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Abstract 

Background 
Melanoma is an aggressive form of skin cancer in which tumor-infiltrating lymphocytes (TILs) are a 

biomarker for recurrence and treatment response. Manual TIL assessment is prone to interobserver 

variability, and current deep learning models are not publicly accessible or have low performance. 

Deep learning models, however, have the potential of consistent spatial evaluation of TILs and other 

immune cell subsets with the potential of improved prognostic and predictive value. To make the 

development of these models possible, we created the Panoptic Segmentation of nUclei and tissue in 

advanced MelanomA (PUMA) dataset and assessed the performance of several state-of-the-art deep 

learning models. In addition, we show how to improve model performance further by using heuristic 

post-processing in which nuclei classes are updated based on their tissue localization.    

Results 
The PUMA dataset includes 155 primary and 155 metastatic melanoma H&E stained regions of 

interest with nuclei and tissue annotations from a single melanoma referral institution. The Hover-

NeXt model, trained on the PUMA dataset, demonstrated the best performance for lymphocyte 

detection, approaching human interobserver agreement. In addition, heuristic post-processing of 

deep learning models improve the detection of non-common classes, such as epithelial nuclei.   

Conclusion 
The PUMA dataset is the first melanoma specific dataset that can be used to develop melanoma-

specific nuclei and tissue segmentation models. These models can, in turn, be used for prognostic 

and predictive biomarker development. Incorporating tissue and nuclei segmentation is a step 

towards improved deep learning nuclei segmentation performance. We will use this dataset to 

organize the PUMA challenge in which the goal is to further improve model performance.  

Keywords:  

Melanoma, H&E stained histopathology, nuclei segmentation, tissue segmentation, TILs 
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Background 

Melanoma is an aggressive form of skin cancer with increasing incidence [1]. Primary melanoma is 

treated with surgical excision, whereas advanced, metastasized melanoma is most commonly treated 

with immune checkpoint inhibition therapy, a form of cancer immunotherapy. However, half of the 

advanced melanoma patients do not respond to this treatment, which is costly and potentially toxic 

[2–5].  

 

Previous studies showed that tumor infiltrating lymphocytes (TILs) in hematoxylin & eosin (H&E) 

stained slides of metastatic melanoma before the start of treatment are associated with a higher 

chance of response to immune checkpoint inhibition and an increase in survival [6,7]. In addition, TILs 

are associated with reduced recurrence rates in primary melanoma [8]. Therefore, assessment of TILs 

can serve as a prognostic biomarker in melanoma treatment.  

 

Currently, TILs are scored manually, either by estimating a stromal percentage or through using a 

multitier system like the Clark score, which categorizes TILs as absent, non-brisk, or brisk [6,9,10]. 

However, substantial interobserver variability exists among pathologists [6,11,12]. A deep learning-

based assessment could result in a more precise, consistent and fine-grained assessment of TILs.  

 

To date, two deep learning-based models have been used to evaluate TILs in melanoma 

histopathology. The first model, NN192, uses watershed segmentation followed by a fully connected 

neural network [7]; however, this older, suboptimal technique results in lower performance [13]. The 

second model, LUNIT’s Scope IO pan tumor model, is not melanoma specific and not publicly available 

[14,15]. Other publicly available models, such as Hover-Net pretrained on the PanNuke dataset that 

includes skin samples can be used to detect TILs in melanoma, but have suboptimal performance. This 

is due to the model not being melanoma-specific [16,17]. As a result, misclassifications occur because 

melanoma cells can resemble other cell types, such as stroma or lymphocytes [13,18,19].  
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Next to the presence of TILs, the localization of TILs is of importance. In breast cancer and non-small 

cell lung cancer, TILs located within the tumor or intra-tumoral stroma regions, rather than in necrotic 

tissue, are predictive of outcomes [20,21]. No public dataset with tissue annotations or public model 

capable of segmenting melanoma tumor and necrotic tissue regions exists at this moment. 

 

Furthermore, other immune cell subsets might also have prognostic implications. For example, 

neutrophils are associated with an increased chance of primary melanoma metastasizing, and B cell 

presence is associated with response to immune checkpoint inhibition therapy in melanoma [22,23]. 

The 2020 MoNuSAC challenge showed that it is possible to segment immune cell subsets in H&E 

stained histopathology images [24].  

 

Consequently, there is a need for a deep learning model capable of segmenting nuclei of tumor cells 

and different immune cell subsets in H&E slides of melanoma. In addition, such a model should be 

capable of segmenting tissue areas which can be used for nuclei localization. To address these needs, 

we created the Panoptic Segmentation of nUclei and tissue in advanced MelanomA (PUMA) dataset.  

