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Abstract  

Advanced data-driven methods can outperform conventional features in electrocardiogram 

(ECG) analysis, but often lack interpretability. The variational autoencoder (VAE), a form of 

unsupervised machine learning, can address this shortcoming by extracting comprehensive 

and interpretable new ECG features. Our novel VAE model, trained on a dataset comprising 

over one million secondary care median beat ECGs, and validated using the UK Biobank, 

reveals 20 independent features that capture ECG information content with high 

reconstruction accuracy. Through phenome- and genome-wide association studies, we 

illustrate the increased power of the VAE approach for gene discovery, compared with 

conventional ECG traits, and identify previously unrecognised common and rare variant 

determinants of ECG morphology. Additionally, to highlight the interpretability of the model, 

we provide detailed visualisation of the associated ECG alterations. Our study shows that the 

VAE provides a valuable tool for advancing our understanding of cardiac function and its 

genetic underpinnings.  
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Introduction 

The application of machine learning techniques to understand cardiac electrophysiology has 

sharply risen in recent years, particularly in their application to the electrocardiogram 

(ECG)
1,2

. Many of these applications rely on supervised models, which are designed to 

identify specific pre-defined diagnoses or predict outcomes based on the raw ECG signal as 

input. Apart from features directly related to cardiac function, machine learning-based 

models have been remarkably successful at deducing more general characteristics from the 

ECG, such as age and BMI
3,4,5

.  

Despite their impressive performance, the inner workings of these models are obscure, 

contributing to their reputation as a “black box”. This lack of transparency and 

interpretability limits the potential to generate novel biological insights. More interpretable 

unsupervised models, such as the variational autoencoder (VAE), have been applied to the 

ECG
6
 as an alternative approach.  

The VAE combines principles derived from machine learning and Bayesian inference to 

deconstruct a signal into a limited number of highly informative features, also called latent 

factors (LF). These features are optimized to capture the extent of inter-sample variability 

and can be used for signal generation
7
, denoising

8
 or predictive and diagnostic models

6
. The 

features extracted by the VAE are interpretable and lend themselves easily to visualization, 

enhancing the model's transparency and facilitating a deeper exploration of the underlying 

data dynamics.  

Most conventional human-defined ECG features have emerged as patterns that are easy for 

human observers to recognise and label, and then correlate with clinical significance. By 

contrast, VAE latent factors are optimised to maximise the capture of data content in the 

ECG, without being constrained by human optical recognition or by prior knowledge and 

biases. We hypothesised that analysis of the genetic and phenotypic associations of this 

optimised feature set would empower discovery when compared with analysis of 

conventional ECG features, and therefore yield novel insights into cardiac electrophysiology 

and related diseases. 
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Results 

Accurate median ECG reconstructions with 20 novel independent ECG features 

The VAE was trained on 1,048,778 median ECG beats derived from resting 12-lead ECGs of 

patients examined at the Beth Israel Deaconess Medical Center (BIDMC), a secondary care 

centre in Boston, USA. Eight leads were analysed - the first two limb leads and six chest 

leads. Lead III and the augmented limb leads were not used as they are linear combinations 

of leads I and II and therefore provide no additional information. Hyperparameter tuning 

was performed using the validation set (n = 58,265 ECGs) and performance was evaluated in 

the test set (n = 58,268 ECGs). External validation was performed on digital ECG recordings 

from the UK Biobank (UKB) (n = 42,248). Median beats were extracted using the Beth Israel 

Analysis of Vectors of the Heart (BRAVEHEART) software as previously described.
9
 Further 

details on these datasets are available in the Supplementary Materials.  

When comparing the reconstructions to the original medians, we observed an excellent 

mean Pearson correlation coefficient of 0.94 (±0.11 SD) in the test set and 0.95 (±0.12 SD) in 

the UKB. As demonstrated in Fig. 1A, the reconstructions accurately captured the typical ECG 

morphology.  

Each LF was visualised by modifying that specific LF (at a range of ±1-3 SD of the LF mean as 

calculated in the BIDMC test set), while holding the others at their mean value (latent 

traversal, Fig. 2). The latent traversal indicated that different LFs were representative for 

independent ECG traits. This was further confirmed by the lack of correlation between the 

individual LFs (Fig. 2B), with only two LF showing an absolute Pearson correlation coefficient 

> 0.3 (LF 7 and 9, R = 0.31). Full 8-lead latent traversals, as well as an interactive plot of the 

LFs, are available in the Supplementary Materials. 

