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ABSTRACT

Background: Rich datain cardiovascular diagnostic testing are often sequestered in unstructured
reports, with the necessity of manual abstraction limiting their use in real-time applicationsin
patient care and research.

M ethods: We devel oped a two-step process that sequentially deploys generative and
interpretative large language models (LLMs; LIama2 70b and Llama2 13b). Using a Llama2 70b
model, we generated varying formats of transthoracic echocardiogram (TTE) reports from 3,000
real-world echo reports with paired structured elements, leveraging temporal changesin
reporting formats to define the variations. Subsequently, we fine-tuned Llama2 13b using
sequentially larger batches of generated echo reports as inputs, to extract data from free-text
narratives across 18 clinically relevant echocardiographic fields. Thiswas set up as a prompt-
based supervised training task. We evaluated the fine-tuned LIama2 13b model, HeartDx-LM, on
several distinct echocardiographic datasets. (i) reports across the different time periods and
formats at Yale New Haven Health System (YNHHS), (ii) the Medical Information Mart for
Intensive Care (MIMIC) |11 dataset, and (iii) the MIMIC 1V dataset. We used the accuracy of
extracted fields and Cohen’s Kappa as the metrics and have publicly released the HeartDX-LM
model.

Results: The HeartDX-LM model was trained on randomly selected 2,000 synthetic echo reports
with varying formats and paired structured labels, with awide range of clinical findings. We
identified alower threshold of 500 annotated reports required for fine-tuning Llama2 13b to
achieve stable and consistent performance. At YNHHS, the HeartDx-LM model accurately
extracted 69,144 out of 70,032 values (98.7%) across 18 clinical fields from unstructured reports

in the test set from contemporary records where paired structured data were also available. In
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older echo reports where only unstructured reports were available, the model achieved 87.1%
accuracy againgt expert annotations for the same 18 fields for arandom sample of 100 reports.
Similarly, in expert-annotated external validation sets from MIMIC-IV and MIMIC-I11, HeartDx-
LM correctly extracted 201 out of 220 available values (91.3%) and 615 out of 707 available
values (87.9%), respectively, from 100 randomly chosen and expert annotated echo reports from
each set.

Conclusion: We developed a novel method using paired large and moderate-sized LLMsto
automate the extraction of unstructured echocardiographic reportsinto tabular datasets. Our
approach represents a scalable strategy that transforms unstructured reports into computable

elements that can be leveraged to improve cardiovascular care quality and enable research.
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INTRODUCTION

Electronic health records (EHR) offer invaluable insights into optimizing cardiovascular care and
driving healthcare research.™ In the EHR, data streams that are most amenable to scalable
applicationsinclude those available as structured tabular data. Therefore, despite their critical
role in defining disease conditions, diagnostic testing such asimaging is often available only as
unstructured free-text narratives and remains underutilized in disease phenotyping.* This gap
underscores the pressing need for novel strategies to transform unstructured data into structured
data elements, thus enhancing the impact and scalability of health applications that can leverage
theserich data.

Prior work to transform unstructured into structured data has primarily focused on
extracting isolated data elements,>° with the need to develop pipelines to extract as more data
streams are needed. The emergence of large language models (LLMs) as foundation models for
language processing has demonstrated impressive properties for parsing text with limited
domain-specific development but are limited by the high computational requirements associated
with their deployment.’® On the other hand, the scarcity of annotated unstructured-structured data
limits the development of computationally efficient models. Consequently, thereis acritical
unmet need for novel approaches capable of efficiently transforming clinical notes into tabular
data.

To address this, we propose a domain-specific and computationally efficient approach
leveraging sequentially deployed LLMs, where we use a larger open-source model to generate
synthetic training examples for fine-tuning a smaller model, which enables the development of a
generaizabletool for converting imaging reports to tabular data. We use reports of transthoracic

echocardiograms (TTES) as the use case for this application.
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METHODS
The study was reviewed by the Yale Institutional Review Board, which waived the need for

informed consent, asit represents a secondary analysis of existing data.

Study Overview

We developed and fine-tuned a lightweight language model, HeartDx-LM, to extract clinically
relevant diagnostic information from unstructured TTE reports. We trained the model using
different text structures leveraging temporal variations in the free-text narratives of the reportsto
introduce this variation. The process involved generating synthetic reports using reportsin a
single format where all information was also available as tabular data. These reports were
regenerated into different formats using examples from those formats as promptsto a Llama2 70-
billion-parameter model. These synthetically adapted echo reports were then used to fine-tune a
moderate-sized Llama2 13-billion-parameter model to extract a comprehensive set of
guantitative, semi-quantitative, and qualitative diagnostic information from unstructured clinical

reports (Figure 1).

Data Sources

We used data from the Yale New Haven Health System (YNHHS) EHR, alarge academic health
system catering to a diverse population in New Haven County, one of the most representative
countiesin the US. Since 2016, the free-text imaging reports for TTES have been linked with
structured tabular values for the cardiologist-defined echocardiographic features. The linked

structured dataset consisted of clinical and operational labels, of which we selected 18 based on
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their broad coverage of key conditions. These included g ection fraction (EF), global longitudinal
strain, interventricular septal thickness (1V Sd), aortic valve (AV) and mitral valve (MV)
structure, and qualitative or quantitative features associated with AV and MV

stenosi s/regurgitation, including left ventricular outflow tract (LVOT) peak velocity and peak
gradient, AV peak velocity and mean gradient, AV area by continuity, and AV areaindex. A brief
overview of the datafieldsisincluded in Table 1. This dataset of 10,000 reports paired with
corresponding structured labels was used for model evaluation (test set).

