

Value Set Hub: Software for developing and curating high-quality value sets
Sigfried Gold, MFA, MA1,2, Joseph E. Flack IV1, Wayne G. Lutters, PhD2,

Christopher G. Chute, MD, DrPH2
1 Johns Hopkins, Baltimore, Maryland; 2University of Maryland, College Park, MD

Abstract
Terminology value sets are central to research studies using real-world patient data. We describe the considerable
challenges that arise when researchers develop value sets for their studies or reuse those made by others. We present
Value Set Hub (VS-Hub), software to overcome these challenges, describing its design, implementation, features, use
in the field, lessons learned, and future directions. Over a five-month period, VS-Hub has been used by over 200 users
and has been used in the development and curation of 95 recommended value sets for commonly studied conditions,
treatments, and lab tests. Particular innovations include the presentation of multiple value sets on the same screen
for easy comparison, the display of compared value sets in the context of vocabulary hierarchies, the integration of
these analytic features and value set authoring, and value set browsing features that encourage users to review
existing value sets that may be relevant to their needs.

Introduction
The importance and productivity of observational, in silico research based on electronic health records, reimbursement
claims, and other real-world data (RWD) has exploded over the past ten to fifteen years. Thousands of researchers in
networks like OHDSI, PCORNet, All of Us, and N3C* are able to leverage vast, multi-site data sources harmonized
to common data models (CDM) using open-source software and infrastructure to perform replicable, FAIR research
at hitherto unheard-of speed and low cost.

A particular problem area in the execution of RWD studies is in the development of analytic value sets: groups of
controlled medical terminology codes used to query patient records in the computation of cohort or phenotype
membership and study variables.6† Designing the algorithms used in executing research or safety studies (to compare
outcomes for alternative treatments, for example) requires an understanding of observational, retrospective study
design; the clinical topic of interest; and the care settings and operational workflows shaping the data available for
study. Formulating the conditional and temporal logic for the overall study and specific cohorts and variables entails
unavoidable thought and work. The selection of codes for the value sets used in these algorithms seldom receives as
much attention despite the fact that these value sets determine the selection of patient data that serve as input to the
algorithms.

Creating value sets can be easy, for instance, by doing a string search for vocabulary terms and then, perhaps,
navigating around vocabulary hierarchies to find relevant related terms. This might result in a perfectly adequate value
set, or not. It is often not feasible to perform a thorough empirical validation based on a gold standard of patient
records marked as having or not having some particular condition or phenotype. Lacking that, the quality of a value
set is not directly measurable; it is indirectly inferred by diligently applying the best practices in its creation: thorough
reviews by clinical and terminology experts, cross-referencing with similar value sets, review of matching record
counts, and spot checking of those records.7

As a field, we know these best practices and see occasional papers exhorting us to use them or offering improvements
to one or another, yet quality problems persist.8–10 Particular attention has been given to the sharing and reuse of value
sets11 in public value set repositories like VSAC12 and Clinical Codes13 or repositories integrated into larger RWD
research platforms like OHDSI/ATLAS2 and the N3C Enclave.5

* Observational Health and Data Science (OHDSI),1,2 The National Patient-Centered Clinical Research Network
(PCORNet),3 All of Us4, and The National COVID Cohort Collaborative (N3C)5
† We refer to defined sets of controlled medical vocabulary codes as value sets, though the N3C and OHDSI
communities call them concept sets, the literature specifically discussing them in the context of RWD research
generally calls them code sets, and some ontology communities call them enumerations. In other contexts they may
also be called code lists, groupers, or term sets.

All rights reserved. No reuse allowed without permission.
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprintthis version posted October 7, 2024. ; https://doi.org/10.1101/2024.10.07.24315009doi: medRxiv preprint

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2024.10.07.24315009

Recognizing the effort and skill required to craft high-quality value sets, the repository developers offer tools to
encourage sharing and reuse, hoping that researchers will take advantage of others’ work, building on it where possible
instead of repeating it. What we see in actual repositories, however, is a proliferation of value sets for common features
of interest (diagnoses, treatments, etc.)6 Those needing value sets either do not think to check for existing value sets
and create their own or, finding many candidates for reuse with no easy way to discern their quality of appropriateness
for their needs, they again make their own.