To explore the relationship between the novel LFs and traditional ECG parameters, we 

calculated the Pearson correlation coefficient between the LFs and the available ECG metrics 

in the UKB (P axis, PQ interval, QT interval, QTc interval, QRS duration, ventricular rate, PP 

interval, number of QRS complexes during the 10-second ECG (QRS number), P wave 

duration, R axis and T axis).  
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Figure 1: Variational Autoencoder Accuracy and Latent Factor Correlations. 1A: The 

Variational Autoencoder produces precise median beat reconstructions (blue) that closely 

match the original ECG medians (red). Example reconstructions spanning a range of 

accuracies are shown, by sampling reconstructions at the 10th percentile, median, and 90th 

percentile of the correlation distribution. 1B: A heatmap illustrates the absolute phenotypical 

correlations (Pearson’s R, bottom left) and absolute pairwise genetic correlations (rg, SNP-

based heritability, top right) between individual latent factors, indicating phenotypically 

uncorrelated novel ECG features with a shared genetic architecture. 1C: The heatmaps depict 

the absolute phenotypical correlations (Pearson’s R, bottom) and genetic correlations (rg, 

top) between latent factors and traditional ECG features. 

Most of the LFs capture information not represented in the traditional ECG features, as 

evidenced by their weak correlation with traditional ECG parameters, with only seven LFs 

displaying an absolute Pearson correlation coefficient above 0.3 with any ECG parameter 
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(LFs 1-3 and 6-9, figure 1C). These seven LFs accounted for most of the associations with the 

traditional ECG parameters, though three of these ECG features (P-axis, P wave duration, T-

axis) displayed a low (Pearson R < 0.3) correlation with the LFs. The highest correlation was 

observed for the QT interval with LF9 and the PQ interval with LF1 (Pearson R 0.78 and 0.77, 

respectively). 

 

Figure 2: Lead I latent traversal plots of the 20 latent factors identified by the Variational 

Autoencoder demonstrate independent encoding of ECG components. Each plot 

corresponds to the reconstruction of the median beat in Lead I, exploring the influence of a 

single latent factor (range: -3 to +3 standard deviations from the mean), while maintaining 

others at the mean value. Red lines indicate negative deviations, while blue lines indicate 

positive deviations. 
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The genetic architecture of the VAE latent factors 

Overall, the LFs showed a variable degree of heritability, ranging from 3 to 20% 

(Supplementary Materials). Despite the lack of phenotypical correlation, several LFs proved 

to be genetically correlated with each other (absolute R between 0.0003 and 0.79; Figure 

1B). Similarly, we observed higher values for genetic correlations with the traditional ECG 

features then the phenotypical correlations. Only three LFs showed a pairwise genetic 

correlation coefficient of less then 0.3. All genetic correlations between ECG parameters and 

LFs were above 0.3 (Figure 1C). These findings are indicative of the presence of pleiotropic 

genetic factors which act on multiple phenotypically uncorrelated ECG features. The 

associations of specific loci with ECG morphology are shown through locus specific LF 

traversals in the Supplementary Materials. 

GWAS analysis of the 20 LFs identified 120 conditionally independent SNPs, corresponding 

to 118 genomic regions (Padj < 2.5 x 10
-9

) (Figure 3, Supplementary Materials). After 

combining regions with overlapping borders, we identified 65 unique loci that were 

associated with one or more LF. Prioritized genes were mapped to the GWAS regions by a 

combination of similarity based (polygenic priority score or PoPS)
10

 and locus-based (variant-

to-gene or V2G)
11

 approaches, yielding 85 genes.
12

 The LFs were able to capture more 

oignificantly associated genes when compared to analysis of traditional ECG parameters on 

the same dataset. Traditional parameters were associated with 93 conditionally independent 

SNPs, corresponding to 51 unique regions that were associated (Padj < 4.5 x 10
-9

) with one or 

more traditional ECG parameter. Twenty-seven (42%) of the LF loci were not detected by 

GWAS of ECG parameters, while 13 (25%) of the regions identified by analysis of ECG 

parameters were not identified by the LF.  
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Figure 3: Latent factor GWAS joint Manhattan plot, with prioritized genes and their 

relationship to previous GWAS hits for ECG parameters and cardiac function related traits. 

Left side: the Manhattan plot collapses the latent factor (LF) traits into one plot by displaying 

the lowest p-value among the 20 LF GWAS for each of the included SNPs, calculated in the 

UK biobank. Right side: First listed prioritized gene (full gene list is available in the 

supplement) with their associated LF, previously reported ECG features, and cardiac function-

related traits. The colours represent the comparison between the LF GWAS and traditional 

ECG parameters GWAS (including P axis, PQ interval, QTc interval, QT interval, QRS duration, 

Ventricular Rate, PP interval, QRS number, P wave duration, R axis and T axis). Blue: regions 

which are identified by the LF GWAS and the ECG parameter GWAS in our study and have 

been previously validated in other GWAS analyses of ECG traits. Orange: regions which are 

identified by LF GWAS only in our study (not conventional ECG traits), but have been 

previously validated in other GWAS analyses of ECG traits.  
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Identification and validation of novel genomic regions associated with the ECG 

In order to identify novel common variant associations with the ECG, we identified LF GWAS 

loci not linked to any ECG traits in the GWAS catalog. One locus (mapped to NRP1) qualified. 