Structurally distinct TTE reports from MIMIC-111 and MIMIC-IV datasets were used for
external validation of our digitization approach."**?> MIMIC-111 comprises deidentified EHR data
from over forty thousand patients with a hospitalization that included an intensive care unit stay
at the Beth Israel Deaconess Medical Center between 2001 and 2012. The data represents broad
EHR fields spanning demographics, laboratory test results, procedures, medications, caregiver
notes, imaging reports, and mortality. MIMIC-1V is an updated version of the MIMIC-I1|
database, which incorporates data up to 2019 and includes hospitalizations with emergency
department visits. The current study leveraged echocardiographic reports from both MIMIC-I11
and MIMIC-1V. Representative examples of various report types from the different sources are

included in Supplemental Table S1.

Mode Development: Overall approach

We designed a two-step approach to convert unstructured TTE reports to structured data
(digitize) using LLMs. All TTE reportsin the Y NHHS dataset post-2016 had corresponding
clinician-annotated tabular data, which provided us with atraining set without the need for

manual annotation. However, reports from before this time (pre-2016) were only availablein a
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free-text format without corresponding tabular data. Moreover, the data had several variationsin
free text reporting across echocardiographers. From arandomly selected 3,000 pre-2016 YNHHS
reports, we observed 5 different reporting formats (Supplemental Table 2). We randomly chose
one report from each unique reporting format to encode this variation in our training Set.

The utilization of Llamafor finetuning, as opposed to alternative LLMs, was driven by
considerations of its parameter efficiency, domain-specific architecture, and applicability to the
medical text processing domain. By prioritizing factors such as model performance, accessibility,
and computational power required to finetune the model, we aimed to optimize the efficiency
and effectiveness of the finetuning process. This aso included the ability to quantize Llama

modelsinto a4-bit configuration for reduction in model size and memory usage.”* ™

Fir st-stage development: Finetuning L lama2 70b

In theinitial phase, we fine-tuned the LIama2 70-billion-parameter LLM to generate TTE reports
from the structured data in the post-2016 reports with syntactical characteristics - including the
five formatting variations - of the pre-2016 reports. We trained the model on a dataset of 3,000
paired examples from the post-2016 dataset to create unstructured data that faithfully represents
the format of pre-2016 reports for subsequent fine-tuning and testing (Prompt template —
Supplemental Table 2).

The task of restructuring reports from post-2016 format to pre-2016 format involved fine-
tuning the pre-trained LIama2-70b model to recognize and replicate the syntactical and structural
elements of various pre-2016 reporting formats. The model was trained on a curated dataset
containing examples of both post-2016 and pre-2016 reports. The dataset was carefully prepared,

ensuring the pre-2016 reports represented multiple versions and styles to comprehensively
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expose the model to various dataformats. The model was fine-tuned over two epochs with a
batch size of 4, using the Adam optimizer with alearning rate of 10. The choice of
hyperparameters, including the learning rate and epochs, was based on commonly adopted
practices for fine-tuning large language models.*®!” The fine-tuning process was monitored in a
validation set, with early stopping of fine-tuning when validation loss did not improve for 5
consecutive evaluation steps to prevent overfitting. This approach was implemented to ensure
that the model generalizes well to unseen data while maintaining high accuracy on the training

Set.

Second-stage development: Finetuning Llama2 13b

After theinitial step, we used the restructured reports created with the Llama2 70-billion-
parameter LLM to train a Llama2 13-billion-parameter LLM. We trained the model on a subset
of 2,000 regenerated TTE reports, each paired with clinician-annotated tabular data. This
approach enabled the model to learn from TTE reports that vary in formats while still being able
to use corresponding clinician-annotated tabular data as the gold standard. This led to our model,
HeartDx-LM, which istailored to extracting structured fields from free-text narratives of TTE
reports across the selected 18 clinical variables without requiring the large computational
infrastructure needed for the 70-billion-parameter model. HeartDx-LM was trained to discern
and extract critical information (Prompt table — Supplemental Table 4). We have made the

model publicly available on HuggingFace at https://huggingface.co/CarDSLab/HeartDX-LM.

We also digitized the TTE reports using a non-finetuned Llama2-13b model (zero-shot

Llama) to compare its performance with its finetuned counterparts.
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Evaluation

We conducted a comprehensive evaluation of the model's performance across four distinct
datasets — post-2016 YHNNS TTE reports (internal held-out test set), pre-2016 Y NHHS reports,
MIMIC-I1I TTE reports, and MIMIC-1V TTE reports.

Firstly, we employed a held-out set comprising 10,000 post-2016 Y NHHS reports
sourced from the YNHHS EHR. These reports were accompanied by their corresponding
structured fields, allowing for direct comparison and assessment of the model's proficiency in
extracting structured data from contemporary clinical narratives.

