-specific codes and black codes present in all three studies. The

same color coding applies to panels B and D. Panel B: Phecode prevalences for selected
example codes in the three studies. The black dashed line indicates a prevalence of 1%. Panel
C: Median of PheRS coefficients over the 13 diseases in each study. Only coefficients used by
at least 7/13 models in the studies are shown (see Methods for phecode exclusion rules in the
PheRS models). Different colors and the y-axis labels indicate different phecode categories.
Black dashed lines correspond to coefficient values of 0. Panel D: A detailed look at all the

PheRS coefficients for major depression (MDD) in the three studies. Black color marks common
phecodes in the MDD PheRS models across the studies, while other colors indicate
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biobank-specific codes (yellow=FinnGen, brown=UKB, green=EstB). PheRS coefficients are
standardized to 0 mean and 1 standard deviation for each model separately for easier

comparison of coefficient importance across the studies.

PGS and PheRS are orthogonal predictors.
Finally, we compared the PheRS and corresponding PGS associations. Both were significantly
associated with all diseases in the meta-analysis (p<0.05). However, the magnitude of the
associations varied across diseases. For 4 out of the 13 diseases (epilepsy, MDD, knee OA,
and lung cancer), the PheRS showed a stronger association with the diseases than the PGS,
and for 4/13 there was no significant difference (Supplement Figure 7C). However, when looking
at the top 10% of most at-risk individuals compared to the 20% at average risk, the PheRS
capture the risk better for 8/13 diseases (T2D, gout, lung cancer, asthma, MDD, epilepsy, hip
OA, and knee OA; Figure 5A, Supplement Figure 6A). Moreover, PheRS provided additional
information on top of PGS. Adding PGS to a model with PheRS, age, and sex led to
significant improvements for 10/13 in FinnGen, 3/4 in the UKB, and 6/13 in the EstB
(Supplementary Figure 7A). Similarly, adding the PheRS to a model with PGS, age, and
sex significantly increased the c-index for 9/13 diseases in FinnGen, 2/4 diseases in the
UKB, and 6/13 diseases in the EstB (Supplementary Figure 7B). The number of diseases
with significant improvements due to adding the PheRS is similar to that achieved when
adding the PheRS to age and sex (Supplement Figure 2A, see Methods and
Supplementary Text for more details)
Overall, we found that the EHR data and genetic information capture largely orthogonal
information as shown by the low correlation between the two scores (average Pearsons’ r=0.02,
range 0.00-0.08, Figure 5B).

Figure 5: Comparison of PGS and PheRS.
Panel A: Association of PGS (x-axis) and PheRS (y-axis) scores with each disease. The

meta-analyzed HRs (95% CI) for the top 10% at risk compared to the average 20% based on
the scores after regression out age, sex, and the first 10 PCs. Panel B: Correlation (Persons’ r)
between the PheRS and PGS scores separately in each study (FinnGen: yellow, UKB: brown,
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EstB: green). Due to sample overlap with the GWASs, PGS could only be calculated for 4
diseases in UKB (see Methods for details).

Discussion
In this study, we investigated the accuracy and transferability of EHR-based models (PheRS) in
predicting the 8-year risk for 13 common diseases in three large biobank-based studies
(FinnGen, EstB, and UKB) compared to PGS. Our results highlight the complementarity of
PheRS and PGS for a range of diseases, suggesting that combining EHR and genetic data can
be an advantageous strategy for the prediction of many common diseases. Both PheRS and
PGS were derived to be independent from age and sex effects, thus providing orthogonal
information to these two key risk factors. Furthermore, we were able to successfully validate in
FinnGen the models trained in EstB and UKB, suggesting that the PheRS models capture
relevant risk factors that are not only study- or healthcare system-specific.

While the performance of the PheRS models varied between diseases, the PheRS for asthma,
MDD, T2D, knee OA, and gout, in particular, performed well across all three studies. In contrast,
colorectal cancer, prostate cancer, and breast cancer PheRS models performed poorly, likely
also due to the low case counts in our data. We expected to see low transferability of the PheRS
between studies due to differences in clinical and disease coding practices in different countries
and healthcare systems. Nonetheless, we found that the PheRS replicated well for many of the
diseases although, as expected, most PheRS trained within-study performed better. The good
transferability of PheRS was also surprising given the large variability in prevalence of phecodes
we found across studies, with only 20% of them observed in all three studies. However, our
results are in line with a few previous studies that show that it is possible to create predictors
that are generalizable across healthcare systems6–8,31.