For discovery purposes, we additionally evaluated a broader set of genes at a more relaxed 

threshold of <1% FDR. We identified 46 loci which associated with any of the LF and were 

not previously linked to the ECG. We compensated for the increased risk of false positive 

associations due to the relaxed significance threshold by reanalysing these candidate SNPs in 

a separate tranche of data from 18,987 UKB participants, which was released after the main 

analysis. We identified six SNPs which were directionally concordant and significant (p-value 

< 0.05) in the validation tranche. These loci were mapped to the genes NRP1, TRIOBP, 

EFEMP1, NEDD9, GPC6 and SEC14L4. Two of these six loci, mapped to NRP1 and NEDD9, 

were also associated with traditional ECG parameters at the same significance threshold.  

Pathway analysis 

We performed gene function analysis for all the prioritized GWAS genes (n = 85) with 

Functional Mapping and Annotation of Genome-Wide Association Studies (FUMA) 

software
13

. All protein-coding genes were considered as the background genes. The 

prioritized genes were more highly expressed in the heart (Padj 2.16 x 10
-8

) and blood vessels 

(Padj 0.001). The analysis of gene-set enrichment, focusing on cellular components Gene 

Ontology terms, revealed 28 terms that exhibited significant enrichment within our gene list 

(Figure 4). Most of these terms were related to cardiac ion channels, the sarcomere, and the 

cytoskeleton. 
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Fig 4: Significantly enriched Gene Ontology Cellular Components terms and the associated 

prioritized genes in the latent factor (LF) GWAS. Analysis of enriched pathways 

demonstrates shared molecular functions for genes identified by analysis of both traditional 

ECG parameters and LF, as well as the LF only and our novel findings. Blue: regions which are 

identified by the LF GWAS and the ECG parameter GWAS in our study and have been 

previously validated in other GWAS analyses of ECG traits. Orange: regions which are 

identified by LF GWAS only in our study and have been previously validated in other GWAS 

analyses of ECG traits. Red: novel regions, which have not been linked to the ECG in previous 

GWAS but have a p-value <1% in the LF GWAS and replicate in a held our validation tranche   

 

Gene-wise rare variant association study reveals additional genes associated with latent 

factors, and provides support for LF GWAS loci 

The rare variant analysis was performed by gene burden testing, initially through an exome-

wide approach, with subsequent subset analysis focusing on the prioritized genes from the 

GWAS (n = 85). With the whole-exome approach, we identified two genes, which 

demonstrated significant rare-variant associations with the LFs: NEK6 with LF19 and IL17RA 

with LF5 (both for singleton protein-altering variants, Fig 5). Subsequent subset analysis 

focusing on the prioritized genes identified five additional associations (Fig. 5). Singleton 

-log
10
(p)

1 2 3 4 5 6 7
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variants in the NME7 gene were associated with LF7. LF10 was associated with variants in 

MYBPC3 with an allele frequency <0.001. Rare (allele frequency <0.001) variants in CCT8 

were associated with changes in LF11. Surprisingly, in the GWAS analysis, this locus was 

associated with LF7, rather than LF11. Low frequency (<0.01) variants in the ADAMTS6 gene 

were associated with LF3. Finally, variants in SCN5A (<0.01 allele frequency) were associated 

with LF1 (Fig. 5), which is closely correlated to the PQ interval.  
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Fig 5. ECG median reconstructions and violin plots for carriers and non-carriers of rare 

variants associated with the latent factors. The median reconstructions were generated by 

holding all latent factors as a set value and altering the significantly associated latent factor. 

Dashed lines: medians, dotted lines: quartiles. The lines represent the reconstructions at the 

population mean and the shaded area indicating ±2 standard deviations. 
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Phenotypic associations with the latent factors 

To identify phenotypic associations, we developed separate regression models with the 20 

LFs or the available ECG parameters as predictors and age, age
2
, and sex as covariates. The 

models were used to obtain phenotype predictions in the test set, which were correlated 

with the actual phenotype values (biserial correlation coefficient for binary traits and 

Pearson’s correlation coefficient for the continuous traits). We tested the correlation for 

2074 binary disease phecodes in the BIDMC, 2093 continuous phenotype measures in the 

UKB and 39 echocardiographic traits in the BIDMC.  