Figure 1. Examples of melanoma histopathology appearances: a lymphocyte-like morphology on the 

left, a stromal growth pattern in the center, and a tumor with large, variable nuclei on the right. 
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In this paper, we describe the methodology used to create the dataset. Furthermore, we provide nuclei 

instance segmentation and tissue semantic segmentation benchmarks as well as a first step in 

improving nuclei segmentation due to the integration of a tissue and nuclei segmentation.  
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Data description  

The PUMA dataset consists of regions of interest (ROIs) with nuclei and tissue annotations. ROIs 

originate from H&E stained histological slides of melanoma specimens. The dataset's goal is to 

facilitate the development of deep learning models capable of segmenting nuclei and tissue. To 

stimulate the use of the dataset and create novel deep learning models, the dataset will also be used 

for a medical image analysis challenge hosted on the grand-challenge.org platform. The models 

created with the dataset and the PUMA challenge, in turn, can be used for prognostic biomarker 

generation in melanoma treatment.  

 

The dataset consists of 155 primary and 155 metastatic melanoma manually selected ROIs, scanned at 

40× magnification (0.22 µm/px) with a resolution of 1024 × 1024 pixels. For these ROIs, annotations of 

both tissue and nuclei are supplied, as well as a context ROI of 5120 × 5120 pixels centered around the 

ROI. Annotations were created by a medical expert (author M.S.) and checked and corrected by a 

dermatopathologist (author W.B.).  All cases were digitized in a large melanoma referral center, 

however 76 cases are revisions or consultations originating from other treatment hospitals. 

Annotations are in the .GeoJSON format, making annotations easily visualizable with the opensource 

pathology image viewer Qupath [25,26].  

 

A total of 103 primary and 103 metastatic ROI have been made publicly available [27]. The remaining 

104 annotated ROIs are kept private as an independent test set to be used in the PUMA challenge. The 

public set consists of 97 429 nuclei in 103 primary melanoma ROIs and 103 metastatic melanoma ROIs. 

The test set consists of 50 490 nuclei in 52 primary and 52 metastatic ROIs. The distribution of nuclei 

types and metastatic sample location is visualized in Figure 2.  
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Figure 2. Distribution of nuclei and sampled tissue in the PUMA dataset for primary melanoma regions 

of interest and metastatic melanoma regions of interest stratified according to metastasis location.  

 

As we published previously, more lymphocytes are present in primary samples than in metastatic 

samples [6]. The most common metastatic lesion sites are lymph nodes and skin metastases. In all 

samples, lymphocytes and tumor nuclei form the majority of nuclei.  

 

The tissue distribution for the training and test sets is visualized in Figure 3. In primary samples, more 

tumoral stroma is present compared to metastatic samples. The epidermis and necrotic area are 

underrepresented in both datasets.  

 

Figure 3. Distribution of tissue class area in the PUMA dataset. 

 

A detailed description of the dataset creation process can be found in the methods section.  
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Analyses 

To set a baseline for the PUMA dataset, we performed four experiments. The first experiment was 

semantic segmentation of the tumor, stroma, epidermis, blood vessel, and necrotic tissue classes. The 

second experiment was nuclei segmentation with three nuclei classes: tumor, lymphocyte, and other. 

For the third experiment, we performed nuclei segmentation with all nuclei classes: tumor, 

lymphocyte, plasma cell, histiocyte, melanophage, neutrophil, stroma, endothelium, epithelium, and 

apoptosis. Finally, we show an incorporation of tissue predictions to update the nuclei predictions as 

a form of heuristic post-processing.  

 

We used 5-fold cross validation while training and report the results of inference on the 94 ROIs of the 

final independent test set used in the PUMA challenge. In addition, we report the results of the inter- 

and intraobserver agreement as performed on 12 random samples.  
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Tissue segmentation 

In the first experiment, semantic segmentation of tissue was performed with a nnU-Net model and a 

Mask2Former model with the backbone replaced by the UNI pathology foundation model [28–30]. 

The goal of this analysis was to assess to what extent semantic segmentation of different tissue 

classes is possible with state-of-the-art segmentation models and to evaluate how this correlates 

with intra- and interobserver agreement. For evaluation of segmentation, the Dice score was 

computed for each class per sample and averaged across all samples (referred to as average Dice). 

Additionally, a Dice score was calculated per class on a concatenated sample. To create this sample, 

all images were combined along one axis, resulting in a single large image with the width of one 

image and a length equal to the number of images × the height of one image. This is referred to as 

the micro Dice. 

 

Dice scores are visualized in Table 1 and a visualization of the segmentation is presented in Figure 4. 

The nnU-Net model achieved the highest overall Dice scores but could not recognize necrosis in the 

dataset. While Mask2Former Dice scores were lower, it could detect a small part of the necrosis area. 

When compared to the DICE score of intra- and interobserver agreement, the Dice scores for both 

models were low in the stroma, epidermis, blood vessel, and necrosis classes.  
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Table 1. Average and micro average Dice scores of semantic segmentation of tissue over all samples. 

Results are displayed for a nnU-Net model and a Mask2Former model with the backbone replaced by 

the UNI pathology foundation model. For comparison, DICE scores of intra- and interobsever 

agreement are displayed.  