Looking closer at the phecodes prevalent in each study and their importance in the PheRS
models, we find that the PheRS models that transfer well from the UKB or EstB to FinnGen
utilize both study-specific phecodes, and phecodes shared between the studies. In some cases,
such as gout, a large part of the transferability of the models could already be explained by a
few major risk factors such as hypertension, high BMI, and diabetes that are consistent in all
three studies50. In other cases, the relevance of each predictor was more intricate. For example,
in UKB, one of the most important phecodes for major depression (MDD) was tobacco use
disorder, but this code had very low prevalence in FinnGen. Instead, we found that the
phecodes for alcohol abuse (code 317) was a prevalent and important predictor in all three
studies. Both alcohol abuse and sleep disorders, another important and prevalent predictor in all
the studies, are known complex comorbidities of MDD51. We hypothesize that many of the
different phecodes captured a single underlying risk factor. For example, several different
pain-related diagnoses were among the top predictors for MDD, each likely capturing underlying
pain problems52, with the top predictors differing between models. The elastic net penalty allows
a non-zero coefficient for many correlating phecodes, which alleviates the issue of the same
underlying medical issue being coded differently in different EHRs. This suggests that
leveraging similarity between diagnostic codes is an important aspect in creating transferable
EHR-based predictors.
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We kept the PheRS approach simple to demonstrate its feasibility. More complex models could
further exploit the longitudinal nature of EHR information and utilize other data modalities
available in the EHR-systems5,30,53. Further, by using a 2-year washout period and excluding
very closely related conditions from the predictors, we remained conservative in removing
co-morbidities directly related to the disease. Without this buffer the performance of the models
will likely increase and be more relevant in a clinical context6. To improve generalizability of the
models we collapsed phecodes into the first three digits to reduce the effect of different
diagnostic codes being used in different countries to describe the same underlying
phenomenon54. For example, in the EstB study phecodes hypertensive heart disease (code
401.21) and essential hypertension (code 401.1) were equally prevalent diagnoses capturing
the risk factor hypertension (code 401), while in FinnGen hypertensive heart disease (code
401.21) had a prevalence of <1%. Other approaches could include mapping diagnostic codes to
OMOP-concepts, which has been shown to facilitate EHR-based models that transfer between
different countries31.

Importantly, while we did not exclude individuals based on their genetic ancestry, the UKB still
consists mainly, and FinnGen and the EstB almost exclusively, of individuals of European
ancestry. Thus, our study does not properly assess the important issue that individuals of
different ethnicities face inequalities in healthcare access55,56. Important open questions for
future work, in addition to the generalizability of EHR-based scores for non-European genetic
ancestries, include how to optimally model diagnostic codes for best generalizability as well as
leveraging data from different and diverse cohorts with for example federated learning
approaches57.

To our knowledge, correlation between PGS and EHR-based scores have not been
comprehensively studied. For CAD, Petrazzini et al. 7 found that the inclusion of PGS did not
improve prediction compared to an EHR-based score, while Zhao et al. 6 found that the
inclusion of genetic information significantly improved models with both EHR-based predictors
and the gold standard model for CAD risk prediction (ACC/AHA) Pooled Cohort Risk Equations).
For 8/13 diseases studied here, we observe a significant improvement in onset prediction when
integrating PheRS on top of PGS. While for many of the cancers (colorectal cancer, prostate
cancer, and breast cancer), the PGS were more informative, for diseases such as MDD,
epilepsy, and knee OA the PheRS better captured the risk. Interestingly, PheRS were
specifically better than PGS in capturing high-risk individuals. Individuals in the top 10% of
PheRS had higher HR than those in the top 10% of PGS for 8/13 disease, probably reflecting
those individuals with key co-morbidities. Further, we observe very low correlation between PGS
and PheRS, indicating that these two data sources contain largely independent information that
is predictive of disease onset. A few prior studies on the interaction between PGS and selected
risk factors found no evidence for interaction11,51.

