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Abstract 21 

Background 22 

The initial evaluation of coronary stenosis during coronary angiography is typically 23 

performed by visual assessment. The visual assessment of coronary angiographies has 24 

limited accuracy compared to quantitative methods like fractional flow reserve and 25 

quantitative coronary angiography. Quantitative methods are also more time-consuming 26 

and costly.  27 

Objectives 28 

To test whether applying deep-learning-based image analysis to coronary angiographies 29 

might yield a faster and more accurate stenosis estimation than visual assessment. 30 

Methods 31 

We developed deep learning models for predicting coronary artery stenosis using 332,582 32 

multi-frame x-ray images (cine loops) from 19,414 patients undergoing coronary 33 

angiography. The curated dataset for model development included 13,840 patients, with 34 

62,165 cine loops of the left coronary artery and 31,161 cine loops of the right coronary 35 

artery.  36 

Results 37 

For identification of significant coronary stenosis (visual assessment of diameter stenosis 38 

>70%), our model obtained a receiver operator characteristic (ROC) area under the curve 39 

(ROC-AUC) of 0.903 (95% CI: 0.900-0.906) on the internal test set with 5,056 patients. The 40 

performance was evaluated on an external test set with 608 patients against visual 41 

assessment, 3D quantitative coronary angiography, and fractional flow reserve (≤ 0.80), 42 
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obtaining ROC AUC values of 0.833 (95% CI: 0.814-0.852), 0.798 (95% CI: 0.741-0.842, and 43 

0.780 (95% CI: 0.743-0.817), respectively. 44 

Conclusion 45 

For assessment of coronary stenosis during invasive coronary angiography a deep-learning-46 

based model showed promising results for predicting visual assessment (ROC AUC of 0.903). 47 

Compared to previous work, our approach demonstrates performance increase, includes all 48 

16 segments, does not exclude revascularized patients, is externally tested, and is simpler 49 

using fewer steps and fewer models.  50 
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Introduction 51 

X-ray multi-frame images (also known as cine loops, videos, views, or projections) acquired 52 

during an invasive coronary angiography (CAG) yield detailed information about the 53 

anatomy and flow in the coronary arteries.1 Cine loops are acquired separately for the left 54 

coronary artery (LCA) and right coronary artery (RCA), and views are acquired from different 55 

angulations. During and after recordings, coronary angiographies (CAGs) are visually 56 

assessed to identify and quantify stenosis on all 16 coronary artery segments2. This visual 57 

assessment, often called "eyeballing", involves assessing the diameter reduction of the 58 

artery segment compared to the proximal reference in percentage. Based on the presence 59 

of stenoses, the need for pharmacotherapy and revascularization can be considered.2   60 

The visual assessment of a stenosis has a high observer variance2,3. Recent guidelines 61 

suggest unnecessary use of percutaneous coronary intervention (PCI) and coronary artery 62 

bypass grafting (CABG) in 1-2% and 10-15% of cases, respectively, which is likely caused by 63 

inaccurate assessment of stenoses.2-3  64 

Objective stenosis assessment can be evaluated by fractional flow reserve (FFR) 65 

measurements during the procedure, measuring the pressure drop across a stenosis to 66 

determine the hemodynamic significance of a stenosis. Despite the proven benefits of wire-67 

based FFR measurements4-9, utilization varies across hospitals and countries, with a 68 

utilization span between 5-17%.10-13  69 

Alternatively, quantitative coronary angiography (QCA) can be used for objective 70 

measurements of a vessel diameter reduction using image analysis software. QCA relies 71 

typically on keyframe extraction, manual segmentation of vessels with stenosis, followed by 72 

3D reconstruction using two different angulations.14-15 While FFR is considered the ground 73 

truth for determining hemodynamically significant stenosis, QCA is attractive for research as 74 
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it can be performed offline and after the CAG.14 It has been shown that revascularization of 75 

non-culprit lesions based on QCA can reduce future incidences of myocardial infarction.15 76 

Unfortunately, both QCA and FFR are expensive, time-consuming, and require special 77 

training to produce reliable results. 78 

Considering these challenges, there has been growing interest in applying deep-learning-79 

based methodologies for automatic stenosis estimation.16-23 Previous, similar work involving 80 

reasonably sized datasets presents a complex pipeline having six steps and eight models, 81 

focusing only on 11 segments, and excludes patients with prior revascularization. 22-23 82 