In the N3C community, we and our colleagues have made concerted efforts to encourage reuse by asking value set
authors to provide metadata about the provenance, intentions, and limitations of their value sets and by providing
extensive documentation and training to promote best practices and reuse. These efforts have not led to discernable
improvement. Because current tools can make it time-consuming and difficult to follow best practices — e.g., expert
review of large value sets when concepts are not presented hierarchically; lack of effective interfaces for comparing
candidates for reuse; lack of or inconvenient access to term usage counts — much of the work required to make a
high-quality value set may not happen.

We have come to believe that the only way to get users to reuse appropriate value sets or, when creating their own, to
follow best practices, dedicating sufficient and fitting effort to create them well and prepare them for reuse by others,
is to provide software that pushes them to do these things, mostly by making it easy and obviously beneficial to do
them.

We present Value Set Hub (VS-Hub)* as a platform for browsing, comparing, analyzing, and authoring value sets —
a tool in which the presence of multiple, sometimes redundant, value sets for the same condition strengthens rather
than stymies efforts to build on the work of prior value set developers. VS-Hub introduces several innovations to the
state of the art for value set authoring platforms.

In the Design section below, we describe the goals and requirements that have driven VS-Hub design and the tools
used to build it. The implementation section provides an abbreviated account of the development trajectory, the
evolving needs and priorities that have driven implementation of specific features, a sense of the overall architecture,
and description of the features on the two primary user interface (UI) screens. The evaluation section gives quantitative
and narrative description of VS-Hub’s actual use in the development and maintenance of value sets over the past
several months. The Discussion section addresses generalizability and opportunities for further work.

Design
VS-Hub’s developers work as part of a team whose mandate includes the curation, development, and maintenance of
recommended value sets for conditions and electronic phenotypes (i.e., cohort selection or research variable
algorithms) commonly needed for RWD research. Understanding that each research project is unique and that
researchers will sometimes require more than a one-size-fits-all value set, we have developed VS-Hub both to serve
our own office (and other informaticists with terminology expertise who similarly endeavor to build or curate value
sets for use beyond a specific project) and to serve the more general audience of those looking to find or create value
sets for a specific need.

Specifically, the software should:

• Maximize the information immediately visible or rapidly available to support user decision-making as they
review existing value sets and reuse or revise them for their own studies;

• Encourage the user to find and review existing value sets most relevant to their topic before creating a new
one, showing them summary data regarding value sets of possible interest; counts of definition and expansion
concepts; matching patient and record counts; author, version, intention, provenance, and other metadata;

• Make users aware of the semantic neighborhood of the concepts they are considering by showing
(visualizing) value set member concepts in the context of their vocabulary hierarchies and other semantic
information when available (e.g., concept domains, mappings, membership in other value sets);

* The software has been called TermHub and that name lingers in various places; we changed it to VS-Hub to avoid
possible trademark infringement.

All rights reserved. No reuse allowed without permission.
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprintthis version posted October 7, 2024. ; https://doi.org/10.1101/2024.10.07.24315009doi: medRxiv preprint

https://doi.org/10.1101/2024.10.07.24315009

• Provide any available empirical information about individual concepts, such as patient, record, and
descendant record counts or validation data;

• Present many-to-many comparison of selected value sets;
• Highlight differences between selected value sets;
• Encourage the development of parsimonious value sets — that is, value sets defined intensionally using a

minimal set of high-level concepts that will be expanded to include or exclude their descendants.
• Encourage thoughtful review and maintenance of value sets after vocabulary updates, showing concepts

added or removed when expanding definition (intensional) concepts using current vocabulary versions;
• Effectively hide data when value sets include too many concepts for performant display in browsers or

comprehension by users (e.g., by collapsing very deep or very wide descendant trees), providing clear
summary of hidden information to facilitate discovery and display.