 Class  Tumor  
[95% CI] 

Stroma 
[95% CI] 

Epidermis 
[95% CI] 

Blood Vessel 
[95% CI] 

Necrosis  
[95% CI] 

Average 
[95% CI] 

nnU-Net  Average 0.87 [0.83 - 
0.90] 

0.59 [0.52 - 
0.68] 

0.91 [0.86 - 
0.96] 

0.54 [0.45 - 
0.63] 

0.93 [0.87 - 
0.98] 

0.77 [0.73 - 
0.80] 

Micro 
Average 

0.91 [0.88 - 
0.94] 

0.78 [0.71 - 
0.84] 

0.69 [0.42 - 
0.86] 

0.35 [0.23 - 
0.47] 

0.01 [0.00 - 
0.04] 

0.55 [0.54 - 
0.55] 

Mask2- 
Former 
(UNI 
backbone) 

Average 0.81 [0.76 - 
0.86] 

0.47 [0.39 - 
0.55] 

0.90 [0.85 - 
0.96] 

0.46 [0.36 - 
0.57] 

0.92 [0.86 - 
0.97] 

0.71 [0.68 - 
0.75] 

Micro 
Average 

0.86 [0.82 - 
0.89] 

0.62 [0.52 - 
0.71] 

0.63 [0.34 - 
0.84] 

0.01 [0.00 - 
0.02] 

0.09 [0.00 - 
0.23] 

0.44 [0.43 – 
0.44] 

Intra- 
observer 
 

Average 0.96 [0.93 - 
0.99] 

0.89 [0.72 - 
0.99] 

1.00 [0.99 - 
1.0] 

0.86 [0.75 - 
0.95] 

0.97 [0.92 - 
1.0] 

0.94 [0.90 - 
0.97] 

Micro 
Average 

0.98 [0.95 - 
0.99] 

0.94 [0.90 - 
0.97] 

0.98 [0.98 - 
1.0] 

0.68 [0.52 - 
0.79] 

0.91 [0.70 - 
1.0] 

0.90 [0.90 - 
0.91] 

Inter- 
observer 

Average 0.97 [0.95 - 
0.98] 

0.89 [0.73 - 
0.99] 

1.00 [0.99 - 
1.00] 

0.72 [0.50 - 
0.9] 

0.97 [0.91 - 
1.0] 

0.91 [0.87 - 
0.95] 

Micro 
Average 

0.98 [0.97 - 
0.99] 

0.94 [0.89 - 
0.97] 

0.97 [0.96 - 
1.0] 

0.73 [0.59 - 
0.83] 

0.90 [0.67 - 
1.0] 

0.90 [0.90 - 
0.90] 

 

 

 

 

 

 

Figure 4. The visual result of semantic segmentation of tissue with the ground truth, the result of the 

nnU-Net model, and the Mask2Former model.  
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Segmentation of three nuclei classes 

In the second experiment, nuclei segmentation was performed for three classes: tumor nuclei, 

lymphocytes (including plasma nuclei), and other. The goal of the analysis was to evaluate the 

usability of existing models in skin and/or melanoma histopathology, compare them with models 

trained on our dataset, and assess how this correlates with intra- and interobserver agreement. For 

this experiment we compared the NN192 model, Hover-Net and Hover-NeXt trained on the PanNuke 

dataset (a pan-tissue dataset that includes skin tissue) and Hover-Net and Hover-NeXt trained on our 

dataset. Among all evaluated models, the Hover-NeXt model trained on the PUMA dataset using 

three classes as input for training, demonstrated the highest performance with a F1 score for 

lymphocytes close to the intra- and interobserver agreement.  

 

The NN192 model, a melanoma specific model trained to recognize lymphocytes, showed the lowest 

performance. The Hover-Net and Hover-NeXt models trained on the PanNuke dataset were more 

successful in detecting lymphocytes. However, the PanNuke-trained Hover-Net model tended to 

misclassify tumor nuclei as lymphocytes. Models trained on the PUMA dataset, logically, had better 

performance on evaluation on the test dataset. Results are displayed in Table 2, and an example of 

the model predictions is shown in Figure 5. 
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Figure 5. Visual results of segmentation of tumor nuclei, lymphocytes and other nuclei. Results are 

shown for the NN192 model, the Hover-Net and Hover-NeXt model trained on the PanNuke dataset 

and the Hover-Net and Hover-NeXt model trained on the PUMA dataset.  

Table 2. F1 scores for segmentation of tumor, lymphocyte, and other nuclei categories. Results are 

shown for intra- and interobserver agreement, the NN192 model, Hover-Net and Hover-NeXt trained 

on the PanNuke dataset and Hover-Net and Hover-NeXt trained on the PUMA dataset.  