In addition to the post-2016 Y NHHS dataset, we also examined the model's performance
on 100 pre-2016 Y NHHS reports and 100 reports each from the MIMIC-I11 and MIMIC-IV
datasets. The pre-2016 Y NHHS dataset used for model evaluation were a distinct set from the
one used to develop synthetic examples and had clinical labels manually extracted by three
clinical experts. The TTE reports from MIMIC-111 were obtained from the EchoNotes Structured
Database, which also includes echocardiogram reports from the intensive care unit.®** In the
MIMIC-1V dataset, reports were retrieved from discharge summaries that contained TTE report
summaries. This structured echocardiogram database included key measures of cardiac structure
and function, such as gection fraction (EF), aortic valve (AV) and mitral valve (MV) structure,
and qualitative or quantitative features associated with AV and MV stenosis/regurgitation. The
other structured fields of interest like interventricular septal thickness (IV Sd), left ventricular
outflow tract (LVOT) peak velocity and peak gradient, AV peak velocity and mean gradient, AV
area by continuity, and AV areaindex were derived through manual annotation by three clinical
experts, who collaboratively established an annotation scheme delineating the criteria for

extracting values for each of the 18 clinical variables. Each report was evaluated based on its
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constituent sentences, and the clinicians’ annotations were aggregated to create a gold standard
for evaluating the model's performance. This ensured the accuracy and reliability of the ground
truth.

In addition to evaluating the performance of our fine-tuned models, we also employed the
Llama2-13b mode without fine-tuning as a comparator to assess its capability in extracting
structured data from clinical narratives without prior training on our datasets. This allowed usto
benchmark the performance of our approach against the out-of-box (or zero-shot) performance of

the LIama2-13b modd.

Deter mining Optimal Training Data Volume for Model Fine-tuning

We investigated the impact of training data volume on model performance by fine-tuning
multiple iterations of the Llama2-13b model with progressively increasing numbers of training
reports (100, 200, 500, 1,000, and 2,000). We evaluated the model's performance on the held-out
post-2016 YNHHS dataset for each iteration. This comprehensive evaluation framework aimed
to elucidate the model's capabilities and provide insights into the optimal training data volume
required for achieving robust performance in extracting structured information from diverse
clinical narratives. We used a gtatistical benchmark of 95% accuracy to define robust

performance.

Statistical Analysis
We assessed HeartDx-LM's performance using the accuracy of extracted values for both
continuous and categorical variables. We reported the overall extraction accuracies and

accuracies for individual clinical variables compared against the ground truth annotations.

10
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Extraction accuracy was defined as the percentage of values correctly extracted by the model,
with incorrect and failed extractions rates also reported. Additionally, Cohen's kappa statistic was
used to evaluate the agreement between the model's extractions and the ground truth for both
categorical and continuous variables. Specifically, continuous variables were categorized into
discrete classes for the Kappa analysis. Each continuous variable in the training dataset was
labeled as either 1 for available values or O for missing values. For the digitized dataset, the
continuous variables were |abeled based on their comparison with the original dataset: alabel of
1 for values that were available in both the training and digitized datasets and correctly extracted,
alabel of O for values that were missing in both datasets (correctly identified as missing), alabel
of 2 for values available in the training dataset but extracted incorrectly in the digitized dataset,
and alabel of 3 for values available in the training dataset but missing in the digitized dataset.
We calculated Cohen's Kappa for each continuous variable independently, measuring the
agreement between the original and digitized labels across these four categories. The Kappa
stati stic was computed using the formulax = (P, — P,)/(1 — P,), where P,is the observed
agreement between the two datasets and P, is the expected agreement by chance. For multiclass
Kappa, the observed and expected agreements considered all four categories to provide a
comprehensive measure of agreement. By categorizing the continuous variables and then
applying Cohen's Kappa, we ensured that the agreement between the original and digitized
datasets was evaluated robustly, accounting for both correct and incorrect extractions as well as
missing data.

The Cohen’s Kappa statistic metric accounts for the possibility of agreement occurring by

chance, providing a more robust measure of the mode's reliability.” A kappa value closer to 1

11
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indicates a high level of agreement, while a value closer to 0 suggests agreement is no better than

chance.

RESULTS

Study Population

There were 8,612 unique patients with 10,000 post-2016 Y NHHS reportsin the test set, with a
median age of 73.0 (IQR, 62.0 — 85.0) years, including 5,013 (50.1%) women, 694 (6.9%) non-
Hispanic Blacks, 88 (0.9%) Hispanics, and 52 (0.5%) of Asian race. The range of distribution of

clinical features (across both devel opment and validation cohorts) are provided in Table 1.

Zero-shot model performance

The zero-shot LIama2-13b model generated fragmented, inconsistent, or irrelevant responses,
resulting in incomplete and inaccurate extractions. This resulted in 0% extraction accuracy across
all the 18 clinical variables. An example of zero-shot model prompt and response is shown in

Supplemental Table 5.

Model performancein the held-out test set (post-2016 YNHHS dataset)

The HeartDx-LM model extracted 69,144 out of 70,032 values, yielding an accuracy rate of
98.7% and Cohen’s Kappa value of 0.99. The accuracy rate was cons stent across both
continuous (45712/46387 - 98.5%) and categorical (23432/23645 - 99.1%) variables. The model
incorrectly extracted 480 (0.7%) values and did not extract 408 (0.6%) values. The inaccurate
values were most frequent for EF (97/9143), followed by AV peak velocity (96/8429), LVOT

peak velocity (74/8065), and 1V Sd (48/8449).