Overall, 798 disease phecodes were significantly correlated to at least one of the model 

predictions. The LFs identified 147 phenotypic correlations which were not significant for the 

ECG traits at the Bonferroni selection threshold (Fig. 6A), whereas 25 of the correlated traits 

identified by the ECG parameters were missed by the LFs. For phecodes correlated to both 

LF and ECG traits predictions, 76% (473/626) had a higher correlation coefficient with the LF. 

Although this trend was observed for all phecode categories, it was most pronounced for 

cardiac diseases (Fig. 6A). The ECG traits models were mainly driven by the ventricular rate 

(Fig. 6B), while the contributions of the LFs appeared more varied and category dependent.  

Similar findings were observed for the continuous phenotypes in the UKB (Fig 7A). Out of 

1083 phenotypes which were significantly correlated to at least one of the model 

predictions, 158 were only identified with the LFs, whereas 20 were only correlated to the 

ECG traits predictions. Out of the remaining phenotypes, 58% (522/905) were more highly 

correlated with the LF predictions. Both heart rate and the QT(c) interval proved to be the 

main contributors to the ECG trait models across most categories (Fig. 7B).  

The difference between the LF and ECG traits associations was most pronounced for the 

echocardiographic traits (Fig. 7C). We found that all 35 out of the 38 traits were more highly 

correlated to the LF predictions, with six traits only identified by the LF model and none only 

by the ECG traits. The advantage of the LF model was most pronounced for traits associated 

with the aortic valve and the left ventricular outflow tract (Fig. 7C-D).  
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Fig. 6 Latent factor and ECG trait associations with categorical disease labels (phecodes) in 

the BIDMC dataset.  

A: Difference between the point biserial correlation coefficients for the actual and predicted 

phecode status with the model trained on latent factors (LFs) or ECG traits. Positive 

deflections: higher correlations to the LF predictions, negative deflections: higher 

correlations to the ECG traits predictions. Colour code: red: phecodes only correlated to the 

LF predictions, orange: higher correlations with the LF model, blue: higher correlations with 

the ECG traits model, purple: phecodes only correlated to the ECG trait predictions. B: 

Heatmap of the category mean of the absolute beta parameter from the multivariate 

regression model, normalized to the sum of all beta coefficients for the category. C: The lead 

I median ECG reconstructions stratified by phecode status for systolic heart failureand 

alcoholic pancreatits. Lines: reconstructions at the population mean, shaded area: ±0.5 

standard deviations. Category label abbreviations: Blood: Blood/Immune disorders, Cardio: 

Cardiovascular disorders, Cong: Congenital disorders, Derm: Dermatological disorders, 

Neoplasms, Neuro: Neurological disorders, Resp: Respiratory disorders, ID: Infectious 

diseases, Rx: Disorders due to external agents (e.g., medications), Musc/Skel: 

Musculoskeletal disorders, Mental: Mental health disorders, GI: Gastrointestinal Disorders, 

Metab: Metabolic Disorders, Derm: Dermatological Disorders, Endo: Endocrine Disorders, 

Dev: Developmental Disorders, Cong: Congenital Disorders, Stat: Status/Other 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted October 7, 2024. ; https://doi.org/10.1101/2024.10.07.24314993doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.07.24314993


 

Fig. 7 Latent factor and ECG trait associations with UK biobank quantitative phenotypes 

and echocardiographic traits in the BIDMC. A: Difference between the Pearson correlation 

coefficients for the actual and predicted continuous phenotypes in the UKB with the model 

trained on latent factors (LFs) or ECG traits. Positive deflections: higher correlations to the LF 

predictions, negative deflections: higher correlations to the ECG traits predictions. B: 

Heatmap of the category mean of the absolute beta parameter from the multivariate 

regression model, normalized to the sum of all beta coefficients for the category. C: 

Difference between the Pearson correlation coefficients for the actual and predicted 

echocardiographic traits in the BIDMC with the model trained on latent factors (LFs) or ECG 

traits. Colour code (A&C): red: phecodes only correlated to the LF predictions, orange: higher 

correlations with the LF model, blue: higher correlations with the ECG traits model, purple: 

phecodes only correlated to the ECG trait predictions. D: The lead I median ECG 

reconstructions based on the mean ±1-3 standard deviations values of left ventricle outflow 

tract (LVOT) peak velocity. Red lines indicate negative deviations, while blue lines indicate 

positive deviations. 
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Discussion 

Traditionally, the interpretation of the ECG relies on the identification and measurement of 

human defined morphologies and intervals. While the study of these conventional ECG 

parameters has yielded much insight into cardiac physiology and pathophysiology, these 

methods fail to fully capture the complexity of the ECG. The VAE model offers a novel 

approach which extracts features that more fully characterise the ECG, without anchoring on 

previous knowledge and concepts, and preserve high interpretability through direct signal 

visualisation.  