The long-term aim of VS-Hub is to serve as a central value set exchange and authoring platform, interoperable and
synchronized with external sources of value sets such as VSAC, N3C, ATLAS instances, and FHIR value set
resources. Though it is designed for generalizability, implemented features so far have been tailored to the evolving
needs of its initial audience, the thousands of researchers in the N3C community. This community conducts research
using the N3C Enclave, a secure environment built and hosted with Palantir Foundry for managing and analyzing
harmonized, multisite data for 22 million COVID patients and controls. Its data structures follow the OMOP CDM
and it uses the OMOP vocabulary system to harmonize and integrate concepts from many source vocabularies (e.g.,
SNOMED, RxNorm, LOINC, CPT, ICD10CM, etc.)

After extensive work with Palantir engineers building the Enclave’s Concept Set Browser and Editor, it became clear
that many of the aims listed above would not be effectively implemented because 1) engineer time for the project was
limited, and 2) the Palantir Foundry UI development tools were not designed for the kind of information-dense display
and rapid interactivity we believed necessary. Hence, we determined to build VS-Hub outside the Enclave using
standard web development tools. Additional motivations for that choice include being able: to (eventually)
accommodate and translate between many value set repositories and frameworks; to allow value set review by subject
matter experts who don’t have Enclave accounts and generally serve the wider informatics and research communities;
to facilitate rapid feature development using our tools of choice; and to allow and invite open-source contributions
from informaticists and software engineers beyond our team.

Software tools and platforms used in the implementation of VS-Hub are listed in Table 1.

Table 1. Submission type, abstract length, and page length maximum for AMIA submissions.

Tool Type Purpose
PostgreSQL Database server Backend data management
Python Language Backend server, external system synchronization, unit testing
FastAPI Python package Backend server
OAK* Python package Semantic graph query for vocabulary data
NetworkX Python package Semantic graph query for vocabulary data
JavaScript Language Frontend web interface
React JavaScript package Frontend user interface
Graphology JavaScript package Semantic graph query for vocabulary and value set data
Jest JavaScript package Frontend unit testing
Playwright JavaScript package Frontend end-to-end testing
Azure App hosting service Hosting of database and backend and frontend applications

GitHub Code hosting service Version control; management of Azure deployment and continuous
integration testing

* Ontology Access Kit is cited in the references.14 The other tools listed are easily found using any search engine.

All rights reserved. No reuse allowed without permission.
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprintthis version posted October 7, 2024. ; https://doi.org/10.1101/2024.10.07.24315009doi: medRxiv preprint

https://doi.org/10.1101/2024.10.07.24315009

Implementation
Though the bulleted aims listed above have all been achieved to some degree, we have had and continue to have a
long list of planned features to implement them more effectively. Design and development have often been driven by
specific projects our team has been responsible for and features have been implemented as resources allow. We will
give a brief account of the development trajectory.

Our first attempt to provide the community with a library of N3C-recommended value sets was based on importing
credible value sets from VSAC. Toward that end, we built a framework for storing value sets, using VSAC APIs for
import and Palantir Foundry APIs for upload to the Enclave. This strategy also required conversion from source
vocabulary codes to OMOP standard concept IDs. This was straightforward for conversion from vocabularies that
OMOP counts as standard (SNOMED, RxNorm, etc.); but from other vocabularies (like ICD10), mapping to standard
proved problematic, especially due to pre/post coordination issues.15

As these and other issues affected the majority of the value sets we needed, we turned to using and improving value
sets already in the Enclave. There we faced a problem of massive redundancy and clutter. For instance, of the 5,000
value sets in the Enclave (7,600 if counting versions), 80 contain the word ‘diabetes’ (260 if counting versions.)

We extended our framework to download and update value sets from N3C and we built a user interface for browsing
and selecting from these (including display of relevant metadata), recommending related value sets, comparing those
selected to each other, and presenting member concepts with an indented tree based on vocabulary hierarchies. We
have struggled and tried many different approaches to dealing with the problems of recommending related value sets,
displaying several value sets at a time, and retrieving and displaying the amounts of data involved when handling
larger value sets.