In this paper, we present an end-to-end learning-based approach aiming to provide a useful 83 

clinical tool. Our method has improved performance compared to related work, capable of 84 

estimating stenosis on all 16 segments without exclusion of patients with prior 85 

revascularization, and the performance was evaluated on an external test set from a 86 

different hospital. Furthermore, the performance was evaluated against both visual 87 

assessments, QCA, and FFR. 88 
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Methods  89 

Cohort description  90 

Rigshospitalet dataset: Cohort description 91 

Our dataset used for model development and testing included 19,414 patients, comprising 92 

332,582 X-ray cine loops, were extracted from Rigshospitalet, Copenhagen, (period 2006-93 

2016). In total, the dataset contained 23,415 CAGs, and each CAG contained an average of 94 

17.8 cine loops. The characteristics of the 19,414 patients, corresponding to the time point 95 

of coronary angiography, are presented in Table 1. CAGs were recorded using Philips 96 

Medical Systems, GE HealthCare, and Siemens Healthineers angio systems. The CAGs were 97 

linked to the Eastern Denmark Heart Registry (EDHR) database. The EDHR database contains 98 

information about visual assessment in each of the three major coronary arteries, reported 99 

according to the 16-segment classification protocol.25-27 Additionally, the indication for 100 

coronary angiography and the treatment was recorded (Supplemental Table S1). Segments 101 

displaying borderline or intermediate stenosis were, if appropriate, further evaluated using 102 

Fractional Flow Reserve (FFR). Every entry in the EDHR database was manually registered by 103 

interventional cardiologists as part of clinical practice. We used 14,358 randomly selected 104 

patients for model development (90% for the training set with 12,846 patients and 10% for 105 

the validation set with 1,389 patients). For evaluation of the model performance, we used 106 

5,056 randomly selected patients for evaluating the performance, which we will refer to as 107 

the internal test set (Supplemental Table S2).  108 
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Table 1 Cohort characteristics.  109 

Features Total 

Patients 19,414 

Age, years 67.3 ± 12.4 

Males (%) 13,377 (68.9%) 

Diabetes (%) 3,634 (18.7%) 

Hypertension (%) 10,042 (51.7%) 

Smokers and ex-smokers (%) 12,752 (65.7%) 

No vessel abnormalities (%) 2,892 (14.9%) 

Atheromatous vessels (%) 4,886 (25.2%) 

1 vessel disease (%) 7,030 (36.2%) 

2 vessel disease (%) 3,477 (17.9%) 

3 vessel disease (%) 3,209 (16.5%) 

Left main disease (%) 1094 (5.64%) 

Prior PCI (%) 4,124 (21.2%) 

Prior CABG (%) 1,506 (7.7%) 

Right dominant (%) 15,795 (81.4%) 

Left dominant (%) 1,811 (9.3%) 

Co dominant (%) 2,023 (10.4%) 

Arrhythmia device (%) 827 (4.3%) 

 110 

 111 

 112 

 113 

 114 
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Skejby Hospital: Cohort for external testing 115 

We further evaluated the model on 608 patients from Skejby Hospital in the Central 116 

Denmark Region, which we refer to as the external test set. These patients were selected 117 

following initial findings of suspicious stenosis from coronary computed tomography 118 

angiography (CTA). Each patient had a single coronary angiography recorded using Philips 119 

Medical Systems and Siemens Healthineers Angio System scanners. FFR was measured in all 120 

segments technically feasible for FFR measurements. All applicable segments were also 121 

analyzed with QCA using Medis QAngio®XA 3D, Netherlands.  122 

 123 
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Overview: A deep learning-based approach for automated stenosis estimation 124 

We employed a multi-stage approach for estimating the degree of stenosis on all coronary 125 

artery segments. First, we manually annotated a subset of cine loops as either left or right 126 

coronary arteries (LCA/RCA). Secondly, we developed and trained a deep learning model to 127 

differentiate between LCA and RCA in coronary angiography cine loops. This model was 128 

used to classify all cine loops as LCA, RCA, or "other". Thirdly, we selected all cine loops 129 

before revascularization using an automated approach based on the classified cine loops 130 

and the timestamp. Fourthly, we developed two deep learning models for estimating 131 

stenosis: one for LCA and another for RCA, utilizing the cine loops before revascularization. 132 