Patient’s diagnostic history has always been a key piece of information for medical professionals
when considering future treatment. As we are moving towards translating PGS to clinical use, it
is worth considering integrating, in a comprehensive manner, also the information about an
individual’s diagnosis history which in many countries is already collected in a centralized
electronic manner. This would not be a large shift from current practice, as selected
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comorbidities are used in many clinical risk stratification algorithms, for example, QRisk58 for
evaluating risk of heart attack or stroke in 10 years, or QDiabetes for evaluating 10 year risk of
T2D59. A recent study (Steinfeld et al. 60), showed that EHR-based models trained specifically to
predict risk of five different cardiovascular events performed similarly or better than conventional
risk scores (QRISK3, ASCVD and SCORE2)31. Similarly, Zhao et al.6 found that the machine
learning models trained on longitudinal EHR data outperformed the gold standard risk model
(ACC/AHA) Pooled Cohort Risk Equations) for the prediction of cardiovascular disease. These
comparisons are interesting for diseases with established risk scores. However, for many of the
diseases studied here there are no established risk algorithms, making an EHR-based risk
stratification approach even more relevant.

In this study we show that, across many diseases and multiple studies with different underlying
healthcare systems and EHRs, relatively simple elastic net-based risk scores that consider an
individual’s previous diagnosis history can improve disease risk prediction when combined with
PGS. Information already available from the EHR provides orthogonal information to PGS and
could be a cost-effective approach for risk estimation.

Methods
Study setup

As outlined in Figure 1B, each study consisted of a 10-year observation (6-year for EstBB due
to shorter follow-up) and an 8-year prediction period, separated by a 2-year washout period.
Each disease’s case and control definitions were based on diagnoses acquired in the 8-year
prediction period (2011/01/01 -> 2019/01/01). The ICD-codes used to define the cases for each
disease were based on previous harmonization between FinnGen and the EstBB phenotypes by
the INTERVENE consortium46 (Supplement Table 9). We consider all individuals as controls that
are not cases. We only considered adults aged 32-70 in 2011/01/01 and removed all individuals
diagnosed with the disease before this time. The lower limit for age of inclusion was chosen due
to the inclusion of education level in some of the models and determined based on the median
age of obtaining a doctoral degree in the FinnGen dataset. Using this lower limit, most
individuals included have finished their highest level of education. Further, we remove all
individuals with a diagnosis outside the prediction period (2011/01/01 -> 2019/01/01) and those
lost to follow-up before the start of the prediction period. The ICD-codes used to define the
cases for each disease and the number of cases and controls in each study are listed in
Supplement Tables 9+2.

We included 845,929 individuals (Supplement Table 1) from 3 biobank-based studies:
FinnGen41, UKB40 and EstB 34 linked with national registers or EHRs. In FinnGen we used Data
Freeze 10, which includes 412,090 individuals, of which 266,179 were aged 32-70 in
2011/01/01. The longitudinal ICD-code diagnoses used to define the phecodes and the case
and control status for each disease were based on in- and outpatient hospital register
information. The UKB study included 464,076 individuals aged 40-70, with the ICD-code
diagnoses based on inpatient information. The EstB study included 199,868 individuals of which
115,674 were aged 32-70. Here we also had primary care data as well as self-reported
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diagnoses available. More details on the phenotype harmonization can be found from Jermy et
al.46 and the Supplement Methods.

Predictors

PGS
The PGS were previously computed by the INTERVENE consortium46 and based on the recent
publicly available genome-wide association study (GWAS) summary statistics, with minimal
overlap with our study cohorts (Supplement Table 10) using MegaPRS 61 with the BLD-LDAK
heritability model. For the Cox-PH models we removed individuals from the studies that were
part of the GWAS on which the PGS were based. Due to the large overlap with the UKB
individuals, we only had PGS for gout, epilepsy, breast and prostate cancer available in the
UKB.

PheRS
For the EHR-based models, we trained elastic net models43 on ICD-9 and ICD-10 diagnoses
mapped to phecodes. The phecode mapping was based on the v1.2b1 of the phecode map44,47  
from https://phewascatalog.org/, with some manual additions. Since we only considered
diagnoses during the observation period starting in 1999, all diagnoses were ICD-10 based in
our data. To get the most complete mapping we removed all special characters from the
ICD-code and then if we could not find a match in the phecode map, we shortened the code by
one digit until it could either be mapped or had to be removed. The complete mapping used can
be found from Supplement Table 11. As our target phenotypes were defined based on
ICD-codes we exclude predictors part of the exclusion range of the phecodes separately for
each phenotype (Supplement Table 12). We only considered phecodes with a prevalence at
least 1% of the study population (Supplement Table 6).

