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18 Abstract 
19 Co-infection by intestinal helminths and Plasmodium spp. may be common in endemic 

20 communities. Several studies have identified a relationship between helminth infection, 

21 Plasmodium spp. infection and malaria severity. However, the relationship is not well defined, 

22 and results are inconclusive. We analyzed 202 stool samples from a cohort of children with 

23 severe malaria enrolled in two hospitals in Uganda from 2014-2017 and asymptomatic 

24 community children from the same household or neighborhood and enrolled at the same time, all 

25 6 months to 48 months of age. We investigated if intestinal helminth infection modified risk of 

26 severe malaria. We extracted nucleic acids from stool and tested them for six helminth species 

27 (Anyclostoma duodenale, Ascaris lumbricoides, Necator americanus, Strongyloides stercolaris, 

28 Trichuris trichiura, Shistosoma mansoni) using highly sensitive quantitative PCR. We found a 

29 low prevalence of infection by ≥1 intestinal helminth species in children with severe malaria 

30 (5.1%, n=9/177) and community control children (4.0%, n=1/25). Infection by ≥1 of the 

31 helminths assessed was not associated with severe malaria (aRR = 1.0, 95% Confidence Interval 

32 = 0.82, 1.3, p = 0.78). In 2003 Uganda instituted a national deworming program, with anti-

33 helminth medication provided twice annually to children 6 months to 5 years of age.  In these 

34 areas of Uganda, the national deworming campaign has been highly successful, as stool-based 

35 helminth infection was rare even when using highly sensitive methods of detection and was not a 

36 major contributor to risk of severe malaria. 

37
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38 Introduction 
39 Soil-transmitted helminths (STH) are parasitic worms that live in the human gut during the 

40 adult stage of their lifecycle. Worms lay eggs, which are shed in human feces at high 

41 concentrations (e.g., up to 500,00 eggs per gram feces) [1]. Following a period of incubation in 

42 soil, transmission occurs when people ingest or contact the infective lifecycle stage. The most 

43 common STHs include roundworms (Ascaris lumbricoides), whipworms (Trichuris trichiura), 

44 and hookworms (Necator americanus and Ancylostoma duodenale). The Global Burden of 

45 Disease study estimates that 294 million people are infected by Ascaris, 267 million by 

46 Trichuris, and 113 million by hookworm (2021 data) [2]. Strongyloides stercolaris is a rare STH 

47 species but is unique in that autoinfection is possible and persistent infections have been reported 

48 for decades [3]. Schistosoma mansoni is another intestinal helminth that differs from STHs 

49 because the Schistosoma lifecycle requires development in snails in freshwater, where exposure 

50 occurs. It is estimated that Schistosoma spp. infect 151 million people (2021 data) [2]. 

51 The burden of disease from intestinal worms is concentrated in low- and middle-income 

52 countries (LMIC) without adequate sanitation [4]. Yet, modelling in endemic communities has 

53 demonstrated that persistent helminth transmission is possible even in areas where sanitation 

54 coverage is high [5]. As an integrated approach to helminth control, the World Health 

55 Organization recommends improving sanitation infrastructure as well as hygiene education and 

56 preventative chemotherapy [6]. Preventive chemotherapy for intestinal helminths involves the 

57 periodic administration of anthelmintic drugs to at-risk populations. As a part of preventative 

58 chemotherapy efforts, mass drug administration (MDA) programs are employed in endemic 

59 areas where these parasitic infections are prevalent [7]. These programs aim to treat entire 

60 populations, regardless of infection status, with a single dose or multiple doses of anthelmintic 
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61 drugs such as albendazole or mebendazole, depending on the specific parasites present in the 

62 region.

