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 2 

Abstract 33 

 34 

INTRODUCTION: Neuropsychiatric symptoms are common in people with Alzheimer’s disease (AD) 35 

across all severity stages. Their heterogeneous presentaOon and variable temporal associaOon with 36 

cogniOve decline suggest shared and disOnct biological mechanisms. We hypothesized that specific 37 

pa@erns of gene expression associate with disOnct NIMH Research Domain Criteria (RDoC) domains in 38 

AD. 39 

METHODS: Post-mortem bulk RNAseq on the insula and anterior cingulate cortex from 60 brain donors 40 

represenOng the spectrum of canonical AD neuropathology combined with natural language processing 41 

approaches based on the RDoC Clinical Domains.  42 

RESULTS: DisOnct sets of >100 genes (pFDR<0.05) were specifically associated with at least one clinical 43 

domain (CogniOve, Social, NegaOve, PosiOve, Arousal). In addiOon, dysregulaOon of immune response 44 

pathways was shared across domains and brain regions. 45 

DISCUSSION: Our findings provide evidence for disOnct transcripOonal profiles associated with RDoC 46 

domains suggesOng that each dimension is characterized by specific sets of genes providing insight into 47 

the underlying mechanisms. 48 

 49 

 50 
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 3 

Introduc7on 65 

 66 

Alzheimer's disease (AD) is a progressive neurodegeneraOve disorder resulOng in demenOa. While 67 

advanced stages of AD are characterized by severe cogniOve impairment, varying degrees of 68 

neuropsychiatric symptoms (NPS) including depression, agitaOon, aggression, and apathy can be present 69 

across the enOre spectrum of AD1,2. NPS can lead to accelerated disease progression, increased caregiver 70 

burden, and earlier death. Treatment of these symptoms with medicaOons used for non-71 

neurodegeneraOve psychiatric disorders is based on the largely unchallenged assumpOon that their 72 

biological underpinnings are equivalent. The clinical diagnosis of AD is based on a combinaOon of clinical 73 

and pathological measurements, either biomarkers in cerebrospinal fluid (CSF) or PET imaging of 74 

Amyloid-β or TAU deposiOon. Neuropathologically, AD is characterized by extracellular plaques of 75 

misfolded β-amyloid (Aβ) aggregates and intracellular neurofibrillary tangles (NFT) formed by paired 76 

helical filaments of hyperphosphorylated tau protein3. While deposiOon of Aβ and NFT are considered 77 

neuropathological hallmarks of AD4, studies on transcripOonal changes in AD using post-mortem brain 78 

Ossue suggest the dysregulaOon of mulOple cellular pathways including synapOc dysfuncOon, gliosis, 79 

demyelinaOon, and inflammaOon leading to neuronal loss5-9.  Bridging between canonical and molecular 80 

changes on one side and symptoms on the other is parOcularly challenging, even more so in the context 81 

of clinical, geneOc, and neuropathological heterogeneity among persons with AD10.  82 

 83 

Most large-scale transcripOonal studies focus on extensively studied brain regions such as hippocampus, 84 

anterior cingulate cortex (BA32/BA33) and prefrontal cortex (BA9, BA10, BA46)6-9,11,12. In contrast, the 85 

insula, which is located deep within the lateral sulcus that separates the temporal from the parietal and 86 

frontal lobes, remains largely understudied. It has been tradiOonally viewed as a paralimbic or limbic 87 

integraOon cortex integraOng visceral informaOon13,14. Recently, imaging studies have sparked 88 

considerable interest in invesOgaOng the role of the insular cortex in the context of emoOon, pain, 89 

decision making, motor control, and social funcOons15. The insular cortex is connected to a wide variety 90 

of brain regions including the frontal, anterior cingulate and parietal cortex, limbic areas such as the 91 

amygdala, hypothalamus, and entorhinal cortex, and to sensorimotor brain regions16,17. The central role 92 

of the insular cortex in relevant circuits is supported by several neuroimaging studies suggesOng its 93 

involvement in AD and AD-related NPS18-21. However, transcriptomic studies invesOgaOng molecular 94 

mechanisms underlying pathological alteraOons of the insular cortex in AD remain scarce.   95 