 Tumor  
[95% CI] 

Lymphocyte 
[95% CI] 

Other 
[95% CI] 

Micro F1 

[95% CI] 
Average F1 

[95% CI] 
Intraobserver 
agreement 

0.92 [0.9 - 
0.94] 

0.85 [0.8 - 
0.89] 

0.82 [0.77 
- 0.86] 

0.89 [0.89 - 
0.89] 

0.86 [0.85 - 
0.87] 

Interobserver 
agreement 

0.89 [0.87 - 
0.91] 

0.83 [0.79 - 
0.88] 

0.76 [0.71 
- 0.81] 

0.85 [0.85 - 
0.85] 

0.83 [0.82 - 
0.84] 

NN192 0.59 [0.59 - 
0.6] 

0.11 [0.10 -
0.11] 

0.13 [0.12 
- 0.14] 

0.46 [0.46 - 
0.46] 

0.28 [0.27 - 
0.28] 

Hover-Net (PanNuke) 0.74 [0.74 - 
0.75] 

0.57 [0.55 - 
0.58] 

0.37 [0.36 
- 0.38] 

0.64 [0.64 - 
0.64] 

0.56 [0.56 - 
0.56] 

Hover-NeXt (PanNuke) 0.68 [0.67 - 
0.68] 

0.68 [0.67 - 
0.70] 

0.38 [0.37 
- 0.39] 

0.61 [0.61 - 
0.61] 

0.58 [0.58 - 
0.58] 

Hover-Net (PUMA) 0.74 [0.73 - 
0.74] 

0.69 [0.68 - 
0.69] 

0.41 [0.41 
- 0.42] 

0.66 [0.66 - 
0.66] 

0.61 [0.61 - 
0.61] 

Hover-NeXt (PUMA) 0.81 [0.81 - 
0.81] 

0.80 [0.79 - 
0.81] 

0.50 [0.49 
- 0.51] 

0.76 [0.76 - 
0.76] 

0.70 [0.70 - 
0.71] 
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Classification of all nuclei classes 

In the third experiment, segmentation was performed for all nuclei classes within the PUMA dataset 

using Hover-Net and Hover-NeXt. In this analysis, we evaluated to what extent Hover-Net and Hover-

NeXt are able to correctly segment all nuclei classes present in the dataset. In addition, this analysis 

aimed at establishing intra- and interobserver agreement for all classes.  

 

Both Hover-Net and Hover-Next showed low performance in terms of segmentation of all non-

common classes (Table 3). In addition, the F1 scores for Tumor and Lymphocyte were lower when 

compared to the same models trained with three nuclei classes. In the visual representation (Figure 5) 

the decreased capacity of the Hover-NeXt model of segmenting difficult cases is clearly visible.  

Inter- and intraobserver F1 scores are lower due to disagreement in the classification of plasma cells, 

melanophages, stroma nuclei, and endothelium. In the 12 randomly selected samples used to assess 

intra- and interobserver agreement, plasma cells and melanophages had a low incidence; 2 plasma 

cells, and 14 melanophages were present (Table 4). Stroma, endothelium, and histiocytes had higher 

incidence but were still subject to substantial disagreement.  

Table 3. F1 scores for intra- and interobserver agreement and model segmentation in all classes. 

 Tumor Lymphocyte Plasma cell Histiocyte Melanophage Neutrophil 
Intra 
observer 

0.92 [0.90 - 
0.94] 

0.85 [0.80 - 
0.89] 

0.0 [0.0 - 0.0] 0.60 [0.53 - 
0.67] 

0.59 [0.26 - 
0.97] 

0.77 [0.61 - 
0.93] 

Inter 
Observer 

0.89 [0.87 - 
0.91] 

0.83 [0.79 - 
0.88] 

0.0 [0.0 - 0.0] 0.44 [0.37 - 
0.51] 

0.28 [0.00 - 
0.64] 

0.68 [0.50 - 
0.85] 

Hover-Net 
(PUMA) 

0.73 [0.72 - 
0.73] 

0.67 [0.66 - 
0.67]  

0.07 [0.06 - 
0.09]  

0.27 [0.26 - 
0.27]  

0.31 [0.29 - 
0.33]  

0.15 [0.13 - 
0.18]  

Hover-
NeXt 
(PUMA) 

0.70 [0.70 - 
0.71] 

0.71 [0.70 - 
0.71] 

0.10 [0.09 - 
0.11] 

0.33 [0.32 - 
0.34] 

0.26 [0.25 - 
0.28] 

0.06 [0.03 - 
0.08] 

 
 Stroma Endothelium Epithelium Apoptosis Micro 

F1 
Average 
F1 

Intra 
observer 

0.51 [0.37 - 
0.64] 

0.71 [0.59 - 
0.84] 

0.92 [0.77 - 
1.07] 

0.68 [0.57 - 
0.79] 

0.86 [0.86 - 
0.86] 

0.65 [0.61 - 
0.70] 

Inter 
Observer 

0.34 [0.27 - 
0.41] 

0.45 [0.34 - 
0.57] 

0.91 [0.77 - 
1.05] 

0.60 [0.51 - 
0.70] 

0.80 [0.80 - 
0.8] 

0.54 [0.50 - 
0.58] 

Hover-Net 
(PUMA) 

0.31 [0.29 - 
0.32] 

0.15 [0.14 - 
0.17] 