63 In Uganda, a nationwide survey of more than 20,000 school children was conducted for 

64 STHs from 1998-2005 [8]. Approximately half of children (55%) were infected by ≥1 STH.  The 

65 prevalence of Trichuris trichiura was 5.0% (range: 0–68% by school), Ascaris lumbricoides was 

66 6.3% (0–89% by school), and hookworm was 44% (0–90% by school). In response to the high 

67 prevalence of helminth infection, the Uganda Ministry of Health began implementation of its 

68 national STH control program in 2003, including twice yearly deworming for school age 

69 children [9]. Later, in 2005, Uganda began implementation of biannual “Child Health Days”. 

70 These health fairs are campaign style events organized by District Health Teams, which includes 

71 deworming every six months for children 12-60 months of age [10].  

72 Malaria is an infectious disease caused by Plasmodium spp. parasites, which are transmitted 

73 to humans through the bites of an infected female Anopheles mosquito. After transmission, 

74 Plasmodium enters the bloodstream and invades red blood cells, where the parasite replicates. 

75 Most cases of malaria are uncomplicated or even asymptomatic [11]. Severe malaria occurs in a 

76 small subset of cases, and is characterized by complications that include prostration, severe 

77 anemia, multiple seizures, respiratory distress, or coma. The World Health Organization 

78 estimated there were 249 million cases of malaria in 2023, a 7% increase from 2019 [12]. 

79 The 85 countries where malaria is endemic has substantial overlap with countries where 

80 STHs are endemic [13,14]. While co-infection is common, there is mixed evidence regarding the 

81 association between Plasmodium spp. infection, malaria severity, and STH infection. Individual 

82 studies on co-infections have reported conflicted findings [15]. A 2016 meta-analysis found that 

83 STH infection may increase susceptibility to uncomplicated or asymptomatic P. falciparum 
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84 infection but may protect against malaria-induced anaemia [16]. A 2021 meta-analysis found in 

85 the unadjusted analysis that STH infection was protective against P. falciparum infection, but 

86 after adjusting for potential confounders observed that STH infection may increase susceptibility 

87 to P. falciparum infection [15]. Despite evidence for a potential interaction between P. 

88 falciparum and STH infection, the mechanism of interaction remains poorly defined.

89 The Neurodevelopment Outcomes in Children with Severe Malaria Study enrolled children 

90 with severe malaria and asymptomatic community control children from the same neighborhood 

91 or household in Kampala and Jinja, Uganda from 2014-2017. We tested stool samples from a 

92 subset of these study children to determine if intestinal helminth infection modified risk of severe 

93 malaria among children enrolled in the study. Our research aims were to (1) assess the 

94 prevalence of common intestinal helminth species among young children in Uganda using highly 

95 sensitive molecular methods; and (2) determine if intestinal helminths modified risk of severe 

96 malaria among children enrolled in this study.

97 Methods 
98 We prospectively enrolled 600 children with severe malaria and 120 community children 6 

99 months to 48 months of age at Mulago National Referral Hospital in Kampala and Jinja Regional 

100 Referral Hospital in Jinja, Uganda. Full details of study enrollment, inclusion and exclusion 

101 criteria and study procedures have been previously published [17]. Eligibility criteria for children 

102 with severe malaria included evidence for malaria parasitemia via a rapid diagnostic test or by 

103 Giemsa microscopy and ≥1 of the five common severe malaria features in Uganda (prostration, 

104 severe anemia, multiple seizures, respiratory distress, and coma). Community children were 

105 enrolled from the nuclear family, extended family, or household area of children enrolled with 

106 severe malaria. Inclusion criteria for community controls was residence in the same or nearby 
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107 neighborhood as an enrolled child with severe malaria and being 6 months to 48 months of age. 

108 Exclusion criteria included an illness requiring medical care within the previous four weeks, a 

109 major medical or neurological abnormality at screening physical examination, or an active illness 

110 or axillary temperature on screening of >37.5°C.

111 Following admission, child feces was collected from the child’s first bowel movement into 

112 sterile collection containers, which were aliquoted into 2mL cryovials. Community children were 

113 provided a stool container and asked to bring back a stool sample within 1 month of enrollment.  