 96 
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To date, most transcriptomic studies focus on the comparison between normaOve individuals and people 97 

with either early- or late-onset AD5,8,12. Single-nucleus RNAseq studies have provided significant insight 98 

into AD pathology by revealing disOnct gene expression pa@erns in mulOple cell types22,23. Although very 99 

informaOve, categorical diagnosis comparison designs may not be well suited to account for 100 

interindividual heterogeneity in symptom presentaOon, parOcularly regarding comorbid NPS. To 101 

overcome these limitaOons, we previously applied a natural language processing (NLP) algorithm to post-102 

mortem medical records of donors with and without AD to provide dimensional phenotyping within the 103 

context of the NIMH Research Domain Criteria (RDoC)24. RDoC is a mulOdimensional framework 104 

composed of different neuropsychiatric domains capturing a spectrum of symptoms rooted in brain 105 

circuits and biology25-27.  106 

 107 

In this study, we performed an RNAseq analysis in the anterior Insula (aINS; BA16) and dorsal anterior 108 

cingulate cortex (dACG; BA32), focusing on a dimensional approach based on the NIMH RDoC domain 109 

matrix including NegaOve Valence Systems, PosiOve Valence Systems, CogniOve Systems, Social 110 

Processes, and Arousal and Regulatory Systems. Using a generalized linear regression model, we show 111 

that transcriptomic changes associated with dimensional RDoC clinical domain scores provide a deeper 112 

and more nuanced insight into the underlying molecular correlates of dimensional symptoms 113 

presentaOon in AD. Importantly, our results suggest common and disOnct molecular mechanisms across 114 

RDoC domains and brain regions.  115 

 116 

Methods 117 

 118 

Experimental Subjects and Tissue Preparation 119 

All tissue samples and medical records were obtained from the Harvard Brain Tissue Resource Center 120 

(HBTRC; operating under the MGB McLean Institutional Review Board (IRB)).  The subject cohort (n=60) 121 

available for this study included brain donors representing the full spectrum of Braak & Braak 122 

neuropathological stages, thus representing the neuropathological AD progression from Braak and Braak 123 

stages 0 to II (unaffected controls) to Braak and Braak stages III and IV (mild to moderate AD pathology) 124 

and Braak and Braak stages V and VI (severe AD pathology)28.  Only donors with sufficient medical 125 

records and a life diagnosis by a qualified clinician were included. Donors with significant psychiatric 126 
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conditions diagnosed during adolescence, early- or mid-adulthood were not included. Similarly, we 127 

excluded donors with non-AD neurological diagnoses.  128 

Medical records in hard copies were scanned into computer-readable text files using optical character 129 

recognition. Text files were processed using RDoC-based NLP algorithms to obtain quantitative 130 

measures of clinical domain scores, as described by McCoy et al24 (https://github.com/thmccoy/CQH-131 

Dimensional-Phenotyper). Access to donors’ medical records and other sensitive data was restricted to 132 

IRB-authorized investigators; all other investigators contributing to this study were given access to de-133 

identified data, according to the Health Insurance Portability and Accountability Act (HIPAA) regulations. 134 

Detailed metadata information for each sample is given in Supplementary Data 1. A summary of the 135 

cohort subject basic data by RNA-seq batch is included in Supplementary Data 2 and individual scores in 136 

each domain is given in Supplementary Data 3. 137 

The dACG (BA32) and the aINS (BA16) were isolated from flash-frozen human post-mortem brain tissue 138 

samples. Tissue blocks were sectioned using a cryostat and 5 x 40µm sections (approximately 20 mg) 139 

were collected for RNA extraction using Absolutely RNA Miniprep Kit (Agilent, Lexington, MA) according 140 

to the manufacturer’s protocol. Briefly, 400µl lysis buffer, including 2.8µl b-mercaptoethanol were 141 

added to the tissue and homogenized. 400µl 70% ethanol was added to the tissue homogenate and 142 

vortexed for 5 seconds. 400µl homogenate was transferred to an RNA Binding Spin Cup and centrifuges 143 

for 60 seconds at 16,000 x g and repeated once. The column was washed once with 600µl Low-Salt 144 

Wash Buffer and centrifuged at max speed to dry, followed by a 15-minute DNase I digestion at room 145 

temperature. Next, the column was washed with 600µl High-Salt Wash Buffer, 600µl Low-Salt Wash 146 