An overview of the approach can be found in the Central Illustration.   133 

 134 

Central Illustration. Overview of the proposed approach for stenosis estimation. 135 

 136 
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R2D+1 backbone deep learning model 137 

We used the R2D+1 deep learning model,29 a supervised 3D convolutional neural network 138 

(CNN), which has previously been demonstrated state-of-the-art performance for CAG cine 139 

loops classification of right and left coronary artery.28 The R2D+1 model uses the R2D+1 140 

block, which compresses the 3D convolutional block into a spatial block with filters of size 3 141 

× 3 × 1 and a temporal block with filters of size 1 × 1 × 3. Non-linear ReLu activation is used 142 

between the spatial and temporal filters. The R2D+1 block can be interpreted as a 143 

combination of spatial and temporal filters, but with non-linearity between the two 144 

operations, extracting non-linear relations between spatial and temporal features. 145 

For both CAG cine loop classification tasks and stenosis estimation, we employed the R2D+1 146 

network. The model takes a CAG cine loop as input from the training set and learns 147 

discriminative features. The discriminatory features will depend on the target used for the 148 

model, and thus, the model learns different features for the cine loop classification model 149 

and stenosis estimation models.  150 

Annotation of cine loops 151 

To categorize all the cine loops, we manually labelled a subset of 18,058 cine loops from 152 

1,228 patients as LCA, RCA and "other". The "other" category included cine loops, in which 153 

the LCA or the RCA was not present. The purpose of the "other" category was to exclude 154 

cine loops not relevant for visual assessment. We specifically categorized cine loops 155 

containing guide wires as "other", even when they also displayed either the left or the right 156 

coronary artery. Cine loops containing chronic total occlusions (CTO) were still annotated as 157 

LCA or RCA. For training and validation, we used 1,047 patients with 15,068 cine loops. For 158 
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model evaluation, we used a test dataset of 2,990 cine loops from 179 patients 159 

(Supplemental Table S2). 160 

Cine loop classification model 161 

We developed a deep learning classification model designed to classify cine loops into one 162 

of the three categories: LCA, RCA and "other" using the labeled subset. We used the trained 163 

cine loop classification model to categorize the cine loops in the training/validation and the 164 

test sets as LCA (LAD and LCX), RCA and "other". This classification step extends the work of 165 

Eschen et al.28, who focused on left and right coronary artery classification, by incorporating 166 

an additional "other" category. 167 

Diagnostic cine loop selection 168 

The cine loops obtained during, and post revascularization are not applicable to the 169 

decision-making process regarding revascularization in a deployment scenario of the 170 

models. Additionally, cine loops obtained during, and post revascularization are highly 171 

associated with stenoses and may, therefore, introduce bias in the model during training. 172 

Consequently, we excluded cine loops performed during and post revascularization 173 

procedures. This exclusion involved removing cine loops categorized as "other" and any cine 174 

loops obtained after this category appeared in the sequence. We denote this step as the 175 

"diagnostic cine loop selection step" as depicted in the Central Illustration (see also 176 

Supplemental Methods 1). A detailed explanation of the data inclusion process is presented 177 

in Supplemental Materials Section 1.1, and Figure S1. 178 

Training the stenosis estimation models 179 
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Using the diagnostic cine loop selection procedure, we included cine loops of LCA and RCA 180 

and excluded cine loops obtained during and after PCI. The selection procedure resulted in 181 

13,284 patients with 31,161 RCA cine loops, and 13,768 patients with 62,165 LCA cine loops 182 

(see Supplemental Materials Table S3, and Figure S2-S3 for details).  183 

We developed the stenosis estimation models individually for RCA and LCA using 31,161 and 184 

62,165 cine loops. For both models, we used multi-output regression models. For the RCA 185 

stenosis estimation model, the final linear layer contained five neurons, one for each of the 186 

five RCA segments. Specifically, for the RCA model, the five output neurons corresponded to 187 

artery segments relevant to the RCA. Similarly, for the LCA stenosis estimation model, we 188 

used a multi-output regression model with 13 neurons in the final linear layer, one for each 189 

of the 13 segments relevant to the LCA (we also include the Posterior Descending Artery 190 