12
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Across continuous variables, the accuracy of the model for key clinical variableslike EF,
LVOT peak velocity, and AV peak velocity were 97.3% (8,902/9,143), 98.8% (7,969/8,065), and
98.8% (8,331/8,429), respectively. For key categorical variables of AV structure, AV
regurgitation, MV regurgitation, and LV wall thickness, the accuracies were 98.6%
(1,727/1,752), 99.1% (2,813/2,833), 99.7% (6,440/6,460), and 97.7% (3,938/4,032), respectively

(Table 2).

Mode performancein pre-2016 reports
In the 100 randomly sampled and expert-annotated pre-2016 reports, HeartDx-LM achieved an
overall accuracy rate of 87.1% (extracting 909 out of the 1044 values), and Cohen’s Kappa value
of 0.86 across 18 clinical variables when compared against manually annotated labels. The
model incorrectly extracted 11 (1.1%) values and failed to extract 124 (11.9%) values. The
inaccurate values were most frequent for AV mean gradient (3/67), followed by MV structure
(3/92), MV stenosis (2/25), MV regurgitation (1/93) and LV diastolic function (1/78).
HeartDx-LM maintained a high accuracy across both continuous (407/454 - 89.6%) and
categorical (502/590 - 85.1%) variables. Accuracy of the model across key continuous variables,
of EF, LVOT peak velocity, and AV peak velocity were 90.5% (86/95), 86.2% (50/58), and
92.2% (83/90), respectively. For key categorical variables of AV structure, AV regurgitation, MV
regurgitation, and LV wall thickness, the accuracies were 83.2% (79/95), 95.2% (79/83), 93.5%

(87/93), and 56.9% (33/58), respectively (Table 3).

External Validation: Model performancein MIMIC-111 and MIMIC-1V TTE Reports

13
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In 100 TTE reports from the MIMIC-111 dataset, HeartDx-LM also demonstrated high accuracy
in extracting structured clinical data. The model successfully extracted 615 out of 707 available
values correctly, achieving an overall accuracy rate of 86.9% and Cohen’s Kappa of 0.90. This
included an accuracy of 72.4% for continuous variables (113/156) and 91.1% for categorical
variables (502/551).

There were 12 (1.7%) values inaccurately extracted and 80 (11.3%) failed extractions,
mainly in the qualitative labels. The inaccurate values were most frequent for AV structure
(4/95), followed by AV regurgitation (2/91), AV stenosis (2/61), and MV regurgitation (1/93).
The model failed to extract 80 (11.3%) values in the reports across all 18 variables. Externa
validation inthe MIMIC |11 dataset also demonstrated high accuracy, with the model achieving
over 90% accuracy for key continuous and categorical clinical variables (e.g. EF: 97.8% [90/92],
AV structure: 94.7% [90/95], MV regurgitation: 97.8% [88/90], and LV wall thickness. 92.7%
[76/82]; Table 4).

In the MIMIC-1V dataset, the model successfully extracted 201 out of 220 available
values, achieving an overall accuracy rate of 91.3% and Cohen’s Kappa value of 0.95. This
included an accuracy of 97.8% (44/45) for continuous variables and 89.7% (157/175) for
categorical variables. The model extracted 2 (0.9%) incorrect values, 1 out of 45 values of EF
and 1 out of 42 values MV regurgitation. Additionally, the model failed to extract 17 (7.7%)
values present in the reports across the 18 variables. Values of accuracy for specific labels can be
found in Table 5. The performance of HeartDX-LM across all 4 datasets is summarized in

Figure 3.

Data Volume for Mode Fine-tuning
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In our evaluation of the data threshold necessary for model development, we analyzed the
accuracy of our models as a function of progressively larger number of reports used for fine-
tuning. The LIama2-13b models finetuned using 100 and 200 reports had accuracies of 13.5%
and 85.7%, respectively. The accuracies increased to 97.8%, 98.2%, and 98.8 with the use of
500, 1000, and 2000 TTE reports, respectively (Figure 2). A minimum of 500 reports were
necessary to achieve our pre-specified accuracy benchmark of 95%, with accuracy plateauing

beyond this point.

DISCUSSION
We developed and validated HeartDx-LM, an innovative strategy to extract structured clinical
data from unstructured clinical reports. This nove strategy leverages the output of an LLM to
train a smaller, lightweight model, eliminating the need for high computational capacity in the
final deployment. HeartDx-LM demonstrated robust performance in digitizing TTE reports
across varying reporting formats from geographically and temporally distinct data sources and
was able to successfully extract qualitative and quantitative clinical labels with high accuracy.
The modéd's adaptability and extensibility enable its potential deployment in diverse and low-
resource clinical settings and applicability to other diagnostic reports. Furthermore, our research
determined the minimum threshold for the number of TTE reports required for fine-tuning
models for optimally balanced accuracy and computational resources, providing valuable
guidance for future model development.

Prior models to digitize TTE reports predominantly relied on rule-based or keyword-
based NLP models.??® For example, early studies have used specific keywords and predefined

rules to analyze echocardiography and radiology reports without considering variationsin
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reporting formats and dynamic changes in clinical parameters.®*® Moreover, these methods
predominantly focus on extracting afew specific clinical labels, such aslow EF, and often fail to
capture the full spectrum of clinically relevant labels needed for broader applications, healthcare
decision-making, and planning.?’