VS-Hub’s search, browse, recommend, and select screen (Figure 1) treats every selected value set equally, so the
related value table presents a list of every value set sharing one or more concepts with any of the value sets selected
so far. With the union of all the concepts belonging to the selected value sets as a basis, the related list shows precision
and recall figures and other counts, allowing the user to sort on these columns to find related value sets most relevant
to their needs. In order to calculate the shared concepts, precision, and recall columns for the three value sets selected
in screenshot in Figure 1, we take their total 1,074 distinct member concepts, retrieve the 500 related value sets that
contain at least one of those, then retrieve the members of each related value set: 1,225,496 total, 304,472 distinct
concepts.

We give these numbers not to be tedious but to convey that even for moderately sized value sets (100 – 1,000
concepts), the calculation of these figures can involve substantial data processing. In order to keep the application
from being painfully slow, we have tried a variety of optimization and caching strategies (discussed below in Lessons
learned.)

VS-Hub’s display, comparison, and authoring page (Figure 2) presents a table of concepts (first column of each
row), metadata (middle columns), and value set membership (rightmost columns.) Another column on the right would
appear for constructing a new value set. We omitted that and description of its UI features for reasons of space.

The OMOP vocabulary system used by N3C and many of its source vocabularies are structured as polyhierarchies or
directed acyclic graphs (DAG), that is, pairs of concepts (terms, codes) are connected by directed edges, relating them
as parent/child or source/target, such that a parent generally has many children and a child sometimes has more than
one parent.* Intuitively users think of groups of related concepts as forming a tree, like a file system directory tree.
VS-Hub follows the convention of representing such trees as collapsible, nested (indented) lists, though we have had
to re-implement the indented list to deal with several complexities.†

We use available React components for frontend UI elements where possible. Available nested list controls only allow
individual items to be displayed as a single string or React component. Given the amount of information we want to
convey about each concept, a tabular display was necessary. We represent nesting by indenting the first column

* Though concepts have many types of relationships, VS-Hub currently displays only is-a/subsumes and other
hierarchical relationships captured in the OMOP concept_ancestor table.
† We are also working on a node-link diagram that will more intuitively convey the DAG structure.

All rights reserved. No reuse allowed without permission.
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprintthis version posted October 7, 2024. ; https://doi.org/10.1101/2024.10.07.24315009doi: medRxiv preprint

https://doi.org/10.1101/2024.10.07.24315009

(concept name) of each row and showing an expand/collapse (+/–) icon on rows with children. One shortcoming of
our current implementation using react-data-table is that we are only able to add or remove rows by re-rendering the
whole table. It would be better to animate the expand/collapse operations.

In order to construct the nested tree display, we select a subgraph of the full OMOP vocabulary DAG* consisting of
all the concepts included in the selected value sets and recurse through it, showing concepts indented by level, multiple
times if they have multiple parents, and sorting each level by descendant record count or other columns of the user’s
choice. Because some value sets are so large that displaying all their concepts will crash the browser tab, the hierarchy
is initially displayed with all nestings collapsed, allowing the user to expand individual rows or click Expand All from
the Stats and options dialogue. As seen in Figure 2, concepts that appear in the definition of at least one of the selected
value sets are shaded in light purple. As indicated in the Legend, concepts that appear in the expansion but not the
definition of a value set display a checkmark at the intersection of the concept and that value set. Intensional definition

* We have this as a NetworkX directed graph generated from all rows of the concept_ancestor table where
min_levels_of_separation = 1.

Figure 1. VS-Hub’s search, browse, recommend, select screen.

All rights reserved. No reuse allowed without permission.
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprintthis version posted October 7, 2024. ; https://doi.org/10.1101/2024.10.07.24315009doi: medRxiv preprint

https://doi.org/10.1101/2024.10.07.24315009

concepts show the options defined for their expansion (D for including descendants, M for including mapped concepts,
X for excluding from the expansion — see cells in top right of Figure 2) and are shaded orange or purple depending
on whether they appear in the expansion.

A problem we have had to address in the hierarchical display is that sometimes the set of concepts will include pairs
that do have an ancestor-descendant relationship but not the intervening concepts that connect them. In that case, the
generated subgraph will not contain an edge connecting them and the descendant will act as a root of a disconnected
component. Since users want to be aware of relevant ancestor-descendant relationships, we fill in the missing nodes.
Getting this right was a trial involving many (mostly misleading) conversations with ChatGPT. Eventually, with much
care, we developed a unit test that handles the various edge cases we found in different value sets, diagrammed in
Figure 3. The final algorithm works by traversing the full graph upward from each subgraph leaf node, capturing
ancestor nodes up to any whole graph root, and discarding any of these that do not appear between two subgraph
nodes.