Buffer, and 300µl Low-Salt Wash Buffer, each step followed by 60 seconds centrifugation at max. speed. 147 

Lastly, 40µl Elution Buffer was added on the matrix and incubated for 120 seconds followed by 148 

centrifugation at maximum speed for 60 seconds. 149 

RNA-Seq library prepara=on and sequencing 150 

RNA library preparaOon and sequencing were conducted at Azenta Life Sciences (South Plainfield, NJ, 151 

USA). Briefly, RNA samples were quanOfied using Qubit 2.0 Fluorometer (ThermoFisher ScienOfic, 152 

Waltham, MA, USA) and RNA integrity was checked with 4200 TapeStaOon (Agilent Technologies, Palo 153 

Alto, CA, USA). RNA samples were treated with TURBO DNase (Thermo Fisher ScienOfic, Waltham, MA, 154 

USA) to remove DNA following manufacturer’s protocol. rRNA depleOon sequencing libraries were 155 
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prepared by using QIAGEN Fastselect HMR. RNA sequencing library preparaOon uses NEBNext Ultra II 156 

RNA Library PreparaOon Kit for Illumina by following the manufacturer’s recommendaOons (NEB, 157 

Ipswich, MA, USA). Briefly, enriched RNAs were fragmented for 15 minutes at 94 °C. First strand and 158 

second strand cDNA were subsequently synthesized. cDNA fragments were end repaired and adenylated 159 

at 3’ends, and universal adapters are ligated to cDNA fragments, followed by index addiOon and library 160 

enrichment with limited cycle PCR. Sequencing libraries were validated using the Agilent TapestaOon 161 

4200 (Agilent Technologies, Palo Alto, CA, USA), and quanOfied using Qubit 2.0 Fluorometer 162 

(ThermoFisher ScienOfic, Waltham, MA, USA) as well as by quanOtaOve PCR (KAPA Biosystems, 163 

Wilmington, MA, USA). Sequencing libraries were mulOplexed and clustered onto a flow-cell. Auer 164 

clustering, the flow-cell was loaded onto the Illumina Novaseq instrument according to manufacturer’s 165 

instrucOons. The samples were sequenced using a 2x150bp Paired End (PE) configuraOon. Image analysis 166 

and base calling were conducted by the Control Souware. Raw sequence data (.bcl files) generated from 167 

Illumina was converted into fastq files and de-mulOplexed using Illumina bcl2fastq 2.20 souware. One 168 

mismatch was allowed for index sequence idenOficaOon. 169 

 170 

Processing of RNA-seq data 171 

RNA-seq data was processed and analyzed using the bcbio-nextgen Bulk RNA-seq pipeline (available at 172 

h@ps://github.com/bcbio/bcbio-nextgen). Paired-end sequence reads were aligned to human genome 173 

UCSC GRCh38.p14 using STAR29. Quality metrics were assessed using Samtools30, with an average 174 

mapping rate of 84%. No samples were excluded based on sequencing QC metrics. Transcript counts 175 

from aligned reads were quanOfied using Salmon31, then summarized to the gene level using the R 176 

package Tximport32. Sequencing depth was normalized between samples using the median of raOos 177 

method in R package DESeq233. Low expressed genes with less than 10 reads in over half of the total 178 

sample were removed.  179 

Differen=al Expression Analysis over Clinical Domain Scores 180 

Scores for RDoC-based clinical domains were derived using NLP algorithms as previously described in 181 

Vogelgsang et al.34 The clinical domain scores of all donors were binned between 0 and 1, in 0.1 intervals 182 

and considered on a dimensional scale from 0 (lower limit) to 1 (upper limit) (Supplementary Data 3). 183 