0.13 [0.12 - 
0.14] 

0.22 [0.21 - 
0.24] 

0.61 [0.61 - 
0.61] 

0.27 [0.27 - 
0.28] 

Hover-
NeXt 
(PUMA) 

0.21 [0.20 - 
0.22]  

0.24 [0.23 - 
0.25] 

0.04 [0.03 - 
0.05] 

0.04 [0.04 - 
0.05] 

0.61 [0.61 - 
0.61] 

0.27 [0.27 - 
0.27] 
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Figure 6. Visual results of segmentation of all nuclei classes. Results are shown for the Hover-Net and 

Hover-NeXt model trained on the PUMA dataset. In ROI 1 neither of the models is able to classify 

tumor nuclei and lymphocytes. In ROI 2 model performance is better with identification of tumor 

nuclei and endothelium nuclei. 

Table 4. Nuclei count in intra and inter-observer ground truth dataset consisting out of 12 samples. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Tumor Lymphocyte Plasma cell Histiocyte Melanophage 
Nuclei count 3394 1242 2 353 14 
 
 Neutrophil Stroma Endothelium Epithelium Apoptosis 
Nuclei count 103 110 161 173 196 
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Heuristic post processing: combining tissue and nuclei predictions 

In the fourth experiment, we used the tissue mask as predicted by the nnU-Net model to improve 

nuclei segmentation. If a nucleus center was placed inside a tissue mask of the epidermis, the nuclei 

was classified as an epidermal nuclei. In addition, if a nucleus was present inside the blood vessel 

class, the nucleus was classified as endothelial nucleus. In Hover-Net and Hover-NeXt, the average F1 

score increased from 0.27 and 0.27 to 0.31 and 0.32, respectively. This is mainly due to an increase in 

the F1 score for epithelium. 

 

Table 3. F1 scores for heuristic post processing of the Hover-Net and Hover-NeXt output compared 

with their non-post processing output. 

 Tumor Lymphocyte Plasma cell Histiocyte Melanophage Neutrophil 
Hover-Net 
(PUMA) 

 
0.73 [0.72 - 
0.73] 

 
0.67 [0.66 - 
0.67] 

 
0.07 [0.06 - 
0.09] 

 
0.27 [0.26 - 
0.27] 

 
0.31 [0.29 - 0.33] 

 
0.15 [0.13 - 
0.18] 

Hover-Net 
(PUMA - post-
processed) 

0.73 [0.73 - 
0.73] 

0.67 [0.66 - 
0.67] 

0.07 [0.05 - 
0.08] 

0.27 [0.26 - 
0.27] 0.32 [0.30 - 0.33] 

0.15 [0.12 - 
0.17] 

Hover-NeXt 
(PUMA) 

 
0.70 [0.70 - 
0.71] 

 
0.71 [0.70 - 
0.71] 

 
0.10 [0.09 - 
0.11] 

 
0.33 [0.32 - 
0.34] 

 
0.26 [0.25 - 0.28] 

 
0.06 [0.03 - 
0.08] 

Hover-NeXt 
(PUMA – post 
processed) 

0.71 [0.71 - 
0.71] 

0.71 [0.70 - 
0.71] 

0.1 [0.09 - 
0.11] 

0.33 [0.32 - 
0.34] 0.27 [0.25 - 0.28] 

0.06 [0.04 - 
0.08] 

 
 Stroma Endothelium Epithelium Apoptosis Micro 

F1 
Average 
F1 

Hover-Net 
(PUMA) 

  
0.31 [0.29 - 
0.32] 

 
0.15 [0.14 - 
0.17] 

 
0.13 [0.12 - 
0.14] 

 
0.22 [0.21 - 
0.24] 

 
0.61 [0.61 - 0.61] 

 
0.27 [0.27 - 
0.28] 

Hover-Net 
(PUMA - post-
processed) 

0.31 [0.29 - 
0.32] 

0.2 [0.19 - 
0.21] 

0.44 [0.42 - 
0.46] 

0.22 [0.21 - 
0.24] 0.62 [0.62 - 0.62] 

0.31 [0.30 - 
0.31] 

Hover-NeXt 
(PUMA) 

 
0.21 [0.20 - 
0.22]  

 
0.24 [0.23 - 
0.25] 

 
0.04 [0.03 - 
0.05] 

 
0.04 [0.04 - 
0.05] 

 
0.61 [0.61 - 0.61] 

 
0.27 [0.27 - 
0.27] 

Hover-NeXt 
(PUMA – post 
processed) 

0.21 [0.20 - 
0.22] 

0.25 [0.24 - 
0.26] 

0.52 [0.50 - 
0.55] 

0.05 [0.04 - 
0.06] 0.62 [0.62 - 0.62] 

0.32 [0.32 - 
0.32] 
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Figure 7. Visual results of heuristic post-processing. For clarification, the ground truth and original 

predictions of Hover-Net and Hover-NeXt are displayed.  
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Discussion 

In the present study, we show the methodology used to create the PUMA dataset, which is the first 

melanoma specific nuclei and tissue dataset. In addition, we provide baseline benchmarks in which we 

show that the Hover-NeXt model trained with three classes (tumor, lymphocyte, and other) can detect 

lymphocytes almost on human interobserver level performance. Finally, we show an example of the 

integration of tissue and nuclei annotations leading to improved nuclei segmentation. We believe that 

further improvement of deep learning models through this integration is possible, and therefore, the 

dataset will be used to organize the PUMA challenge.  