114 Samples were stored at -80C in Uganda shipped to Indiana University on dry ice at the 

115 completion of the study. Samples at Indiana University were again stored at -80C.

116 We selected a subset of 202 stools for inclusion in this study based on: (1) the stool sample 

117 was collected ≤48 hours after admission and (2) adequate stool was available for nucleic acid 

118 extraction. These criteria included fecal samples from 177 children with severe malaria and 25 

119 community controls. A sample size of 177 children with severe malaria and 25 community 

120 control children provided ≥80% power to detect a ≥17% absolute difference in intestinal 

121 helminth infection rates in the children with severe malaria, if the baseline rate of stool helminth 

122 infection in the control group was 20% [8,18]. We extracted DNA from 100mg of child feces 

123 using the QIAamp 96 Virus QIAcube HT Kit (Qiagen, Hilden, Germany), which we automated 

124 on the QIAcube. Extraction included a pre-treatment step with Qiagen PowerBead Pro Tubes 

125 (Qiagen, Hilden, Germany), which we have previously validated for multi-pathogen analysis 

126 [19,20]. We included at least one negative extraction control on each day of DNA extractions 

127 and spiked an extraction positive control (i.e., bovine herpes virus) into each sample. 

128 We used quantitative PCR (qPCR) to measure nucleic acids for five common STH species 

129 including Anyclostoma duodenale, Ascaris lumbricoides, Necator americanus, Strongyloides 
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130 stercolaris, and Trichuris trichiura as well as Shistosoma mansoni, which is another intestinal 

131 helminth species endemic in Uganda [21]. PCR was performed via a custom TaqMan Array Card 

132 (TAC) on a Quantstudio 7 Flex Instrument (Applied Biosystems, Waltham, MA). At least one 

133 positive control (i.e., a plasmid with all gene targets) and one negative control was run each day 

134 of PCR analysis. We developed a standard curve for TAC using the methods described in Kodani 

135 and Winchell 2012 [22]. Quantification cycle was determined via manual thresholding, by 

136 comparing sample amplification against our daily positive and negative controls. Additional data 

137 on PCR reaction conditions and QA/QC can be found in the appendix (S1 Text, S1 Table).

138 We generated summary statistics using Microsoft Excel 365 and performed statistical 

139 analyses in RStudio (R Foundation for Statistical Computing, Vienna, Austria, Version 4.2.3). 

140 We assessed if infection by ≥1 helminth modified risk of severe malaria using Poisson regression 

141 modeling. In our model, severe malaria status was the dependent variable, while helminth 

142 infection, age, and socioeconomic status were included as independent variables. We accounted 

143 for clustering by study site [23]. 

144 Ethical Approval

145 Initial verbal consent from the parents or legal guardians of study participants was obtained 

146 for children fulfilling inclusion criteria, since most participants were critically ill and required 

147 emergency stabilization. Written informed consent was obtained once the participant was 

148 clinically stabilized. Ethical approval was granted by the Institutional Review Boards at 

149 Makerere University School of Medicine, the University of Minnesota, Indiana University, and 

150 regulatory approval granted by the Uganda National Council for Science and Technology.
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151 Results 
152 We found a low prevalence of helminth infection among children with severe malaria and 

153 community controls. The prevalence of any helminth infection was similar children with severe 

154 malaria (5.1%, n=9/177) and community control children (4.0%, n=1/25) (Table 1). Necator 

155 americanus was the most frequently detected helminth (severe malaria 1.7%, community 

156 controls 4.0%), followed by Trichuris trichiura (severe malaria 1.7%, community controls 0%), 

157 Shistosoma mansoni (severe malaria 1.1%, community controls 0%), Ascaris lumbricoides 

158 (severe malaria 0.6%, community controls 0%), and we did not detect Strongyloides stercolaris 

159 or Ancylostoma duodenale. Infection by ≥1 of the helminths assessed was not associated with 

160 severe malaria (aRR = 1.0, 95% Confidence Interval = 0.82, 1.3, p = 0.78) via Poisson regression 

161 modelling (S2 Table).