Note that higher scores indicate more severe symptoms (e.g. more severe cogniOve impairment); thus, a 184 

posiOve correlaOon between gene expression and clinical domain scores indicates that higher gene 185 
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expression is associated with greater symptom severity.  DifferenOal gene expression analyses in the aINS 186 

and dACG for over dimensional scores for each of the 5 clinical domains using the filtered gene set was 187 

performed by ImpulseDE235.  188 

 189 

Briefly, auer filtering, normalized counts were used in a principal component analysis (PCA) to idenOfy 190 

potenOal covariates. The first five PCs were correlated with known technical and biological variables, 191 

resulOng in significant correlaOons for neuropathological Braak & Braak stage, brain region, sex, age, RIN, 192 

and sequencing batch, but not PMI (Supplementary Figure 1). To further explore residual unknown 193 

sources of variaOon including the influence of changing cell type composiOon, medicaOon, and 194 

comorbidiOes, surrogate variable analysis (SVA)36 was used, which yielded two significant SVs correlated 195 

with the first five PCs. Given the overall influence of Braak & Braak stages, brain regions, sex, age, RIN, 196 

sequencing batch, SV1, and SV2 on the data, we further explored the relevance of covariates across the 197 

RDoC cogniOon domain for each brain region and found that sex, sequencing batch and Braak & Braak 198 

status showed significant associaOons, while age, RIN, PMI, SV1, and SV2 were not significantly 199 

associated across the dimension (Supplementary Data 1). Thus, the final model to idenOfy genes 200 

progressively regulated along the axis from low to high clinical domain scores in ImpulseDE2 included sex 201 

and sequencing batch as covariates. Braak and Braak stage was not included due to collinearity with the 202 

clinical domain scores. StaOsOcal significance of differenOal expression was defined at pFDR<0.05. 203 

 204 

Func=onal Enrichment Analysis 205 

A one-tailed hypergeometric test was conducted for pathway enrichment analysis using Metascape37. 206 

We included mulOple databases such as Gene Ontology (GO), Kyoto Encyclopedia of Genes and 207 

Genomes (KEGG), Reactome and Wikipathway, separately for up- and downregulated differenOally 208 

expressed (DE) genes from the dimensional analyses. StaOsOcal significance was defined at pFDR<0.05.  209 

 210 

Data Availability 211 

RNAseq data is available through the GEO accession number GSE261050. The code of the analyses is 212 

available at the Klengel Lab GitHub page under h@ps://github.com/klengellab/RDoC_RNAseq.  213 

 214 

 215 

 216 
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 8 

Results 217 

 218 

Differential Gene Expression in aINS and dACG as a Function of Dimensional Cognition Scores 219 

 220 

In a previous proof-of-concept work, we used NLP algorithms to obtain cogniOon scores and showed that 221 

they are significantly associated with neuriOc plaque load across all lobes of the brain38. The correlaOon 222 

of this classical neuropathological hallmark of AD with compelling evidence for a direct relaOonship to 223 

cogniOon28,39,40 and cogniOon scores provided evidence for the feasibility and validity of post-mortem 224 

dimensional phenotyping of brain donor electronic health records beyond categorical diagnoses, 225 

allowing for a more granular invesOgaOon of neuropsychiatric symptoms in AD.  226 

 227 

Because the donor cohort available for this study only parOally overlaps with the prior one38, we again 228 

tested the associaOon between neuriOc plaque load and cogniOve symptom burden. As expected, the 229 

cohort analyzed here showed a significant associaOon between neuriOc plaque load across all lobes and 230 

cogniOon scores, as well as a significant associaOon of Braak & Braak stages with cogniOon scores 231 

(Supplementary Data 4). 232 

 233 

To invesOgate the underlying molecular changes associated with dimensional cogniOon burden, we 234 

regressed cogniOon scores over gene expression in the dACG and aINS of all donors, represenOng the full 235 

spectrum of Braak & Braak stages (from 0 to VI)  using ImpulseDE235. In the aINS, 109 DEGs at pFDR<0.05 236 

showed a monotonous increase or decrease of expression across cogniOon score (Figure 1 A, 237 

Supplementary Data 5). Out of these 109 genes, 67 genes were posiOvely correlated with more severe 238 

cogniOve impairment. Top hits included genes involved in innate immune response, such as CD177 and 239 

HSPA6. The remaining 42 genes were negaOvely correlated with cogniOon scores. These included 240 