Our VAE model was trained on a large (> 1 million ECGs) secondary care dataset, derived 

from both in- and outpatient settings, to capture a broad range of pathological and normal 

ECGs. By use of the open-source BRAVEHEART software, we provide a median beat 

extraction method which is easily transferable, as it does not rely on proprietary algorithms 

and can be applied to different types of digital ECG file formats. Additionally, our model was 

able to capture a high degree of electrophysiological variability while preserving feature 

disentanglement. This was demonstrated in external validation in the UKB, where our model 

achieved a Pearson correlation coefficient of 0.95, surpassing the 0.88 obtained by previous 

models
6
.  

By examining the correlations and genetic associations of the 20 VAE-derived LFs and the 11 

conventional ECG parameters, we were able to show that the LFs capture the majority of the 

of the phenotypical and genetic aspects of the conventional metrics. Additionally, the LFs 

were able to identify additional ECG characteristics and genetic associations. In a head-to-

head comparison on a single dataset, while most genetic associations with the conventional 

ECG parameters were captured by the LF, 52% of the LF hits eluded detection by the ECG 

parameters.  

Overall, we observed lower correlation coefficients between the LF themselves and the LFs 

and conventional ECG features, compared to their genetic correlation. Many genetic loci 

were found to associate with multiple phenotypically uncorrelated ECG features. These 

findings are indicative of the presence of pleiotropic genetic factors which act on multiple 

apparently unrelated ECG features.  

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted October 7, 2024. ; https://doi.org/10.1101/2024.10.07.24314993doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.07.24314993


The LF were able to capture genetic associations with many well known modifiers of cardiac 

electrophysiology (e.g. SCN5A, KCNQ1, NOS1AP, KCNH2) as well as myocardial structure and 

contractile function (e.g. TTN, MYH6).  Moreover, our study expanded the genetic landscape 

of ECG associations by identifying and validating six GWAS loci not previously linked to the 

ECG. Two of the the six prioritized genes in these loci (NRP1 and TRIOBP) are associated with 

the same cellular component ontology terms as the previously validated GWAS genes from 

our study (e.g., KCNQ1, SCN5A and MYH6-7). Five of the six novel genes have previously 

been implicated in diverse cardiovascular processes. These novel findings may guide further 

mechanistic and therapeutic exploration into these genes. The NRP1 gene (Neuropilin-1) has 

been linked to cardiac regeneration in zebrafish
14

. The TRIOBP (TRIO and F-actin Binding 

Protein) gene is involved in the modulation of the assembly of the actin cytoskeleton
15

. 

TRIOBP-1, a splicing isoform of TRIOBP has been previously shown to interact with the 

cardiac potassium channel KCNH2
16

, with a potential effect on cardiac repolarization. In our 

study, TRIOBP associated with LF1, which is closely associated to the PQ-interval, potentially 

identifying a novel role in cardiac electrophysiology for this gene.  

The EFEMP1 gene encodes fibulin-3, an extracellular membrane glycoprotein, expressed in 

many human tissues including the heart
17

. This gene is upregulated in heart failure and 

recent studies in murine models have demonstrated a role in cardiac remodelling following 

ischaemic injury
18

. Neural precursor cell expressed developmentally down-regulated 9 

(NEDD9) has been previously linked to endothelial fibrosis and pulmonary arterial 

hypertension
19

. GPC6, a member of the glypicans family of evolutionary conserved heparan 

sulfate proteoglycans anchored to the extracellular leaflet of the cell membrane, has been 

associated with heart failure in clinical and murine studies
20

. 

Apart from the common variant associations, we were also able to identify seven genes with 

rare variant based associations with the LFs. Two of these (MYBPC3 and SCN5A) are well-

established contributors to cardiomyopathy
21

 and cardiac electrophysiology
22

. The ‘never in 

mitosis A’ related kinase 6 (NEK6) gene has been previously linked to hypertrophic 

cardiomyopathy (HCM)
23

 and cardiac fibrosis
24

 in mouse models, but had not previously 

been connected to human disease or the ECG. The interleukin 17 receptor A gene (IL17RA) 

encodes a membrane glycoprotein that binds proinflammatory cytokines. IL17RA has also 

been associated to inflammatory dilated cardiomyopathy 
25

 and heart failure
26

.  
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The NME7 gene belongs to a family of nucleoside diphosphate kinases with a role in ciliary 

transport. Common variants in the NME7 locus have been previously linked to the QT 

interval
27

, although the causal gene had not yet been identified. The CCT8 gene encodes a 

subunit of the chaperone complex involved in folding of actin and tubulin
28

. Common 

variants in the CCT8 locus have recently been linked to HCM
29

. The ADAMTS6 gene encodes 

a protease, involved in the regulation of extracellular matrix composition
30

. Coding variants 

in the ADAMTS6 gene have been linked to the QRS interval
31

.  