In contrast, HeartDx-LM, was engineered to extract multiple qualitative and quantitative
clinical labels. This comprehens ve extraction capability enhances the model's utility in clinical
practice asit can be scaled to similar domains, where diagnostic information is captured in
unstructured reports. Thisinnovative two-step approach to digitizing entire reportsisan
aternative for generating training sets for smaller LLMs, reducing the need for extensive manual
annotation and the reliance on high computational power. Since most TTE reports are stored as
unstructured text, this approach can significantly expand our dataset for new model training, and
enable access to diverse settings, including those with limited technological infrastructure, with
potential use for cross-setting electronic clinical quality measures. 22!

Our study has limitations that deserve consideration. Notably, the performance of our
models showed variability across different clinical fields, especially when certain domain-
specific terms were reported differently across different datasets. Nonetheless, the overall and
field-wise performance was acceptable across all external sites. Additionally, the computational
resources required for finetuning LLMs may pose practical constraintsin real-world healthcare
settings. However, the deployment of the lightweight finetuned model, that we have also publicly
released on HuggingFace, does not require intensive computational resources and can be used for
transformation of unstructured reports into tabular datasets. Finally, while our study underscores
the potential in using LLMs for the automated extraction of structured clinical information from

unstructured narratives in EHR, future research should prioritize enhancing the interpretability of

16


https://doi.org/10.1101/2024.10.08.24315035
http://creativecommons.org/licenses/by-nc-nd/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2024.10.08.24315035; this version posted October 8, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY-NC-ND 4.0 International license .

LLM-based models. This can be achieved by delving into the contextual anaysis of clinical
notes and refining the model's ability to discern subtle nuances in medical language to further

optimize the performance and generalizability of LLM-based approaches.

CONCLUSION

We developed a novel method using paired large and moderate-sized LLMs to automate the
extraction of unstructured echocardiographic reports into tabular datasets. Our approach
represents a scalable strategy that transforms unstructured reports into computable elements that

can be leveraged to improve cardiovascular care quality and enable research.
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FIGURES

Figure 1: Model Development Approach and Study Design.

_I_

Generation of
Finetuning Examples

_|_

Post-2016 Post-2016 Pre-2016 Post-2016 reports
reports structured report examples Liamaz 70 in pre-2016 style
(3000) data (3000 rows) (5) (3000)
-T1]
£ =
: ., i
&
_g Post-2016 reports Post-2016 Llama2 13b HeartDx-LM
[<] in pre-2016 style structured data
= (2000) (2000 rows)
c e e e e e e s e e e e e . 1.YNHHS post-2016 structured
2 *1.YNHHS post-2016 TTE reports - : data (10,000 rows) :
8 : (10,000) : 2.YNHHS pre-2016 structured ~ :
= :2.YNHHS pre-2016 TTE reports - @ : data (100 rows) !
& : (100) : > T P 3 MIMIC-III TTE structured data
E : 3.MIMIC-11I TTE reports (100) . : (100 rows) :
o :4. MIMIC-IV TTE reports (100)  : HeartDx-LM : 4. MIMIC-IV structured data (100 :
= b iussmssmsmssmmmmmmsmsm e e nan ' : rows) :

Abbreviations. YNHHS, Yale New Haven Health System; MIMIC, Medical Information Mart for

Intensive Care

22


https://doi.org/10.1101/2024.10.08.24315035
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure 2. Perfor mance of models fine-tuned with varying number of paired unstructured reportsand structured tablesfor

tabulation of clinical variablesfrom unstructured reports.
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Figure 3. Accuracy of HeartDX-LM for Label Extraction Acrossthe Four Datasets.
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TABLES