We implemented the PheRS using the LogisticRegression function from scikit-learn (version
1.3.2)62 . We included age (at the start of the prediction period 2011/01/01) and sex as predictors
in the PheRS models because they are important predictors and otherwise the models would
reconstruct predictors for age and sex using combinations of the phecode diagnoses, which
would make interpretation of the phecode coefficient values challenging. Nonetheless, age and
sex effect were then regressed out when evaluating the performances of the PheRS (see
below). Models were penalized with the elastic net penalty. Predictors were coded as 1/0, where
1=”predictor observed during the observation window” and 0=”predictor not observed during the
observation window”, for each disease separately. For training, 50% of the data was used, and
this was further divided into training (85%) and hold-out test (15%) sets. Sizes of the training
data sets are shown for each disease and study Supplement Table 2. L1 to L2 ratio
hyperparameter of the elastic net models was optimized using grid search and 5-fold
cross-validation over the range 0.05-0.95 (step size = 0.05), simultaneously with inverse of the
regularization strength (C) over possible values: 1e-5, 5e-5, 1e-4, 5e-4, 1e-3, 5e-3, 1e-2, 5e-2,
1e-1, 5e-1, 1. Balanced class weights were used, based on class frequencies in the training
data.
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Model fitting was done using stochastic average gradient descent. Best L1 to L2 ratio was
selected based on the average precision score using 5-fold cross validation on the training split.
Missing values of predictors were imputed to the mean of the corresponding predictor in the
study-specific training data and all predictors were standardized to zero mean and unit variance
on the study-specific training data prior to model fitting. The code for training the PheRS models
is available at: https://github.com/intervene-EU-H2020/INTERVENE_PheRS .

The PheRS models trained within the UKB or the EstBB data on 50% of individuals were used
to make predictions in FinnGen test set as is without any retraining with FinnGen data.
Standardization and imputation were performed based on the biobank-specific training data,
meaning that e.g. when assessing the performance of the UKB-trained model in FinnGen, the
FinnGen test set data was imputed and standardized based on the feature-specific means and
standard deviations from the UKB.

Cox proportional-hazards models

Ultimately, each individual was assigned 13 different PGS and PheRS scores describing their
risk of getting a disease diagnosis in the prediction period based on genetic or EHR-based
information. To make the PheRS and PGS comparable we regressed out the effect of age, sex
and the first 10 genetic PCs from all continuous scores using the residuals from a logistic
regression with the score as outcome. Subsequently we scaled all predictors to have a mean of
zero and standard deviation of 1. We then used these scores in separate Cox
proportional-hazards models (Cox-PH), with the survival time defined as the time from 2011 until
either diagnosis, censoring (end of follow-up), or the end of the prediction period.

Additionally, we considered the Charlson-Comorbidity Index (CCI)48,49   - developed to account
for the individual’s overall comorbidity burden - and individuals highest achieved education level
in 2011 - an indicator of their socio-economic status. For the CCI we compared the top 10% of
individuals with the highest CCI to the rest. The high-risk group included individuals with a
CCI>=2 and a few younger ones with a CCI of 1. For the highest education level we mapped
each study’s education coding to the 2011 International Standard Classification of Education
(ISCED-11; Supplement Table 13) codes. We compared the risk of individuals with basic
education (ISCED-11: 1-4) to those who achieved high education levels (ISCED-11: 5-7).

We used the survival63 package in R for creating the Cox-PH models and the Hmisc64 package
to calculate the c-indices and 95% CIs. For a Cox-PH model with binary outcomes, the
predicted survival times can be shown to be equal to the survival probability, so the c-index is
equivalent to the area under the curve of the receiver operating characteristic curve
(AUCROC)65,66. The meta-analysis of the HRs and c-indices was performed using the
metafor67,68 package in R with a random effects model. We used two-tailed p-values based on
the z-scores to compare the difference in HR magnitude and significant increases in the c-index.
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Comparison of phecode coefficients between different PheRS models

The elastic net hyperparameters were separately optimized for each PheRS model. This means
that the absolute magnitudes of the coefficients for phecodes are not comparable between
different PheRS. However, the relative importances of phecodes can still be compared, i.e.
whether for example the same phecodes are among the most important predictors in two
different PheRS. To make visualization of the phecode importances in different PheRS clearer,
we standardized the coefficients of each PheRS separately to a mean of 0 and a standard
deviation of 1 for the display items. Further, in each study we ranked the phecodes in
descending order by the PheRS coefficient values and assigned them ascending ranks. Thus, a
lower rank indicates a higher PheRS coefficient in the model. Both the unscaled PheRS
coefficients and ranks are Supplement Table 7.
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