Apart from genomic associations, the VAE-derived features also proved a more powerful tool 

for the identification of phenotypic associations, especially for cardiac disease phecodes and 

echocardiographic traits. For these analyses the LF both enabled the discovery of novel 

associations, otherwise overlooked by conventional ECG features, and boosted the power of 

known association testing. Additionally, we demonstrated that LF visualisations can provide 

a clear indication of the ECG changes associated with the relevant genotypes and 

phenotypes. The ability to easily visualise the genetic and phenotypic associations (also 

made available interactively at https://www.cardiodb.org/decg_explorer/) highlights the 

potential of the VAE approach for the generation of new hypotheses. This approach can 

facilitate the discovery of novel phenotypes and guide further genetic and mechanistic 

explorations. 

In conclusion, our study addresses limitations of traditional ECG interpretation by 

introducing a novel approach using the VAE. Our model, trained on a large, diverse dataset, 

enhances interpretability, but also surpasses previous methods in capturing variability and 

identifying associations for common and rare-variant genetic variants and phenotypical 

traits. These findings contribute valuable insights into cardiac electrophysiology, emphasizing 

the potential of advanced analytical methods like the VAE for unravelling the complexity of 

the ECG.  
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Methods 

Dataset 

The VAE was trained and validated on a de-identified dataset derived from the Beth Israel 

Deaconess Medical Center (BIDMC dataset). This dataset consists of 1,169,387 resting 10 

second ECGs derived from 189,542 patients examined at the hospital (median age 65 years ± 

16 SD at the time of examination). The BIDMC dataset is supplemented by dated ICD codes 

and tabular echocardiographic data.  

The VAE model was externally validated in the UK Biobank (UKB). The UKB is a prospective 

study of 40-69-year old volunteers from the general population, recruited between 2006 and 

2010. Digital ECG recordings were taken during the imaging visits (instance 2). Extensive 

phenotypic and genetic data has been gathered from the participants and were accessed 

with approvals in place (Application numbers 47602 and 48666)
32

. Genotyping was 

performed by the UKB central team with the Applied Biosystems (Affymetrix) UK BiLEVE 

Axiom Array or the UKB AxiomTM Array
32

. Imputation was done with the Haplotype 

Reference Consortium and the merged UK10K and 1000 Genomes phase 3 (1000G) 

reference panels
32

. Data used in this study were from a subset of UKB participants for whom 

ECGs were available  (n = 42,248).  

Median ECG derivation  

All median beat ECGs were obtained from resting 10-second ECG signals with BRAVEHEART 

ECG analysis software (https://github.com/BIVectors/BRAVEHEART)
9
. The median beat was 

further adjusted by cropping or zero-padding to a length of 0.8 sec (sampled at 500 Hz) and 

aligning the signals by cross-correlation. In order to remove signals with large pacing spikes 

or excessive noise, signals with extreme voltages (<-8 mV or >8 mV) were excluded from the 

analysis. After median ECG derivation and filtering, the remaining 1,165,311 median ECGs 

were randomly split into a training set (1,048,778 ECGs from 180,679 individuals), a 

validation set (58,265 ECGs from 4,233 individuals) and a test set (58,268 ECGs from 4,500 

individuals), in a 90/5/5% split. 
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VAE architecture  

The VAE consists of three components: the encoder, the decoder and the latent space. The 

encoder and the decoder are made up of one-dimensional convolutional layers with 

increasing filters and decreasing kernel sizes closer to the latent space. The latent space was 

restricted to 30 features at a maximum, although typically only a subset of these features 

was used by the model for the reconstruction. The model was trained to minimize both the 

median ECG reconstruction loss, defined by a symmetric mean absolute percentage error 

function, and the Kullback-Leibler divergence (KL loss). This second term is specifically added 

to the VAE model to ensure that the features generated by the model are generative and 

disentangled. An additional β-parameter was included as a weight on the KL-term to 

optimize the balance between the reconstruction loss and the latent factor interpretability. 

We tested beta values of 0.1, 0.25, 0.5, 1, 3, 5 and 10 and defined the best model at a β-

parameter of 0.25 based on the Pearson correlation between the median and its 

reconstruction in the validation dataset, as well as a visual inspection of the latent vector 

traversals. 