 

Earlier studies regarding nuclei segmentation have been performed with multiple tissue datasets 

[17,24] or other tissue specific datasets in, for example, breast cancer [31] and colon cancer [32]. 

However, thus far, no melanoma specific dataset is available. Since melanocytes and melanoma cells 

can mimic other cell types, such as lymphocytes and stroma cells, models created with these dataset 

are not fully applicable for use in melanoma histopathology [13,18]. Models created with this dataset,  

will be usable for creation of prognostic and/or predictive biomarkers in melanoma histopathology. 

 

The PUMA dataset combines tissue and nuclei segmentation. Earlier studies, such as the OCELOT 

challenge [33] and the MuTILs model [34] showed that incorporating tissue masks in nuclei prediction 

increased the capability of models which detect either tumor nuclei or TILs. With this dataset, the goal 

is to see whether implementation of tissue masks can improve multi class nuclei segmentation for 

classes such epidermis, endothelium, tumor, and immune cell subsets. In this paper, we demonstrated 

this by means of a simple post-processing technique. However, other solutions might be passing 

information from a tissue segmentation model directly to a nuclei segmentation model or making use 

of multiple sequential models  [33,35]. To make use of the creativity and knowledge of the deep 

learning community, we initiated the PUMA challenge to assess how precise segmentation of 

melanoma samples can become. Participants in the PUMA challenge can choose to participate in two 
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tracks. For track 1 the output needs to be nuclei segmentation for three classes (tumor, lymphocyte 

and other) and tissue segmentation for all classes whereas in track 2 participants need to segment all 

nuclei classes and tissue segmentation for all classes.  

 

With the dataset, we also aimed to assess the performance of existing models usable in skin and/or 

melanoma histopathology. Due to unavailability, we were unable to assess the LUNIT scope IO model.  

However, we were able to evaluate the NN192 algorithm, which is used in multiple studies in which 

lymphocytes in melanoma histopathology were associated with a decreased chance of recurrence [36] 

and an increased chance of responding to immune checkpoint inhibition therapy [7]. Surprisingly, the 

NN192 model showed the lowest capability to detect lymphocytes. This might be due to variations in 

staining and scanners used in the studies performed earlier and the inability of the techniques used to 

correct for this. The Hover-Net and Hover-NeXt algorithm architectures can compensate for this by 

extensive data augmentation in the training (Hover-Net, Hover-NeXt) and inference stages (Hover-

NeXt), accounting for better results with the out of the box model trained on the PanNuke dataset. 

However, both models trained on the PanNuke dataset still showed diminished performance in more 

difficult to segment melanoma samples when compared to the Hover-NeXt model trained on the 

PUMA dataset itself.  

 

A strength of this study is the annotation process by a medical expert and an expert 

dermatopathologist using context ROI to more accurately segment and classify nuclei. In addition, we 

validated the annotations with a second independent pathologist (GB). From this, it became clear that 

there is a low interobserver agreement in the less common classes, such as histiocytes, melanophages, 

and stroma. Melanophages are a subtype of histocytes that have phagocytosed melanin, resulting in a 

more pigmented appearance. However, there is a continuum between the cells, which could explain 

the difference in classification. Stroma cells, in addition, are present just like histiocytes in the tissue 
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around the tumor, and it is not always possible to distinguish them from histiocytes on H&E stained 

slides.  

 

A second strong point of the study is the manual selection of ROIs. This allowed us to focus on immune 

cell subsets and less common nuclei and tissue classes. In addition, we tried to include regions with 

artifacts or much pigmentation. We believe this makes the dataset and the models more applicable to 

whole slide images, which by nature have artifacts, unsharp regions, and, especially in the case of 

melanoma, pigmentated more difficult to segment regions.  

 

A downside of the dataset and the study is that all samples are, due to privacy regulations, from one 

scanner and a single hospital. However, 76 out of 310 cases are consultation cases from referral 

hospitals already leading to substantial staining variation. In addition, we believe that through stain 

normalization and data augmentation, models can become less sensible to domain-adversarial effects. 

This makes models trained on this dataset applicable to whole slide images from other hospitals and 

scanner types.  

 

Our study did not demonstrate high performance in segmentation of all nuclei classes. This is partly 

due to the used models losing discriminative ability by introducing more classes. In addition, some 

classes are less common in the dataset such as apoptosis or histiocytes. Furthermore, there is overlap 

between classes such as melanophages and histiocytes. We believe that further improvement of 

models is possible and hope to that through leveraging the knowledge of the deep learning community 

in the PUMA challenge this will become more clear.  