(PDA) and the Posterior Left Ventricular Artery (PLA) in the LCA model). This design ensures 191 

that the model can simultaneously make stenosis estimates for each segment, making it 192 

capable of handling multiple stenoses at once. 193 

As the visual stenosis assessment was only reported for segments with potentially 194 

significant stenoses, we replaced the missing values with zeros as these were missing by 195 

purpose. Therefore, we had a complete dataset that included cine loops and corresponding 196 

visual assessment of stenosis on all coronary artery segments.  197 

Evaluating stenosis estimation models against visual assessment 198 

Using the diagnostic cine loop selection procedure, we established a test set with 5,056 199 

patients (24,359 cine loops of the LCA from 5,015 patients and 12,138 cine loops of the RCA 200 

from 4,788 patients, as shown in Supplemental Figure S4). Additionally, we leveraged the 201 

external cohort with 608 patients for external validation (2,949 cine loops of LCA from 608 202 
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patients and 1,425 cine loops of RCA from 599 patients as depicted in Supplemental Figure 203 

S5). 204 

The final LCA and RCA stenosis estimates were obtained by selecting the most severe 205 

stenosis estimate (the maximum stenosis) from all cine loops in a CAG examination. 206 

Coronary dominance was used to decide whether LCA or RCA predictions should be 207 

employed to evaluate the PDA and PLA segments.  208 

We evaluated the model’s ability to predict diameter stenosis as a continuous outcome.  We 209 

also assessed its ability to distinguish between significant and non-significant stenosis as a 210 

binary outcome. We applied the clinical threshold for significant coronary artery diameter 211 

stenosis >70%, except for the left main segment, which was >50%.27 We assessed the 212 

performance of the stenosis predictions for each of the 16 segments of the LCA and RCA 213 

models, as well as the overall average performance. 214 

We also evaluated the stenosis estimation model using our “Angin-FFR Subset”. The “Angina 215 

FFR Subset” was part of the internal test set, but consists of patients with similar 216 

characteristics as the patients in the external test set. Hence, this subset included 499 217 

patients with indications of ischemia and angina, patients with FFR measurements in at least 218 

one segment, patients with atheromatous lesions, and those with single-vessel and two-219 

vessel disease.  220 

Evaluating stenosis estimation models against FFR 221 

For the subset of angiographies followed by FFR measurements (1180 patients in the 222 

internal test set and 439 patients in the external test set), we compared the stenosis 223 

estimates against FFR measurements. The FFR measurements were transformed to a 224 

comparable scale by subtracting the FFR measurements from one. We evaluated the 225 
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performance on detecting hemodynamic significant stenosis (FFR ≤ 0.8). To establish a 226 

comparable baseline for predicting FFR ≤ 0.8, we evaluated the performance using visual 227 

assessments as predictors. 228 

Evaluating stenosis estimation models against QCA 229 

The estimated stenosis was also compared against QCA in the external test set for 359 230 

patients. The evaluation was performed similarly to the evaluation against visual 231 

assessment. As we had access to both the visual assessments and FFR in this dataset for 209 232 

of the spatients, we established a baseline for comparison using visual assessment and FFR 233 

as predictors for QCA. 234 

Statistical analysis 235 

The estimated stenosis was compared against visual assessment, FFR, and QCA 236 

measurements using mean absolute error (MAE) and Pearson's correlation coefficient (r). 237 

The estimated stenoses were also compared against FFR using these metrics.  238 

To evaluate the performance on detecting significant stenoses, we used the area under the 239 

Receiver Operating Characteristic curve (ROC AUC), the area under the precision-recall 240 

curve (PR AUC), F1 score, precision, sensitivity, and specificity. The confidence intervals 241 

were computed using 1000 bootstrap samples at a 95% confidence level.   242 

Approvals and data availability 243 

Approval for data access was granted by the National Committee on Health Research Ethics 244 

(1708829 "Genetics of cardiovascular disease", ID P-2019-93), The Danish Data Protection 245 

Agency (ref: 514-0255/18-3000, 514-0254/18-3000, SUND-2016-50), and by the Danish 246 