PNMA6B, a member of paraneoplasOc Ma anOgen (PNMA) family, which is associated with immune-241 

related diseases and neurological disorders41,42, alongside a large number of non-coding RNAs (ncRNAs) 242 

and pseudogenes.  243 

 244 

In dACG, 107 DEGs (pFDR<0.05) showed a monotonous increased or decreased expression in associaOon 245 

with cogniOon scores (Figure 1 B, Supplementary Data 5). Among the 48 genes with increased 246 

expression associated with more severe cogniOon scores, LAD1 and MMP23A were the top hits, with a 247 

strong posiOve correlaOon with cogniOve impairment. Similar to the aINS, top downregulated DEGs 248 
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primarily belong to the less known group of pseudogenes or ncRNAs, with a total of 59 genes showing 249 

significant negaOve correlaOon with cogniOon severity. 250 

Differential Gene Expression in aINS and dACG as a Function of Clinical Domain Scores  251 

Next, we focused on the Arousal Regulatory, NegaOve Valence, PosiOve Valence, and Social Systems 252 

domain scores. As expected, all domains were highly intercorrelated (Pearson r=0.88 ± 0.04). As shown 253 

in Figure 2 A and Supplementary Data 5, each clinical domain was associated with disOnct sets of DEGs 254 

(all pFDR<0.05). In the aINS, DEGs were detected in associaOon with Arousal (56 genes increased; 45 255 

genes decreased), NegaOve valence (40 genes increased; 56 decreased), PosiOve valence (61 genes 256 

increased; 61 genes decreased) and Social domain (61 genes increased; 49 genes decreased). Similar 257 

number of DEGs were detected in dACG in associaOon with Arousal (42 genes increased; 52 genes 258 

decreased), NegaOve valence (65 genes increased; 60 genes decreased), PosiOve valence (46 increased; 259 

55 genes decreased) and Social domain (55 genes increased and 65 genes decreased (Figure 2 B and 260 

Supplementary Data 5). Notably, the majority of DEGs in aINS and dACG were uniquely associated with 261 

one domain with moderate to minimal overlap between domains (Figure 2 C and D Supplementary Data 262 

5 and 6). 263 

Pathway Enrichment in aINS and dACG as a Function of Clinical Domain Scores 264 

Next, we assessed funcOonal pathways across all clinical domains in aINS and dACG. Across both brain 265 

regions and all clinical domains, we found a predominaOng enrichment of pathways related to immune 266 

system funcOons.  Enrichment analyses in the aINS revealed mulOple pathways associated with innate 267 

immune responses shared across the five domains (Figure 2 E, Supplementary Data 7), including 268 

neutrophil degranulaOon, LPS response and leukocyte migraOon, supporOng the noOon that immune 269 

dysregulaOon is a driving factor for AD disease progression across all clinical domains invesOgated. In 270 

contrast to the broad associaOon of innate immune response pathways with all clinical domains, other 271 

funcOonal pathways were unique to a specific domain or a subset of domains. Specifically, pathways 272 

associated with the cogniOon domain included those involved in learning and memory, microtubule-273 

based movement, circadian rhythm, and response to TGF-β. Moreover, pathways related to sex 274 

hormones were unique to the arousal, cogniOon, and negaOve domain. As an example, FSHB, beta 275 

subunit of follicle-sOmulaOng hormone was specifically increased in domain arousal and cogniOon. This 276 

hormone, crucial in the female reproducOve cycle as well as in sOmulaOng producOon and maturaOon of 277 
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 10 

sperm in males, has been shown to accelerate amyloid-β and Tau deposiOon in neurons and to impair 278 

cogniOon in an AD rodent model43, and sex steroid hormones have been associated with AD onset as 279 

well as progression44. Very similar shared biological processes were detected among the five domains in 280 

BA32 (Figure 2 F, Supplementary Data 7). Unique pathways included complement acOvaOon shared by 281 

domain arousal, cogniOon and social, which has been associated with Aβ clearance45.  282 