GWAS and common variant gene analysis 

The UKB participants included in the genetic analyses were selected for European ancestry, 

missingness rate of SNPs <10%, no sex discrepancies, and removing outliers of 

heterozygosity or relatedness. After selection, ECGs were available for 31,118 individuals. 

Quality control was performed to exclude SNPs with a minor allele frequency <0.1%, 

genotyping rate <95%, deviation of heterozygosity with Hardy-Weinberg equilibrium p < 1.0 

× 10
−8

 or <0.4 INFO imputation score.  

The GWAS was carried out with the FastGWA MLM implemented by the Genome-wide 

Complex Trait Analysis (GCTA) software using a genetic relationship matrix (GRM) to adjust 

for population structure
33

. The latent factor distributions were normalized by rank-based 

inverse normal transform prior to the analysis. Age, sex, height, BMI, the UKB assessment 

centre and the first 10 genetic principal components were included as covariates. We report 

both the SNPs which were identified by the conventional genome-wide significance 

threshold, with Bonferroni correction for testing of multiple features (p-value < 5 × 10
−8

/20 
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for the LF and < 5 × 10
−8

/11 for the traditional ECG parameters). A less stringent threshold at 

<1% false discovery rate (FDR) was applied to the LF GWAS to select loci which were not 

previously associated with the ECG in the GWAS catalog. 

The genetic variance explained by genome-wide SNPs (SNP-based heritability) was 

calculated with the genomic-relatedness-based restricted maximum likelihood (GREML) 

analysis using the GCTA software
34

. Genetic correlation was calculated with the bivariate 

GREML analysis method
35

. 

The common variant gene analysis was performed with MAGMA software on the summary 

statistics obtained from the GWAS
12

. We used 18,383 genes with a genome-wide 

significance threshold defined as P=2.72 x 10
-6

. 

Locus identification and finemapping 

Conditionally independent genetic variants were identified using a chromosome-wide 

stepwise conditional-joint analysis implemented in the GCTA software
36

. Variants within 500 

kb of each other were aggregated and an additional 500 kb were added to flank the variants 

on each side of the locus. A locus was considered novel if it was not previously associated to 

electrocardiographic traits according to the GWAS catalogue. Potential novel loci were 

further validated by a literature search of nearby genes.  

Functionally informed fine mapping with PolyFun
37

 and SuSiE
38

 was performed to identify 

the most likely causal variants. Precomputed prior causal probabilities from the PolyFun UKB 

analysis were used to compute the per-SNP heritability. Linkage disequilibrium was 

calculated for each locus and used for finemapping. Using SuSiE, we calculated the per-SNP 

posterior inclusion probability (PIP) and identified 95%-credible sets of likely causal variants, 

under the assumption of at most 5 causal variants for each locus. These variants were used 

for annotation with the nearest protein-coding gene and gene prioritization. As several 

regions did not contain 95%-credible sets of likely causal variants for the regions identified 

by the 5% FDR threshold, SNPs with the lowest p-values were used instead. 

Gene prioritization  
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Candidate genes were selected using three approaches: nearest gene annotation, the 

polygenic priority score (PoPS)
10

 and variant-to-gene (V2G)
11

. PoPS uses gene expression, 

biological pathways and protein-protein interactions to assign priority to genes, based on 

their similarity to other potentially causal genes identified based on a prior functional 

annotation and gene-based analysis of the GWAS summary statistics by the MAGMA 

software.
12

 Genes outside the GWAS loci which were significantly associated with the 

phenotype according to the MAGMA analysis were reported separately. The V2G method is 

based on the integration of epigenomic data (eQTL, pQTL, sQTS, chromatin interactions), 

functional predictions and genomic distance to assign a variant level score, with higher 

scores representing a higher likelihood of a functional effect on a target gene. The candidate 

list was generated by selecting the top three highest scoring genes for both the PoPS and 

V2G methods, as well as the MAGMA significant genes and the nearest protein coding gene 

for each region (Supplementary Materials). 

To prioritise the most likely causal gene for each locus, we first selected all established 

Mendelian cardiac arrhythmia
39

 and cardiomyopathy
40

 genes out of the candidate list. 

Secondly, we selected the genes which were selected by >1 method (PoPS, V2G and 

MAGMA). If several genes were selected by an equal number of methods at one locus, a 

literature search was conducted to identify the gene with the strongest relationship to 

cardiac function. If multiple genes were plausible, we selected all candidates for the region. 

If there was no evidence for any of the genes in literature, we selected the nearest gene.  