Table 1: Data Summarization of thetrain, test, and validation datasets

Clinical Domain Data Type YNHHS post-2016 YNHHS pre-2016 MIMIC-I11 MIMIC-IV
dataset dataset dataset dataset
Data Median Data Media Data Media Data Media
Available | [IQR]/% | Availabl n Availabl n Availabl n
e [IQR]/ e [IQR]/ e [IQR]/
% % %
Aortic Insufficiency | Continuous | 1,200/10,000 | 508.00 0/100 - 0/100 - 0/100 -
Pressure Half-Time [417.00,
(AIPHT) 611.00]
Aortic Valve Area | Continuous | 1,032/10,000 | 1.42[0.95, | 13/100 2.50 7/100 2.10 0/100 -
Calculated by 1.83] [1.45, [1.73,
Vel ocity Time 3.1] 2.55]
Integral
Aortic ValveArea | Continuous | 27/10,000 0.58[0.44, | 14/100 0.8 0/100 - 0/100 -
Index 0.86] [0.42,
1.6]
Aortic Valve Mean | Continuous | 1,278/10,000 | 12.00 67/100 14.00 3/100 17.00 0/100 -
Gradient [8.00, [10.00, [14.50,
22.00] 27.00] 19.50]
Aortic Valve Peak | Continuous | 8,429/10,000 | 1.44[1.22, | 90/100 15 0/100 - 0/100 -
Velocity 1.77] [1.2,
1.9]
Ejection Fraction Continuous | 9,143/10,000 | 61.00 95/100 62.00 | 92/100 55.00 | 45/100 58.00
[53.00, [60.00, [50.00, [50.00,
66.00] 65.00] 60.00] 63.00]
Global Continuous | 384/10,000 | -17.0[- 0/100 - 0/100 - 0/100 -
Longitudinal Strain 19.0, -
(GLS%) 15.0]
Interventricular Continuous | 8,449/10,000 | 0.98[0.86, | 97/100 1.0 1/100 10[-] |0/100 -
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Septum Thickness 1.13] [0.80,
(IVSd) 1.20]
Left Ventricular Continuous | 7,940/10,000 | 4.00[3.00, |20/100 3.69 53/100 53% 0/100 -
Outflow Tract Peak | in YNHHS 6.00] [2.67,
Gradient reports and 6.38]
Categorical
in MIMIC-
Il reports
Left Ventricular Continuous | 8,065/10,000 | 1.02[0.87, | 58/100 1.00 0/100 - 0/100 -
Outflow Tract Peak 1.18] [0.50,
Velocity 1.30]
Aortic Valve Categorical
Structure
Normal 1,607/10,000 | 16.07% 39/100 39% 39/100 39% 20 20%
Bicuspid 64/10,000 0.64% 12/100 12% - - - -
Tricuspid 81/10,000 0.81% 28/100 28% - - - -
Mildly - - - - 45/100 45% 3 3%
Thickened
Moderately - - - - 7/100 7% 1 1%
Thickened
Severely - - - - 4/100 4% 1 1%
Thickened
Aortic Valve Categorical
Stenosis
No - - 31/100 31% 40/100 40% 19 19%
Mild 238/10,000 | 2.38% 15/100 15% 8/100 8% 5 5%
Mild-Mod 18/10,000 0.18% 1/100 1% 4/100 4% - -
Moderate 67/10,000 0.67% 5/100 5% 3/100 3% - -
Mod-Sev 42/10,000 0.42% 3/100 3% 1/100 1% - -
Severe 187/10,000 | 1.87% 11/100 11% 5/100 5% - -
Aortic Valve Categorical
Regur gitation
No - - - - 57/100 57% 19 19%
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Mild 1,630/10,000 | 16.30% 37/100 37% 14/100 14% 9 9%
Trace 786/10,000 | 7.86% 12/100 12% 13/100 13% 5 5%
Mild-Mod 209/10,000 | 2.09% 8/100 8% 3/100 3% - -
Moderate 177/10,000 | 1.77% 14/100 14% 1/100 1% 1 1%
Mod-Sev 17/10,000 0.17% 12/100 12% 2/100 2% - -
Severe 14/10,000 0.14% - - 1/100 1% - -

Mitral Valve Categorical

Structure
Normal 1,180/10,000 | 11.80% 59/100 59% 19/100 19% 19 19%
Thickened 355/10,000 | 3.55% 33/100 33% 62/100 62% 10 10%
Myxomatous 83/10,000 0.83% - - - - - -
Tethered 27/10,000 0.27% - - - - - -
Rheumatic 11/10,000 0.11% - - - - - -
Not Well Seen - - - - 6/100 6% 3 3%

Mitral Valve Categorical

Stenosis
No - - - - 13/100 13% - -
Mild 169/10,000 | 1.69% 19/100 19% 4/100 4% 2 2%
Moderate 31/10,000 0.31% 3/100 3% 1/100 1% 1 1%
Trace 18/10,000 0.18% 1/100 1% 1/100 1% - -
Severe 13/10,000 0.13% 2/100 2% - - - -
Mild- Mod 5/10,000 0.05% - - 2/100 2% - -
Mod- Sev 4/10,000 0.04% - - - - - -

Mitral Valve Categorical

Regurgitation
No - - - - 19/100 19% 14 14%
Mild 3,079/10,000 | 30.79% 55/100 55% 20/100 20% 13 13%
Trace (Trivial) 2,110/10,000 | 21.10% 16/100 16% 32/100 32% 8 8%
Moderate 551/10,000 | 5.51% 5/100 5% 9/100 9% 5 5%
Mild-Mod 380/10,000 | 3.80% 2/100 2% 7/100 7% 1 1%
Mod-Sev 173/10,000 | 1.73% 1/100 1% - - - -
Severe 157/10,000 | 1.57% 3/100 3% 2/100 2% 2 2%
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Trace 10/10,000 0.10% 11/100 11% 1/100 1% -
L eft Ventricular Categorical
Diastolic Function
Mild 3,147/10,000 | 31.47% 11/100 11% 4/100 4% 3%
Normal 2,032/10,000 | 20.32% 57/100 57% 17/100 17% 1%
Moderate 821/10,000 8.21% 9/100 9% 2/100 2% -
Severe 121/10,000 1.21% 1/100 1% 1/100 1% -
L eft Ventricular Categorical
Wall Thickness
Mildly Increased 2,349/10,000 | 23.49% 33/100 33% 37/100 37% 9%
Normal 1,314/10,000 | 13.14% 18/100 18% 44/100 44% 1%
Moderately 303/10,000 3.03% 6/100 6% 1/100 1% -
Increased
Severely 58/10,000 0.58% 1/100 1% - - -
Increased
Decreased 8/10,000 0.08% - - - - -
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Table 2: Modd Performance Evaluation of HeartDX-LM on the held-out test set.