 

In conclusion, we created a novel dataset with tissue and nuclei segmentations in advanced cutaneous 

melanoma. With this dataset we showed that deep learning based lymphocyte segmentation can 

achieve performance levels close to those of human interobserver agreement. In addition, we 
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demonstrated that it is possible to more accurately segment nuclei classes by incorporating tissue 

predictions. However, we believe that further improvement is possible by further integration of tissue 

and nuclei segmentation. Future work in the PUMA challenge will demonstrate to what extent 

segmentation of different nuclei can be improved.  
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Potential implications  
The PUMA dataset and the deep learning models created with this dataset can be used for biomarker 

generation in the treatment of melanoma. Thus far, it is known that lymphocytes have predictive value 

for melanoma recurrence and immune checkpoint inhibition treatment response [6,7,37]. However, 

this is done either by manual scoring or scoring by automated models, which are not generalizable to 

new unseen tissue and scanners. With this public dataset and the generalizable deep learning models 

developed from it, the next step will be to translate these models into clinical application. This will 

result in more personalized treatment plans, such as de-escalation of immune checkpoint inhibition 

therapy in patients with advanced melanoma or a less intensive follow-up regimen in patients with 

primary melanoma. Next to the assessment of TILs as an explainable biomarker, this study will also 

enable future biomarker discovery studies through the assessment of other nuclei and tissue types.  

 

In addition, this study adds a new step towards further improvement of nuclei segmentation deep 

learning models in H&E stained histological slides by combining tissue segmentation models into 

multiclass nuclei segmentation models. This process is closer to how a pathologist evaluates 

histological slides and already resulted in improved nuclei segmentation benchmark scores.  
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Methods 

Dataset generation 

For the dataset, digitized melanoma whole slide H&E stained images generated through regular 

diagnostic procedures were used from the archive of the UMC Utrecht. All slides were scanned with a 

Nanozoomer XR C12000–21/− 22 (Hamamatsu Photonics, Hamamatsu, Shizuoka, Japan) at 40× 

magnification with a resolution of 0.23 µm per pixel. Out of 310 cases in the dataset, 76 are 

consultation cases from referral hospitals or general practitioners leading to variation in used staining 

protocols. From each slide, a 40× magnified ROI of 1024×1024 pixels was selected for annotation. In 

addition, a context ROI of 5120×5120 pixels was sampled to provide information about the broader 

context for the annotation process. Selection was done by a trained medical expert (M.S.) and 

subsequently verified by an expert dermatopathologist (W.B.). Manual ROI selection ensured diverse 

tissue and nuclei types and the inclusion of more difficult to segment areas due to blurring, 

pigmentation, and scanning artifacts.  

 

Nuclei segmentations were generated with Hover-Net pretrained on the PanNuke dataset [16,17]. 

Manual annotation adjustment was performed by author M.S. using Qupath with the following nuclei 

categories: tumor, stroma, vascular endothelium, histiocyte, melanophage, lymphocyte, plasma cell, 

neutrophil, apoptotic and epithelium [26]. Annotation categories were based on earlier datasets. In 

addition, we chose categories based on possible predictive value. All annotations were checked and 

corrected where needed by a dermatopathologist (W.B.). Intra- and inter-observer agreement (by 

pathologist G.B.) were determined on 12 randomly selected ROIs. 

 

Tissue segmentations were created manually with QuPath by author M.S. using the following 

categories: tumor, stroma, epidermis, necrosis, blood vessel, and background. Annotation categories 

are based on the approach used by Hwang et al., who segmented TILs in tumor and stroma areas, and 

the guidelines from the International Immuno-Oncology Biomarker Working Group [15,38]. 
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Annotations are checked and corrected when needed by a dermatopathologist (W.B.). Intra- and inter-

observer agreement (by pathologist G.B.) were determined on 12 randomly selected ROIs to ensure 

the inclusion of all tissue types.  

 

Benchmark models 

Nuclei segmentation 

To establish baseline nuclei segmentation benchmarks, we performed nuclei segmentation for two 

sets of experiments. The first experiment compares models that output three nuclei categories: tumor, 

lymphocyte, and other. The second experiment is an analysis of the segmentation of all individual 

nuclei categories. Model training was performed with 5-fold cross validation on the public training 

dataset without adjusting training parameters or data augmentation of the algorithm used. Inference 

was performed on the 94 ROIs of the final hidden test set of the PUMA challenge. The remaining 10 

ROIs will be used in the PUMA challenge for sanity checking of submitted models.  