Patient Safety Authority (3-3013-1731-1, appendix 31-1522-23). All personal identifiers were 247 
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pseudo-anonymized. Data access applications can be made to the Danish Health Data 248 

Authority (contact: servicedesk@sundhedsdata.dk). Anyone wanting access to the data and 249 

to use them for research will be required to meet research credentialing requirements as 250 

outlined at the authority's web site: 251 

https://sundhedsdatastyrelsen.dk/da/english/health_data_and_registers/research_services252 

. Requests are normally processed within 3 to 6 months. 253 

The source code for this study is available (URL to come). 254 

Results 255 

Performance of the cine loop classification model 256 

The performance of the cine loop classification model had a macro F1 score of 0.972 (95% 257 

CI: 0.972-0.972) on the internal test set (Figure S5 in Supplemental Materials). We assessed 258 

the discordant predictions (79 cine loops) and found that most of these originated from 259 

cases with ambiguous labels (e.g., cine loops obtained while measuring the FFR using a 260 

guide wire).  261 

Performance of the stenosis estimation model  262 

For predicting the visual assessment (diameter stenosis), we obtained a MAE of 0.178 (95% 263 

CI 0.177-0.179), and a Pearson's correlation coefficient of 0.661 (95% CI 0.656-0.666) on the 264 

internal test set. On the “Angina-FFR Subset" we obtained an MAE of 0.156 (95% CI: 0.144-265 

0.168), Pearsons's correlation coefficient of 0.293 (95% CI: 0.196-0.393) when predicting 266 

visual assessment. On the external test set, we obtained an MAE of 0.186 (95% CI: 0.182-267 

0.190) and a Pearson's correlation coefficient of 0.386 (95% CI: 0.317-0.373) compared to 268 

the visual assessment. 269 
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We evaluated the model's performance on significant stenosis identification and obtained a 270 

ROC AUC of 0.903 (95% CI: 0.900-0.906), and PR AUC of 0.693 (95% CI: 0.685-0.701), as seen 271 

in Figure 1. On the "Angina-FFR Subset" we obtained a ROC AUC of 0.849 (95% CI: 0.829-272 

0.867), PR AUC of 0.486 (95% CI: 0.436-0.530) when predicting significant stenoses. 273 

For detection of significant stenosis on the external test set, the ROC AUC decreased to 274 

0.833 (95% CI: 0.814-0.852), and PR AUC decreased to 0.219 (95% CI: 0.190-0.250) as shown 275 

in Table 2 (the performances on the individual segments are depicted in Supplemental 276 

Materials Table S5-S6). 277 

 278 

Figure 1. ROC curve for significant stenosis detection for each segment on the internal test 279 

set (visual assessment of diameter stenosis >70%).  280 

 281 
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ROC Curve Analysis for stenosis estimation on LCA

4 PDA RCA/LCA, AUC= 0.801 (0.742-0.858)         
5 LM LCA, AUC= 0.890 (0.871-0.906)
6 Proxim al LAD, AUC= 0.891 (0.881-0.901)       
7 Mid LAD, AUC= 0.907 (0.899-0.915)
8 Distal LAD, AUC= 0.910 (0.899-0.920)                
9 Diagonal 1, AUC= 0.829 (0.815-0.841)
10 Dagonal 2, AUC= 0.927 (0.915-0.935) 
11 Proxim al LCX, AUC= 0.883 (0.869-0.896) 
12 Marginal 1, AUC= 0.861 (0.849-0.872) 
13 Mid LCX, AUC= 0.872 (0.857-0.885) 
14 Marginal 2, AUC= 0.901 (0.889-0.913) 

15 Distal LCX, AUC= 0.890 (0.874-0.903) 
16 PLA RCA/LCX, AUC= 0.831 (0.784-0.872)
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1 Proxim al RCA, AUC= 0.920 (0.909-0.930)
2 Mid RCA, AUC= 0.937 (0.931-0.944)
3 Distal RCA, AUC= 0.946 (0.938-0.953)

4 PDA RCA/LCA, AUC= 0.921 (0.911-0.930) 
16 PLA RCA/LCX, AUC= 0.936 (0.926-0.943)
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Table 2 Performance on predicting visual assessment 282 