Metrics Available Correct: Incorrect: Failed: Cohen’s
Values N (%) N (%) N (%) Kappa
(Extracted (Extracted (Value not
Column value matches value differs extracted)
original value) from original
value)
All variables 70,032 69,144 (98.7) 480 (0.7) 408 (0.6) 0.99
AIPHT 1,200 1,173 (98) 0(0) 27 (2 0.98
AVA Cont VTI 1,032 981 (95.3) 0(0) 51 (4.7) 0.97
AVA Index 27 27 (100) 0(0) 0(0) 1.0
AV Mn Grad 1,728 1,680 (97.2) 25(1.4) 23(1.9) 0.98
AV Pk Vel 8,429 8,331 (98.8) 96 (1.1) 2(0.3) 0.96
Ejection Fraction 9,143 8,902 (97.3) 97 (1.1) 144 (1.6) 0.87
GLS% 384 383 (99.7) 0(0) 1(0.9) 0.99
IVSd 8,449 8,401 (99.4) 48 (0.6) 0(0) 0.98
LVOT Pk Grad 7,940 7,868 (99.1) 43 (0.6) 29 (0.3) 0.98
LVOT Pk Ve 8,065 7,969 (98.8) 74 (0.9 22 (0.3) 0.97
AV Structure 1,752 1,727 (98.6) 25 (1.7) 0 (0) 0.99
AV Stenosis 552 552 (100) 0(0) 0(0) 1.0
AV Regurgitation 2,833 2,813(99.1) 0(0) 20 (0.9) 0.99
MYV Structure 1,656 1,656 (100) 0(0) 0 (0) 1.0
MV Stenosis 240 240 (100) 0(0) 0(0) 1.0
MV Regurgitation 6,460 6,440 (99.7) 0(0) 20(0.3) 0.99
LV Diastolic Function | 6,121 6,074 (99.2) 47 (0.8) 0 (0) 0.99
LV Wall Thickness 4,032 3,938 (97.7) 25 (0.6) 69 (1.7) 0.98

Abbreviations: AVA Cont VTI, Aortic Valve Area Calculated by Velocity Time Integral ; AVA Index,
Aortic Valve Area Index; AV Mn Grad, Aortic Valve Mean Gradient; AIPHT, Aortic Insufficiency
Pressure Half-Time; AV Pk Vel, Aortic Valve Peak Vel ocity; AV Regurgitation, Aortic Valve
Regurgitation; AV Stenosis, Aortic Valve Stenosis; AV Structure, Aortic Valve Structure; GLS, Global
Longitudina Strain; 1V Sd, Interventricular Septum Thickness; ; LV Diastolic Function, Left Ventricular
Diastolic Function; LVOT Pk Grad, Left Ventricular Outflow Tract Peak Gradient; LVOT Pk Vel, Left
Ventricular Outflow Tract Peak Velocity; LV Wall Thickness, Left Ventricular Wall Thickness, MV
Regurgitation, Mitral Valve Regurgitation; MV Stenosis, Mitral Vave Stenosis;, MV Structure, Mitral

Valve Structure.
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Table 3: Model Performance Evaluation of HeartDX-LM on Pre-2016 Reports.

Metrics Available Correct: Incorrect: Failed: Cohen’s
Values N (%) N (%) N (%) Kappa
(Extracted (Extracted (Value not
Column value matches value differs extracted)
original value) from original
value)

All variables 1044 909 (87.1) 11 (1.1) 124 (11.9) 0.86
AIPHT 0 - - - -

AVA Cont VTI 13 10 (76.9) 0(0) 3(23.1) 0.87
AVA Index 14 12 (85.7) 0(0) 2(14.3) 0.92
AV Mn Grad 67 59 (88) 3(4.9 5 (74.6) 0.84
AV Pk Ve 90 83(92.2) 1(1.2) 6 (6.6) 0.71
Ejection Fraction 95 86 (90.5) 0(0) 9 (9.5 0.50
GLS% 0 - - - -

IV 97 90 (92.8) 0(0) 7(7.2) 0.44
LVOT Pk Grad 20 17 (85) 0(0) 3(15) 0.91
LVOT Pk Ve 58 50 (86.2) 0(0) 8(13.8) 0.85
AV Structure 95 79(83.2) 0(0) 16 (16.8) 0.35
AV Stenosis 66 56 (84.8) 0(0) 10 (15.2) 0.81
AV Regurgitation 83 79 (95.2) 0(0) 4(4.8) 0.87
MYV Structure 92 80 (86.9) 3(3.2 9(9.8) 0.53
MV Stenosis 25 22 (88) 2(8) 1(4) 0.92
MV Regurgitation 93 87 (93.5) 111 5(5.4) 0.67
LV Diastolic Function | 78 66 (84.6) 1(1.3) 11 (14.1) 0.72
LV Wall Thickness 58 33 (56.9) 0(0) 25 (43.1) 0.60

Abbreviations. AVA Cont VTI, Aortic Valve Area Calculated by Velocity Time Integral ; AVA Index,
Aortic Valve Area Index; AV Mn Grad, Aortic Valve Mean Gradient; AIPHT, Aortic Insufficiency
Pressure Half-Time; AV Pk Vel, Aortic Valve Peak Vel ocity; AV Regurgitation, Aortic Valve
Regurgitation; AV Stenosis, Aortic Valve Stenosis; AV Structure, Aortic Valve Structure; GLS, Global
Longitudina Strain; IV Sd, Interventricular Septum Thickness; ; LV Diastalic Function, Left Ventricular
Diastolic Function; LVOT Pk Grad, Left Ventricular Outflow Tract Peak Gradient; LVOT Pk Ve, Left
Ventricular Outflow Tract Peak Velocity; LV Wall Thickness, Left Ventricular Wall Thickness;, MV
Regurgitation, Mitral Valve Regurgitation; MV Stenosis, Mitral Valve Stenosis, MV Structure, Mitral
Valve Structure.
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Table 4: Mode Performance Evaluation of HeartDX-LM on MIMIC-111 TTE Reports.