Evaluation
Between November 2023 and March 2024, we collected backend server usage logs. Since we use caching to avoid
redundant server calls, these logs do not capture analysis of already-downloaded data. After removing 4,999 log entries
of testing or use by VS-Hub developers, the remaining 23,704 records represent use by our target audiences. Testing
was agile and incremental amidst pilot deployment as beta software. Some of the 23,704 records analyzed include
users just trying the software out rather than performing a specific task.) Table 1 provides summary data captured by
usage logging. These figures make clear that VS-Hub is being used beyond the team that is building it.

Figure 2. VS-Hub’s display, comparison, and authoring page

All rights reserved. No reuse allowed without permission.
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprintthis version posted October 7, 2024. ; https://doi.org/10.1101/2024.10.07.24315009doi: medRxiv preprint

https://doi.org/10.1101/2024.10.07.24315009

Figure 4 shows a multi-modal distribution of VS-Hub usage levels; that is, over the five months of log capture, about
80 users made fewer than five page visits; about 70 made a few more visits; about 50 made between 15 and 20, and
10 or so made around 40 visits. (This chart does not include use by developers.)

Table 1. Usage and application statistics

Measure Value Notes
Total log records 28,703 All API calls that invoke tracking
Log records -- developer IPs removed 23,704
Log sessions 12,014 Calls to multiple API endpoints from the

same browser page are grouped together as
“log sessions”

IP addresses 253
User API call errors 11
Developer API call errors 183

Figure 3. Diagram of gap-filling algorithm

All rights reserved. No reuse allowed without permission.
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprintthis version posted October 7, 2024. ; https://doi.org/10.1101/2024.10.07.24315009doi: medRxiv preprint

https://doi.org/10.1101/2024.10.07.24315009

Figure 4. VS-Hub use distribution across users

Table 2 shows the range of value set sizes in the N3C repository as a whole and the count of concepts (from one or
more value sets) returned from VS-Hub API calls that return concepts.

Table 2. Concepts in value sets and VS-Hub calls

Value set size across N3C Concept counts in VS-Hub calls
Concepts Value sets Concepts VS-Hub calls

1 - 9 774 1 - 9 15
10 - 99 1,862 10 - 99 1,326

100 - 999 2,596 100 - 999 620
1,000 - 9,999 1,357 1,000 - 9,999 129

10,000 - 99,999 537 10,000 - 99,999 50
100,000 - 999,999 64 100,000 - 999,999 24

Discussion
Lessons learned
The hardest problem we faced and where we made the most mistakes was in generating the indented tree display for
large value sets. We should have addressed it from the first rather than waiting until code had already been written
and users started needing to work with value sets larger than the application could handle. Even then, our initial
approaches were overly complex and only appeared to work correctly (because we had not formulated good tests): we
generated the indented tree (with duplicate rows for concepts with multiple parents) at the server, hiding subtrees after
a certain depth or where direct children of a given node exceeded a certain number. Through trial and error we found
that limiting concept graph download to edge lists and concept metadata worked, if a little sluggishly, even for our
largest value sets. From there, we were a little surprised to also discover, performing graph operations using
graphology.js to generate indented rows and calculate descendant records for collapsed descendants was very fast.

We had long wondered why other value set browsing/editing tools didn’t directly display selected concepts in the
context of their vocabulary hierarchies; it seems such an obvious and beneficial feature. The answer is, apparently,
that it’s hard. Value sets range vastly in size and graph topology (width, depth, connectedness, polyhierarchy);
designing a user interface that handles all cases well is a serious challenge. This has proven to be an historical

All rights reserved. No reuse allowed without permission.
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprintthis version posted October 7, 2024. ; https://doi.org/10.1101/2024.10.07.24315009doi: medRxiv preprint

https://doi.org/10.1101/2024.10.07.24315009

development challenge, with few implementations to our knowledge. Nevertheless, we persevered to the point of
proving that it can be done and have built an interface that does a credible job of it, with plenty of room for
improvement of course.