 

Internal test set External test set 

Method Estimated stenosis (ours) Estimated stenosis (ours) 

MAE 0.178 (0.177-0.179) 0.186 (0.182-0.190) 

r 0.661 (0.656-0.666) 0.345 (0.317-0.373) 

ROC AUC 0.903 (0.900-0.906) 0.833 (0.814-0.852) 

PR AUC 0.693 (0.685-0.701) 0.219 (0.190-0.250) 

F1 0.637 (0.631-0.643) 0.314 (0.284-0.343) 

Sensitivity 0.681 (0.674-0.689) 0.548 (0.503-0.593) 

Specificity 0.922 (0.920-0.924) 0.901 (0.895-0.907) 

Precision 0.599 (0.591-0.606) 0.220 (0.199 -0.245) 
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Predicting fractional flow reserve 283 

For predicting the measured FFR values on the internal test set, we obtained an MAE of 284 

0.157 (95% CI 0.148-0.165) and a Pearson's correlation coefficient of 0.220 (95%CI 0.163-285 

0.281). On the external test set, we obtained an MAE of 0.120 (0.111-0.129) and a Pearson's 286 

correlation coefficient of 0.441 (95% CI 0.375-0.502) when predicting the measured FFR 287 

values. 288 

For the detection of hemodynamically significant stenosis (FFR≤0.80), we obtained a ROC 289 

AUC of 0.651 (95% CI: 0.616-0.686) on the internal test set, and a ROC AUC of 0.780 (95% CI: 290 

0.743-0.817) on the external test set as shown in Table 3 (performance on individual 291 

segments are depicted in Tables S7-S10 in Supplemental Materials. 292 
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 293 

Table 3 Performance on predicting FFR 294 

 

Internal test set External test set 

Method 

Estimated stenosis 

(this paper) 

Visual 

assessment 

Estimated stenosis 

(this paper) 

Visual 

assessment QCA 

MAE 0.157 (0.148-0.165) 

0.394 (0.385-

0.401) 0.120 (0.111-0.129) 

0.254 (0.240-

0.268) 

0.265 (0.248-

0.285) 

r 0.220 (0.163-0.281) 

0.549 (0.494-

0.598) 0.441 (0.375-0.502) 

0.640 (0.600-

0.676) 

0.180 (0.037-

0.325) 

ROC AUC 0.651 (0.616-0.686) 

0.853 (0.828-

0.876) 0.780 (0.743-0.817) 

0.844 (0.817-

0.877) 

0.575 (0.491-

0.663) 

PR AUC 0.400 (0.353-0.452) 

0.635 (0.583-

0.685) 0.441 (0.365-0.524) 

0.532 (0.449-

0.606) 

0.430 (0.318-

0.552) 

F1 0.417 (0.368-0.465) 

0.680 (0.636-

0.723) 0.438 (0.361-0.511) 

0.558 (0.497-

0.621) 

0.058 (0.000-

0.143) 

Sensitivity 0.411 (0.360-0.465) 

0.690 (0.638-

0.742) 0.386 (0.311-0.464) 

0.611 (0.526-

0.689) 

0.030 (0.000-

0.077) 

Specificity 0.786 (0.761-0.814) 

0.869 (0.847-

0.892) 0.914 (0.891-0.936) 

0.868 (0.842-

0.894) 

0.985 (0.962-

1.000) 

Precision 0.427 (0.372-0.480) 

0.670 (0.619-

0.716)) 0.510 (0.423-0.594) 

0.519 (0.445-

0.590) 

0.488 (0.000-

1.000) 

 295 
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 296 

Predicting QCA 297 

We further evaluated the performance on QCA prediction on the external test set (QCA was 298 

not measured in the dataset from Rigshospitalet). We obtained a MAE of 0.210 (95% CI 299 

0.203-0.217) and a Pearson's correlation coefficient of 0.477 (95% CI 0.423-0.530). On 300 

detection QCA diameter stenosis >70%, we obtained a ROC AUC of 0.798 (95% CI: 0.782-301 

0.814), as depicted in Table 4. On detecting QCA-based significant stenosis, our models were 302 

consistently better than visual assessment and FFR with a ROC AUC of 0.798 versus 0.658 303 

and 0.575 (additional performance metrics on individual segments are depicted in Table 304 