Metrics Available Correct: Incorrect: Failed: Cohen’s
Values N (%) N (%) N (%) Kappa
(Extracted (Extracted (Value not
Column value matches value differs extracted)
original value) from original
value)
All variables 707 615 (86.9) 12 (1.7) 80 (11.3) 0.90
AIPHT 0 - - - -
AVA Cont VTI 7 0(0) 0(0) 7 (100) 0.48
AVA Index 0 - - - -
AV Mn Grad 3 3(100) 0(0) 0(0) 1.0
AV Pk Vel 0 - - - -
Ejection Fraction 92 90 (97.8) 0(Q) 2(2.2) 0.88
GLS% 0 - - -
IVSd 1 1 (100) 0(0) 0(0) 1.0
LVOT Pk Grad 53 19 (35.8) 0(0) 34 (64.2) 0.50
LVOT Pk Ve 0 - - - -
AV Structure 95 90 (94.7) 4(4.2) 1(1.7) 0.65
AV Stenosis 61 51 (83.6) 2(3.39 8(13.1) 0.81
AV Regurgitation 91 81 (89) 2(2.2) 8(8.9) 0.61
MV Structure 87 85 (97.7) 2(2.9 0(0) 0.92
MV Stenosis 21 13 (61.9) 0(0) 8(38.1) 0.77
MV Regurgitation 90 88 (97.8) 0(0) 2(2.2) 0.90
LV Diastolic Function | 24 18 (75) 2(8.3) 4(16.7) 0.84
LV Wall Thickness 82 76 (92.7) 0(0) 6(7.3) 0.83

Abbreviations. AVA Cont VTI, Aortic Valve Area Calculated by Velocity Time Integral ; AVA Index,
Aortic Valve Area Index; AV Mn Grad, Aortic Valve Mean Gradient; AIPHT, Aortic Insufficiency
Pressure Half-Time; AV Pk Vel, Aortic Valve Peak Vel ocity; AV Regurgitation, Aortic Valve
Regurgitation; AV Stenosis, Aortic Valve Stenosis; AV Structure, Aortic Valve Structure; GLS, Global
Longitudina Strain; IV Sd, Interventricular Septum Thickness; ; LV Diastalic Function, Left Ventricular
Diastolic Function; LVOT Pk Grad, Left Ventricular Outflow Tract Peak Gradient; LVOT Pk Ve, Left
Ventricular Outflow Tract Peak Velocity; LV Wall Thickness, Left Ventricular Wall Thickness;, MV
Regurgitation, Mitral Valve Regurgitation; MV Stenosis, Mitral Valve Stenosis, MV Structure, Mitral
Valve Structure.
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Table5: Modd Performance Evaluation of HeartDX-LM on MIMIC-IV Reports.

It is made available under a CC-BY-NC-ND 4.0 International license .

Metrics Available Correct: Incorrect: Failed: Cohen’s
Values N (%) N (%) N (%) Kappa
(Extracted (Extracted (Value not
Column value matches value differs extracted)
original value) from original
value)

All variables 220 201 (91.3) 2(0.9) 17 (7.7) 0.95
AIPHT 0 - - - -
AVA Cont VTI 0 - - - -
AVA Index 0 - - - -
AV Mn Grad 0 - - - -
AV Pk Ve 0 - - - -
Ejection Fraction 45 44 (97.8) 1(2.2) 0(0) 0.98
GLS% 0 - - - -
IV 0 - - - -
LVOT Pk Grad 0 - - - -
LVOT Pk Ve 0 - - - -
AV Structure 25 22 (88) 0(0) 3(12) 0.92
AV Stenosis 24 23 (95.8) 0(0) 1(4.2) 0.97
AV Regurgitation 34 33(97) 0(0) 13 0.98
MV Structure 32 27 (84.4) 0(0) 5(15.6) 0.89
MV Stenosis 3 2(66.7) 0(0) 1(33.3) 0.83
MV Regurgitation 43 38 (88.4) 111 4(9.3) 0.90
LV Diastolic Function | 4 4 (100) 0(0) 0(0) 10
LV Wall Thickness 10 8 (80) 0(0) 2 (20) 0.89

Abbreviations. AVA Cont VTI, Aortic Valve Area Calculated by Velocity Time Integral ; AVA Index,
Aortic Valve Area Index; AV Mn Grad, Aortic Valve Mean Gradient; AIPHT, Aortic Insufficiency
Pressure Half-Time; AV Pk Vel, Aortic Valve Peak Vel ocity; AV Regurgitation, Aortic Valve
Regurgitation; AV Stenosis, Aortic Valve Stenosis; AV Structure, Aortic Valve Structure; GLS, Global
Longitudina Strain; IV Sd, Interventricular Septum Thickness; ; LV Diastalic Function, Left Ventricular
Diastolic Function; LVOT Pk Grad, Left Ventricular Outflow Tract Peak Gradient; LVOT Pk Ve, Left
Ventricular Outflow Tract Peak Velocity; LV Wall Thickness, Left Ventricular Wall Thickness;, MV
Regurgitation, Mitral Valve Regurgitation; MV Stenosis, Mitral Valve Stenosis, MV Structure, Mitral

Valve Structure.
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