As to why previous tools hadn’t used a tabular presentation to compare concept membership across multiple value
sets, getting it to work required creative use of React, which is a more flexible UI framework than those used by other
value set authoring tools, and this display makes the need for hierarchical concept presentation more painfully clear.

An application of this scale should not be built by one and a third programmers but by a software development team
including project management; dev ops; quality assurance to implement unit, end-to-end, and user testing. A lot of
mistakes and blind alleys could have been avoided, especially if we had been able to begin with a test-driven
development approach. On the other hand, the application has provided significant value to our group and to the N3C
community at large, and we built it with the resources we had.

Frontend caching was essential; sluggish initial load times for sizable value sets would be tolerated, but when every
page reload or change in the list of selected value sets took just as long, users grew frustrated. An early approach used
a library that cached each distinct API call (accounting for differences in parameters) but wasn’t sufficient. We built
an overly complex but functional system for caching results granularly so that subsequent calls for overlapping data
could use the cache and only download items that had not been retrieved. That is, if a related value set is added, it is
only necessary to retrieve metadata for concepts not contained in the value sets already selected. We encountered
many problems caused by cached data that should have been cleared for various reasons. We tried a variety of solutions
including, horribly, asking users to hit an Empty cache button on the help page whenever the application misbehaved
in case bad cache data was the culprit. Our current imperfect strategy is simply to automatically clear the user’s cache
every 24 hours. Clearing least recently used cache data would have been helpful, but the complexity of our granular
caching approach makes it difficult to implement.

Limitations and future work
VS-Hub needs additional features for users to explore vocabularies for candidate concepts by string search or by
exposing concepts related to those displayed but not currently included in the subgraph.

Hierarchical concept display makes it considerably easier to author parsimonious intensional value sets, which we
consider a best practice, but it needs to go further and help users identify common parent or ancestor concepts when
a more parsimonious definition is possible. The approaches we have tried so far have compromised usability by adding
excessive polyhierarchy or bringing in unwanted descendants.

When vocabulary changes lead to changes in value set expansion, VS-Hub makes it easy to see these changes in
context, but users want to understand, especially, why certain concepts no longer appear in the expansion and help
finding replacements if appropriate. We have not yet tried to address this need.

The current implementation has high memory demands.

We envision VS-Hub being generalized and used more widely by 1) accommodating and storing data from more value
set formats (VSAC, FHIR, etc.); 2) connecting it to external value set repositories; 3) allowing users to build and store
value sets optionally synced to theN3C Enclave and other repositories; 4) allowing term usage counts and value set
patient/record counts from multiple sources; and 5) by allowing institutions to host their own VS-Hub instances,
connected to whatever private or public value set repositories, analysis platforms, and data sources they like. These
extensions will make VS-Hub useful to a very wide community of RWD researchers and analysts. We do not currently
have resources to implement them but hope to attract open-source software developers who could help.

VS-Hub represents a significant advance in the technology available for analyzing and authoring value sets. It removes
obstacles that value set developers face in following best practices and making use of prior work. We have
demonstrated the importance of the features it introduces, reviewed challenges encountered in implementing them,
and provided lessons learned to ease the path of others who may attempt similar work. We invite open-source software
developers to join us in bringing VS-Hub to a much wider community.

All rights reserved. No reuse allowed without permission.
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprintthis version posted October 7, 2024. ; https://doi.org/10.1101/2024.10.07.24315009doi: medRxiv preprint

https://doi.org/10.1101/2024.10.07.24315009

Acknowledgements
We thank the N3C Data Liaison and Palantir implementation teams for their feedback and help making VS-Hub
possible. This work was supported by the National Institutes of Health (NIH) Agreement
OT2HL161847 01 and NCATS U24 TR002306.