 

For the first experiment, the following models were compared: NN192, Hover-Net trained on the 

PanNuke dataset, Hover-Net trained on the PUMA dataset, Hover-Next trained on the PanNuke 

dataset, Hover-Next trained on the PUMA dataset [16,17,37,39]. The NN192 model outputs four 

categories: tumor, lymphocytes, stroma, and other. From this output, the stroma and other categories 

were merged into one other category. The models trained on the PanNuke dataset classify nuclei into 

5 categories: neoplastic, non-neoplastic epithelial, inflammatory, connective, and apoptotic. For the 

benchmark comparison, neoplastic and inflammatory nuclei were used; non-neoplastic epithelial, 

connective, and apoptotic were merged into the other category. For training on the PUMA dataset, 

the plasma cell and lymphocyte categories were merged into a single lymphocyte category, and the 

remaining classes were combined into the other category. For the second experiment, Hover-Net and 

Hover-NeXt were trained on all samples and compared.   
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For the calculation of the F1 score, the center distance between the predicted nuclei and the ground 

truth nuclei was used. For each ground truth nucleus, predictions within a 15 pixel (3.3 μm) were 

identified. This radius is smaller than the average size of lymphocytes, which form the smallest nuclei 

in the dataset. Matching was performed based on the highest predictive score (if available) or the 

shortest distance. After matching, the ground truth was censored until all ground truth nuclei were 

either matched or classified as a false negative. Using the identified true positives, false positives, and 

false negatives, precision (all correct predictions divided by all predictions) and recall (all correct 

predictions divided by all ground truth nuclei) were calculated. The class F1 score was computed as 

the harmonic mean of precision and recall, ranging from 0 to 1. Finally to compare models, micro 

F1  (aggregation of TP, FP, and FN over all classes, followed by F1 score calculation) and Average F1  (the 

average of class F1 scores) were calculated [40]. Results are shown with a 95% confidence interval 

which is calculated through bootstrapping the samples.  

 

Tissue Segmentation 

For tissue segmentation, nnU-Net and Mask2Former were used to establish baseline benchmarks 

[28,41]. For training of nnU-Net the same fivefold cross validation was used to create an ensemble 

model. Mask2Former was pretrained on the COCO instance segmentation task using a Swin 

Transformer backbone. Images were resized to 512 × 512 pixels before loading into the model.  For 

our experiment we replaced the backbone with the UNI pathology foundation model, which is better 

able at feature extraction from H&E stained histopathology, after which we finetuned the model on 

the whole training dataset [29,30,42]. Both models were used for inference on the final hidden test 

set from the PUMA challenge. 

 

Both models and intra- and interobserver agreement were evaluated using the DICE score. The DICE 

score is a harmonic mean between 0 and 1, in which 1 is a perfect segmentation prediction, and 0 is 

no correct prediction. This can result in inflated high average DICE scores if a tissue class is only 
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present in a few samples, as the DICE score is 1 in the case of a correct absent prediction. To 

accommodate this, we calculated not only the average DICE score over all samples but also the micro 

average DICE. This is the DICE score for all predictions concatenated along one axis, resulting in a 

prediction mask of 1024 × 96.256 pixels. Results are shown with a 95% confidence interval which is 

generated through bootstrapping the sample results.  

 

Post-processing 

For post-processing nuclei, centers were calculated using the Point function from the python Shapely 

library. From these points, the spatial location inside a tissue mask prediction was determined by 

using the GeoPandas Python Package. Based on this location the classification label of the nuclei was 

adjusted.  
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Availability of source code and requirements  
Project name: PUMA 

Project home page: https://pumachallenge.com/ 

Operating system: Platform independent 

Programming language: Python 3.10 

Other requirements: Hover-Net (available at: https://github.com/vqdang/hover_net), Hover-NeXt 

(https://github.com/digitalpathologybern/hover_next_train and 

https://github.com/digitalpathologybern/hover_next_inference ) .  

nnU-Net (available at: https://github.com/MIC-DKFZ/nnUNet) and Mask2Former (available at 

https://huggingface.co/docs/transformers/en/model_doc/mask2former ).  

QuPath 0.5.0 (available at https://qupath.github.io/ )  

The NN192 classification algorithm (available at  https://github.com/acsbal/Automated-TIL-scoring-

QuPath-Classifier-for-Melanoma) and QuPath 0.1.2 

(https://github.com/qupath/qupath/releases/tag/v0.1.2).  

The code and weights for the PUMA challenge inference baseline solutions and metric calculation 

can be found here: (https://zenodo.org/records/13897135 , https://github.com/tueimage/PUMA-

challenge-eval-track1, https://github.com/tueimage/PUMA-challenge-eval-track2, 

https://github.com/tueimage/PUMA-challenge-baseline-track1, 

https://github.com/tueimage/PUMA-challenge-baseline-track2 ) 

No changes were made to the training code for the used algorithms.  

 

License: The PUMA codebase is licensed with a CC0 1.0 license (dataset) and the MIT license. 

Restrictions to use by non-academics: Both the CC0 1.0 license (dataset) and the MIT license 

(codebase) allow for non-commercial use. License terms can be reviewed for details. 
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Data Availability 

The PUMA training dataset is available on Zenodo at: https://zenodo.org/records/10940194.  

The PUMA test dataset is available on reasonable request.  

 

List of abbreviations 

TILs: Tumor infiltrating lymphocytes 

H&E: Hematoxylin and Eosin 

ROI: Region of interest 
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