S11-S12 in Supplemental Materials). 305 
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Table 4 Performance for predicting QCA on the external test set 306 

Method Estimated stenosis (this paper) Visual assessment FFR 

MAE 0.210 (0.203-0.217) 0.351 (0.343-0.360) 0.265 (0.248-0.285) 

r 0.477 (0.423-0.530) 0.358 (0.302-0.408) 0.180 (0.037-0.325) 

ROC AUC 0.798 (0.741-0.842) 0.658 (0.591-0.726) 0.575 (0.491-0.663) 

PR AUC 0.340 (0.243-0.443) 0.273 (0.179-0.374) 0.430 (0.318-0.552) 

F1 0.246 (0.188-0.304) 0.246 (0.183-0.312) 0.058 (0.000-0.143) 

Sensitivity 0.578 (0.471-0.688) 0.446 (0.340-0.563) 0.030 (0.000-0.077) 

Specificity 0.817 (0.797-0.836) 0.872 (0.853-0.889) 0.985 (0.962-1.000) 

Precision 0.157 (0.116-0.198) 0.170 (0.123-0.225) 0.488 (0.000-1.000) 
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Discussion 307 

Our deep learning model demonstrated robust performance in classifying cine loops into 308 

LCA, RCA, and "other" categories, with a macro F1 score of 0.972. For detecting significant 309 

stenosis, high ROC AUC levels of 0.903 on the internal test set and of 0.833 on the external 310 

test set were found. The model outperformed visual assessment when validated against 311 

QCA, achieving a ROC AUC of 0.798. For predicting hemodynamically significant stenosis 312 

measured by FFR, the model achieved a ROC AUC of 0.651 on the internal test set and 0.780 313 

on the external test set. Here, we discuss our findings regarding the related works, visual 314 

assessments, FFR, and QCA, and finally, we address the limitations of our approach. 315 

Related works 316 

In recent years, several studies have focused on the significant stenosis detection in 317 

coronary angiography (CAG) cine loops. As mentioned, although many of these 318 

advancements have been based on small datasets only considering single CAG frames16-18, 319 

efforts for significant stenosis detection on larger datasets exist19-23. For instance, Avram et 320 

al. curated and trained a model (CathAI) including 11,972 patients, achieving a ROC AUC of 321 

0.839 on an internal test set.19 Most recently, and comparable to our work, Langlais et al. 322 

introduced DeepCoro, developed by the same research group behind CathAI. DeepCoro is a 323 

6-step pipeline that includes primary structure identification, stenosis detection, frame 324 

registration, coronary artery segmentation, alignment of stenosis with segments, and finally, 325 

stenosis regression.23 DeepCoro was developed using 182,418 coronary angiography cine 326 

loops, and it obtained a ROC AUC of 0.829 on stenosis detection, and a MAE of 20.15% on 327 

predicting visual assessment in percentage on an internal test set.  328 
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Compared to our results, DeepCoro achieved a test ROC AUC of 0.8294 (0.8215–0.8373) and 329 

a PR AUC of 0.5239 (0.5041–0.5421), which is significantly lower than our test performances 330 

of ROC AUC of 0.903 (0.900-0.906) and a PR AUC of 0.693 (0.685-0.685). Notably, our 331 

approach involves 2 steps and 3 models, while DeepCoro uses 6 steps and 8 models.23  332 

Notably, the most similar work, i.e., DeepCoro only focused on 11 Segments, instead of 16 333 

segments and excluded patients with prior CABG and PCI.23 Both aspects are highly relevant 334 

for assessing a CAG.2 Moreover, previous work did not evaluate the performance on both 335 