References
1. Hripcsak G, Duke JD, Shah NH, Reich CG, Huser V, Schuemie MJ, et al. Observational Health Data Sciences

and Informatics (OHDSI): Opportunities for observational researchers. Stud Health Technol Inform [Internet].
2015;216:574–8. Available from: https://www.ncbi.nlm.nih.gov/pubmed/26262116

2. OHDSI. The Book of OHDSI [Internet]. 2020th-04–16th ed. Observational Health Data Sciences and
Informatics; 2020. 470 p. Available from: http://book.ohdsi.org

3. Fleurence RL, Curtis LH, Califf RM, Platt R, Selby JV, Brown JS. Launching PCORnet, a national patient-
centered clinical research network. Journal of the American Medical Informatics Association [Internet]. 2014
Jul 1;21(4):578–82. Available from: https://academic.oup.com/jamia/article-lookup/doi/10.1136/amiajnl-2014-
002747

4. The All of Us Research Program Investigators. The “All of Us” Research Program. N Engl J Med [Internet].
2019 Aug 15;381(7):668–76. Available from: http://www.nejm.org/doi/10.1056/NEJMsr1809937

5. Haendel MA, Chute CG, Bennett TD, Eichmann DA, Guinney J, Kibbe WA, et al. The National COVID
Cohort Collaborative (N3C): Rationale, design, infrastructure, and deployment. Journal of the American
Medical Informatics Association [Internet]. 2021 Mar 1;28(3):427–43. Available from:
https://doi.org/10.1093/jamia/ocaa196

6. Gold S, Lehmann HP, Schilling LM, Lutters WG. Clinical code sets and the problem of redundancy in code set
repositories [Internet]. 2024 Feb. Available from: http://medrxiv.org/lookup/doi/10.1101/2024.02.15.24302903

7. Gold S, Lehmann H, Schilling L, Lutters W. Practices, norms, and aspirations regarding the construction,
validation, and reuse of code sets in the analysis of real-world data. 2021 Oct 25;35. Available from:
http://medrxiv.org/lookup/doi/10.1101/2021.10.14.21264917

8. Hripcsak G, Albers DJ. Next-generation phenotyping of electronic health records. J Am Med Inform Assoc
[Internet]. 2013 Jan 1;20(1):117–21. Available from: http://dx.doi.org/10.1136/amiajnl-2012-001145

9. Gold S, Batch A, McClure R, Jiang G, Kharrazi H, Saripalle R, et al. Clinical Concept Value Sets and
Interoperability in Health Data Analytics. AMIA Annu Symp Proc [Internet]. 2018 Dec 5 [cited 2019 Mar
11];2018:480–9. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6371254/

10. Ostropolets A, Ryan P, Hripcsak G. Phenotyping in distributed data networks: selecting the right codes for the
right patients. AMIA Annu Symp Proc. 2022;2022:826–35.

11. Williams R, Kontopantelis E, Buchan I, Peek N. Clinical code set engineering for reusing EHR data for
research: A review. Journal of Biomedical Informatics. 2017;70:1–13.

12. Khatipov E, Madden M, Chiang P, Chuang P, Nguyen DM, D’Souza I, et al. Creating, Maintaining and
Publishing Value Sets in the VSAC. In: AMIA. 2014.

13. Springate DA, Kontopantelis E, Ashcroft DM, Olier I, Parisi R, Chamapiwa E, et al. ClinicalCodes: An Online
Clinical Codes Repository to Improve the Validity and Reproducibility of Research Using Electronic Medical
Records. Petersen I, editor. PLoS ONE [Internet]. 2014 Jun 18 [cited 2020 Jan 16];9(6):e99825. Available
from: https://dx.plos.org/10.1371/journal.pone.0099825

14. OAK developers. Ontology Access Kit (OAK) [Internet]. 2022. Available from:
https://incatools.github.io/ontology-access-kit/

15. Gold S, Zhang T, Zhu RL, Hong S, Lehmann HP, Gabriel D, et al. ICD10–SNOMED mapping pitfalls: Post-
coordinated expressions and concept sets. In: 2022 OHDSI Symposium Collaborator Showcase [Internet].
Bethesda, Maryland; 2022. Available from: https://www.ohdsi.org/2022showcase-21/

All rights reserved. No reuse allowed without permission.
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprintthis version posted October 7, 2024. ; https://doi.org/10.1101/2024.10.07.24315009doi: medRxiv preprint

https://doi.org/10.1101/2024.10.07.24315009