 283 

Discussion 284 

 285 

Historically, invesOgaOons on AD placed emphasis on the pathogenesis of canonical findings such as 286 

neurofibrillary tangles and senile plaques. Although the relevance of b-amyloid and tau proteinopathies 287 

is uncontroversial, growing evidence supports the contribuOon of addiOonal molecular pathways such as 288 

immune regulaOon, oxidaOve stress, insulin signaling and lipid metabolism, synapOc regulaOon and sex 289 

hormone signaling46,47.  290 

 291 

The relaOonship between AD neuropathology and dysregulaOon of molecular pathways on the one hand 292 

and AD symptomatology on the other hand has been predominantly invesOgated in the context of 293 

categorical diagnosis frameworks and with strong emphasis on cogniOve impairment. However, 294 

categorical diagnoses have been criOcized for their limitaOons and their potenOal to impede scienOfic 295 

progress48. Over the last decade, efforts have been made to overcome these limitaOons by establishing 296 

dimensional models of human cogniOon, behavior and emoOons that are based on neurobiological or 297 

behavioral phenotypes such as RDoC or HiTOP49,50. Although these efforts are not without controversy, 298 

dimensional phenotyping across diagnosOc enOOes is a promising approach to idenOfy molecular 299 

mechanisms behind disOnct symptoms and syndromes. DisOnct neuropathological and molecular 300 

pa@erns may, at least in part, account for the heterogenous clinical presentaOon of neuropsychiatric 301 

disorders including AD51.  302 

 303 

We previously invesOgated the relaOonship between conOnuous cogniOve symptom dimension in AD 304 

and classical neuropathological changes. Our results confirmed an associaOon of NLP-derived cogniOve 305 

scores with hallmark neuropathological findings and provided a proof-of-concept supporOng the validity 306 

of NLP-based methodologies to obtain quanOtaOve measures of funcOonal RDoC domains from post-307 

mortem health records. Here we link dimensional clinical domain scores to bulk RNAseq data on 101 308 
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post-mortem brain samples from aINS and dACG to test the hypothesis that gene expression signatures 309 

are associated with dimensional phenotype constructs derived from post-mortem brain donor health 310 

records. Our results provide evidence for gene expression signatures that define each clinical domain 311 

and brain region, potenOally facilitaOng future research into more granular phenotypes beyond 312 

categorical diagnoses. Our data also suggest immune-related transcripOonal changes as a common 313 

underlying mechanism across all domains and brain regions.  314 

 315 

Results of linear regression models across all clinical domains in both brain regions yielded between 316 

n=94 and n=125 DEGs associated with one of the domains (Supplemental Data 5). Comparisons of up- 317 

or downregulated DEGs showed only a moderate level of overlap between clinical domains, suggesOng 318 

that each domain may be defined by a specific set of differenOally expressed genes (Figure 2 C and D). 319 

Notably, immune response pathways were robustly dysregulated across all clinical domains. These 320 

findings contribute to growing evidence for a criOcal role of immune signaling factors in AD and suggest 321 

their pervasive contribuOon to the overall clinical presentaOon of this disorder.  322 

 323 

We detected a substanOal number of FDR-significant DEGs with an increasing or decreasing expression 324 

pa@ern over cogniOon scores in aINS (n=109 DEGs) and dACG (n=107 DEGs) (Figure 1 A and B). In the 325 

aINS, a subset of genes was uniquely differenOally expressed in associaOon with the cogniOve domain 326 

(upregulated n=26, downregulated n=16, Figure 2 C, Supplementary Data 7) including H2AC7 and LCN2 327 

(both upregulated). H2AC7, a H2A histone protein variant, is involved in regulaOng cell cycle processes. 328 

InteresOngly, reacOvaOon of cell cycle related genes and DNA double-strand breaks are early pathological 329 

hallmarks of AD, and eventually lead to neuronal loss52,53. LCN2 is involved in a wide range of biological 330 

processes such as regulaOon of iron homeostasis, inflammaOon, cell death, survival, differenOaOon and 331 

migraOon54. LCN2 in the brain has been implicated in cogniOon and behavior while increased levels of 332 

LCN2 are associated  with age-related CNS diseases such as AD and PD55. In the dACG, a total of 38 genes 333 

were uniquely differenOally expressed with the cogniOve domain (upregulated n=19, downregulated 334 

n=19, Figure 2 D, Supplementary Data 7). Top hits include LAD1 and MMP23A which showed a strong 335 

posiOve correlaOon with cogniOon scores. LAD1 is involved in cell anchoring and adhesion and MMP23A 336 

is one of the matrix metalloproteinase (MMP) family engaged in cell adhesion and matrix degradaOon in 337 

the extracellular matrix (ECM), enhancing immune cells migraOon and inflammatory response56.  338 