QCA, FFR, nor was the performance assessed on an external test set from another cohort 336 

and hospital. Finally, our methods can run on the fly with a processing speed of 0.03 337 

seconds for a cine loop which is significantly better than DeepCoro with a processing speed 338 

of 62.6 seconds. 339 

Hence, we aimed to address the limitations in existing work, and our models obtain superior 340 

performance, and the approach uses a simpler and faster pipeline. 341 

Comparison against visual assessment 342 

While we obtained the best performance reported in the literature for significant stenosis 343 

detection (ROC AUC of 0.903 and PR AUC of 0.693), we observed a notable performance 344 

drop on the external test set (ROC AUC of 0.833 and PR AUC of 0.219). A similar pattern 345 

emerged when evaluating the model on the "Angina-FFR Subset," where the ROC AUC 346 

decreased to 0.849 and the PR AUC to 0.486. The most significant factor contributing to this 347 

performance decline appears to be the difference in patient characteristics. The external 348 

test set consisted of patients selected based on prescreening with CTA, leading to a higher 349 

proportion of individuals with intermediate stenosis and excluding those with mild stenosis 350 

or multivessel disease, such as patients with STEMI or NSTEMI. 351 
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 352 

Comparison against FFR 353 

For predicting hemodynamically significant stenoses, our model achieved a ROC AUC of 354 

0.651 (95% CI: 0.616-0.686) on the internal test set and 0.780 (95% CI: 0.743-0.817) on the 355 

external test set. The performance of the model was inferior on predicting hemodynamical 356 

significant stenosis using visual assessment achieving a ROC AUC of 0.853 and 0.844 on the 357 

test set and the external test set. However, the reported visual assessments can be 358 

overoptimistic and biased towards FFR measurements, as they are typically reported after 359 

the FFR is measured and are not blinded to the FFR measurement. Another notable finding 360 

is that using QCA to determine hemodynamically significant stenosis from FFR yielded low 361 

performance. While our models demonstrated good performance, there is still room for 362 

improvement for predicting hemodynamically significant stenosis.  363 

Comparison against QCA  364 

For detecting the clinically important threshold of QCA diameter stenosis  >70% on the 365 

external test set, our model achieved a ROC AUC of 0.798 (95% CI: 0.782-0.814). This 366 

performance was consistently better than visual assessment, which obtained a ROC AUC of 367 

0.658 (95% CI: 0.591-0.726), and FFR, which obtained a ROC AUC of 0.575 (95% CI: 0.491-368 

0.552). While there is strong evidence that FFR is optimal for revascularization decisions, 369 

QCA is attractive for research. Our methodology has the potential to be used as a fast and 370 

accurate alternative to traditional QCA.    371 

Limitations 372 
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 373 

Despite the promising results, we acknowledge some limitations in our results. The most 374 

notable limitation is that the stenosis estimation models were trained on patients 375 

undergoing routine coronary angiography, including patients without disease and those 376 

with multivessel disease. As a result, the stenosis estimation models are not guaranteed to 377 

generalize to patient cohorts with other inclusion/exclusion criteria (e.g., patients 378 

undergoing CTA before coronary angiography), which can be seen in the decreased 379 

performance on predicting visual assessment in the external test set and the subset 380 

"Angina-FFR Subset". Secondly, the stenosis estimation models were trained using visual 381 

assessments, as we did not have access to QCA, and FFR measurements which were only 382 

available for borderline stenosis segments and where it was technically feasible to perform 383 

the measurements. 384 

Conclusion 385 

Our approach for stenosis estimation showed promising results, outperforming previous 386 

work on predicting visual assessments. However, a significant performance drop was 387 

observed in the external test cohort, which had suspected stenosis detected by CTA. 388 

Predicting hemodynamically significant stenosis measured by FFR using the stenosis 389 

estimation models did not surpass using visual assessments as predictors, indicating that 390 

improvements in this area are likely needed. Notably, the stenosis estimations were better 391 

at predicting QCA diameter stenosis compared to visual assessments. These results suggest 392 

that our approach for stenosis estimation is clinically relevant, offering a faster and more 393 

objective alternative to traditional methods. Future research should focus on improving the 394 
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models and investigating the effect of the estimated values on the treatment compared 395 

with traditional methods. 396 

Clinical perspectives 397 

A deep learning-based approach can estimate the degree of stenosis directly using cine 398 

loops. The model is the first of its kind to predict stenosis in all 16 coronary artery segments. 399 

The deep learning model demonstrated strong performance in predicting visual assessment 400 

of stenosis, and the model was better than traditional visual assessment in predicting 401 

stenosis measured. The model offers a fast and accurate alternative to QCA.  However, 402 

further improvements are necessary to enhance its ability to determine hemodynamical 403 

significant stenosis. 404 
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