Pathway analysis 

The GWAS prioritized genes were assessed for tissue specificity in the GTEx v7 (30 general 

tissue types) and gene set enrichment for molecular function Gene Ontology terms with all 

protein coding genes as background with Functional Mapping and Annotation of Genome-

Wide Association Studies (FUMA) software
13

.  

Validation of novel GWAS hits 

We performed GWAS validation in a separate cohort of UKB digital ECGs collected more 

recently, which became available at time of writing this manuscript. This dataset consists of 

ECGs from 24,355 participants, 18,987 of which were included in the GWAS validation 
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cohort after quality control. As the lower sample size resulted in a lack of model 

convergence for some LF with the fastGWA-REML (GCTA) analysis, the validation cohort 

GWAS was done with REGENIE software
41

. Variants from the LF GWAS significant at the FDR 

<1% threshold, which were not previously associated with ECG traits, were selected for 

validation. Variants with a p-value of less then 0.05 in the validation cohort were reported as 

novel findings.  

Rare-variant gene-based association testing 

We performed rare-variant gene-based association testing for each normalized latent factor 

with the UKB 500k whole-exome sequencing (WES) data using the REGENIE software
41

. As a 

first step, a regression model was fitted to correct for polygenicity, ancestry and relatedness, 

with the SNPs which were previously selected for the GWAS analysis. In the second step, we 

preformed exome wide gene-based burden testing, with a significance threshold defined at 

false discovery rate (FDR) < 5%. Covariate adjustment for sex, age, age
2
, height, BMI and the 

10 first genetic principal components was included. Masks were constructed based on 

variant frequency (singleton, <0.001 and <0.01) and likelihood of a pathogenic effect. For 

missense variants, this was determined by a pathogenicity score based on a combination of 

five prediction tools (SIFT, PolyPhen2 HDIV, PolyPhen2 HVAR, LRT and MutationTaster)
42

. As 

previously published, variants which were predicted deleterious by all five algorithms were 

considered as “likely deleterious”
42

. Only loss-of-function and likely deleterious missense 

variants were included in the analysis. We initially considered 18,985 protein coding genes 

with subsequent subset analysis focusing on the prioritized genes from the GWAS analysis, 

with the FDR-corrected p-values adjusted to the number of genes for each analysis.  

Phenotypic associations 

Phenotypic association studies were performed in the BIDMC for binary disease phecodes (n 

= 2074) and echocardiographic traits (n=39), and in the UKB for continuous phenotype traits 

(n = 2093). We developed separate regression models with the LFs or the available ECG 

parameters as predictors and age, age
2
, and sex as covariates. The BIDMC ECG parameters 

were heart rate, QRS duration, QT/QTc interval and PR interval, for the UKB P axis, PQ 
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interval, QTc interval, QT interval, QRS duration, Ventricular Rate, PP interval, QRS number, P 

wave duration, R axis and T axis were used. 

The models were used to obtain phenotype predictions, which were correlated with the 

actual phenotype values (biserial correlation coefficient for binary traits and Pearson’s 

correlation coefficient for continuous traits). Correlations with a Bonferroni corrected p-

value below the 0.05 threshold were excluded from the analysis. 

For the BIDMC dataset, the models were developed with ECGs from the VAE training 

dataset, predictions were derived from ECGs in the test set. We excluded phenotypes with 

>90% missing values and binary phenotypes with counts < 100 in the training set. For the 

disease phecodes we used a single random ECG per subject (n = 176,536 for training, 9,282 

for predictions). For the echocardiographic traits we used a single ECG per subject, taken <30 

days before or after the echocardiography (n = 58,063 for training, 3006 for predictions). For 

the UKB dataset, we randomly split the dataset into a training (n = 32,832) and a test set (n = 

8208).  

Data availability and ethics 

The summary statistics supporting the GWAS findings will be made publicly available 

through the GWAS Catalog upon publication following peer review. The code used to 

perform the analyses and generate the plots for this is accessible in the supplement. All UKB 

data used in this study is publicly availableto registered researchers 

(https://www.ukbiobank.ac.uk/). The LF generated from the UKB ECGs will be made 

available as a Returned Dataset in the UKB.  

All studies were approved by the relevant regional research ethics committees, and adhered 

to the principles set out in the Declaration of Helsinki. The UK Biobank study was reviewed 

by the National Research Ethics Service (11/NW/0382, 21/NW/0157). This study was 

conducted under terms of access approval number 47602 and 48666. The BIDMC cohort 

ethics review and approval was provided by the Beth Israel Deaconess Medical Center 

Committee on Clinical Investigations, IRB protocol # 2023P000042. Access to the BIDMC 

dataset is restricted due to ethical limitations.  
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