 339 
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DEGs that are uniquely up- or down-regulated over specific clinical domains may shed light on 340 

underlying molecular mechanisms of NPS in AD. For example, PINX1 and HSPA7 showed a unique 341 

signature of increased expression over the arousal domain in the aINS. PINX1 can inhibit the acOvity of 342 

telomerase, which is protecOve against ROS producOon and oxidaOve stress at different stages of AD 343 

pathology57. InteresOngly, telomerase acOvity is also associated with circadian oscillaOon under the 344 

control of CLOCK-BMAL1 heterodimers58, a molecular mechanism fundamental to the arousal domain. 345 

HSPA7 is a member of the human Hsp70 family and overexpression of Hsp70 can have protecOve effects 346 

on neurons in AD59. AMIGO3 is among genes uniquely associated with the posiOve domain in the aINS. 347 

AMIGO3 triggers the inhibiOon of oligodendrocyte precursor cell maturaOon, myelin producOon and 348 

neurite outgrowth60. Similar, we found NPAS4 showing a unique posiOve associaOon with the posiOve 349 

domain in the aINS. NPAS4 encodes a transcripOon factor that regulates a number of downstream genes 350 

such as BDNF, NARP and KCNA1, which mediate diverse effects of synapOc modulaOon and experience-351 

dependent memory formaOon61. Two other genes uniquely upregulated in associaOon with the social 352 

domain in the aINS are NME8 and E2F8. NME8, encoding TXNDC3 is involved in cytoskeletal funcOon and 353 

axonal transport and idenOfied as late-onset AD risk gene from GWAS and meta-analysis62. E2F8 is a 354 

member of E2F transcripOon factor family that regulate the transiOon from G1 to S phase, and aberrant 355 

acOvaOon of neuronal cell cycle has also been postulated as a mechanism of neuronal loss in AD63. Lastly, 356 

IL6, a major inflammatory marker, showed an increasing expression pa@ern in associaOon with the 357 

negaOve domain in the aINS. This is consistent with previous meta-analyses showing posiOve associaOon 358 

between inflammatory markers and depression64.  359 

 360 

Several FDR-significant up- and downregulated genes were uniquely associated with individual clinical 361 

domains in the dACG. For example, CNTF, encoding a neurotrophic factor involved in neurotransmi@er 362 

synthesis and neurite outgrowth, was uniquely upregulated in the social domain. PINX1 was upregulated 363 

across the posiOve domain but downregulated across the cogniOve and negaOve domain in the dACG. 364 

InteresOngly it shows a unique upregulaOon with arousal in BA16 (see above).  SLC5A1, encoding the 365 

sodium/glucose cotransporter SGLT1 and LCN2, encoding a glycoprotein expressed in reacOve microglia 366 

and astrocytes in AD, were uniquely associated with the posiOve domain our cohort65. Genes associated 367 

with the negaOve domain and prior evidence for a role in AD included IL1RL1, LIF, and FGB66-68.  368 

 369 

Although the number of overlapping DEGs across clinical domains was small (Figure 2 C and D), these 370 

genes could point to molecular mechanisms that influence a broader set of symptoms in AD. Common 371 
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upregulated genes across all domains (including the cogniOve domain) in the aINS indicate the overall 372 

acOvaOon of processes related to immune acOvaOon, which is an important mechanism contribuOng to 373 

AD pathogenesis and progression. For example, we found CXCL10, a chemokine that can mediate 374 

immune acOvaOon by binding to its receptor CXCR3 and acOvate and recruit leukocytes69. We also found 375 

MUC13, which promotes NF-kB acOvity and leads to increased producOon of IL-870. On the other hand, 376 

as a subtype of mucins, mature MUC13 can provide numerous glycosylaOon sites with its N-terminus 377 

located on the cell surface, and N-linked glycosylaOon has been recently reported to affect the 378 

progression of AD71. In total, we detect n=70 genes upregulated at pFDR<0.05 across at least two domains. 379 

In contrast, n=70 downregulated genes at pFDR<0.05 are shared across at least two domains 380 

(Supplementary Data 6).   381 

 382 

In the dACG, several genes including USP17L11, USP17L17, USP17L26, and USP17L28 were upregulated 383 

across different clinical domains. They belong to the deubiquiOnaOng enzyme (DUB) family of genes and 384 

are involved in regulaOng the removal of ubiquiOn molecules from proteins72. The ubiquiOn-proteasome 385 

system (UPS) maintains mitochondrial homeostasis by regulaOng mitochondrial proteome and 386 

mitophagy73. UPS impairment and mitochondrial dysfuncOon have been implicated as hallmarks of aging 387 

and associated with neurodegeneraOve diseases such as Alzheimer’s disease and Parkinson disease74,75. 388 

Notably, MT-RNR2, encoding the polypepOde Humanin, is also upregulated across the cogniOve, arousal, 389 

and social domain in the dACG76. In total, we detect n=66 genes upregulated at pFDR<0.05 across at least 390 

two domains. In contrast, n=78 downregulated genes at pFDR<0.05 are shared across at least two 391 

domains (Supplementary Data 6). 392 

At the level of regulatory pathways, we found a more congruent profile with shared pathways related to 393 

the innate immune response defining upregulated gene profiles, and GTPase acOvity defining 394 

downregulated gene profiles across domains and (Figure 2 E and F, Supplemental Data 7). This 395 

contrasOng result compared to the regulaOon of individual genes may reflect the overall strong impact of 396 

immune dysregulaOon, vesicle trafficking, and cell cycle regulaOon in AD progression.  397 

 398 

In summary, the use of NLP-derived dimensional phenotypes may provide more specific insight into the 399 

underlying biology of AD. Each clinical domain score was associated with a disOnct pa@ern of DEGs with 400 

a limited number of DEGs shared across domains. However, changes across clinical domains may be 401 

driven by shared funcOonal pathways with a focus on immune system dysregulaOon.  402 
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Figure Legends 585 

 586 

Figure 1. Transcrip7onal signature of dimensional RDoC cogni7on profiling.  587 

(A) Heatmap showing gene expression signatures of all DEGs (pnominal<0.05) with a significant up- or 588 

down-regulated pa@ern over increasing RDoC cogniOon values in the dACG. The top ten up- or down-589 

regulated DEGs (all pFDR<0.05) are labeled. Bar colors on the leu side indicate whether genes are 590 

clustered in an increasing (red) or decreasing (blue) trajectory. (B) Heatmap showing gene expression of 591 

DEGs (pnominal<0.05) with a significant up- or down-regulated pa@ern over increasing RDoC cogniOon 592 

values in the aINS. Top ten up- or down-regulated monotonous DEGs (all pFDR<0.05) are labeled.  593 

 594 

Figure 2. Iden7fica7on of gene expression programs as a func7on of dis7nct RDoC cldomains 595 

(A) Heatmaps showing expression trajectories of up- or down-regulated DEGs (pnominal<0.05) over 596 

increasing RDoC domain values separated for arousal, negaOve, posiOve and social in the dACG. Top ten 597 

up- or down-regulated DE genes (all pFDR<0.05) labeled. (B) Heatmaps showing analogous expression 598 

pa@ern in the aINS, separated for arousal, negaOve, posiOve and social. (C) Upset plots showing the 599 

overlap of DEGs of each RDoC domain, for increasing (leu) and decreasing (right) genes, in the aINS. 600 

Overlapping DEGs are indicated by intersecOng lines among different domains. (D) Upset plots showing 601 

overlapping DEGs for each RDoC domain, for increasing (leu) and decreasing (right) genes, in the dACG. 602 

(E) Heatmap showing overlapping and disOnct regulatory pathways for each RDoC domain in aINS and 603 

dACG (F). Colors indicate whether pathways are up- (red) or down-regulated (blue), and color depths 604 

represent significance levels of the enriched pathways. 605 

 606 

Supplemental Figure Legends 607 

 608 

Figure S1. Iden7fica7on of covariates in GLM differen7al expression model 609 

(A-D) Principal component analysis of group, brain region, sex, and sequence batch. Colors indicate 610 

sample subgroups under different condiOons. (E) Pearson correlaOon matrix between the first five PCs 611 

from principal component analysis, potenOal variables of interest, and the first two surrogate variables 612 

from surrogate variable analysis. Colors indicate posiOve (red) and negaOve (blue) correlaOons. Dot size 613 

in the upper-right panel and numbers in the lower-leu panel indicate the significant correlaOon 614 

coefficients. 615 
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