162 Table 1. Prevalence of intestinal helminth infection among children with severe malaria and 

163 community controls

Pathogen Severe Malaria Community Controls
Prevalence Median ova 

concentration (gene 
copies/gram feces) *

Prevalence Median ova 
concentration (gene 
copies/gram feces) *

t-test p 
value

≥1 helminth 5.1% (9/177) 4.0% (1/25) 0.80
Anyclostoma duodenale 0% (0/177) Not detected 0% (0/25) Not detected NA
Strongyloides stercolaris 0% (0/177) Not detected 0% (0/25) Not detected NA
Ascaris lumbricoides 0.6% (1/177) 3.1 log10 0% (0/25) Not detected 0.32
Schistosoma mansoni 1.1% (2/177) 6.5 log10 0% (0/25) Not detected 0.16
Trichuris trichiura 1.7% (3/177) 2.3 log10 0% (0/25) Not detected 0.08
Necator americanus 1.7% (3/177) 5.1 log10 4.0% (1/25) 2.6 log10 0.58

164 Note: *Calculation of median excludes non-detects  
165 Helminth prevalence was similar among children enrolled in Kampala (6.7%, n=7/105) 

166 and Jinja (3.1%, n=3/97) (t-test p value = 0.24). The single Ascaris infection and both 

167 Schistosoma infections were detected in children from Kampala. Hookworm infections (i.e., 

168 Necator americanus) were split equally across the sites (n=2 in Kampala and n=2 in Jinja).  For 

169 Trichuris two of the three infections were in children from Kampala while the third infection was 

170 observed in Jinja. 
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171 Discussion
172 We observed a low prevalence of intestinal helminth infection in children with severe 

173 malaria and community controls who were enrolled in this study. These results support the 

174 effectiveness of the national semi-annual deworming campaign in Uganda. In addition, they add 

175 to previous studies showing a decrease in intestinal helminth infections using the Kato-Katz 

176 method [24] by demonstrating that infections were very low in these communities even when 

177 stool was tested by highly sensitive qPCR, which is more sensitive than microscopy [25]. Due to 

178 the low prevalence of intestinal helminth infection, and especially the low prevalence of 

179 individual species, these results do not offer insight into the relationship between helminths and 

180 the susceptibility to Plasmodium spp. infection or malaria severity among young children. 

181 Instead, our results provide evidence that severe malaria occurred frequently in an area with a 

182 very low prevalence of intestinal helminth infections, as evaluated by highly sensitive qPCR. 

183 The study data suggest that in these areas, intestinal helminth infections play little role in the risk 

184 of development of severe malaria. 

185 While intestinal helminth infection prevalence was low, other factors may modify risk of 

186 Plasmodium spp. infection and malaria severity. Infection by pathogenic enteric viruses, 

187 bacteria, and protozoa are common in children in low-income countries, with combined enteric 

188 pathogen prevalence often approaching 100% [26–28]. It remains unclear if and how other 

189 enteric pathogens may modify risk of Plasmodium infection and malaria severity. However, 

190 there is increasing evidence the gut microbiome is a risk factor of severe malaria and that the gut 

191 microbiome plays a role in malaria pathogenesis [29].

192 National level surveillance for intestinal helminth infections has not been conducted in 

193 Uganda since the 1998-2005 nationwide survey [8]. A follow-up study of five districts in 2022 – 
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194 which did not overlap with the districts we enrolled children from – found that intestinal 

195 helminth prevalence had decreased in most districts, but localized heterogeneity in infection 

196 prevalence persists [24]. Another study of six regions of Uganda, which also did not include 

197 Kampala and Jinja in its testing, found low rates of stool helminth infection, with some 

198 heterogeneity by region, but overall rates, particularly for hookworm infection (Necator 

199 americanus or Ancylostoma duodenale) were higher than in this study. Of note, all of these 

200 studies used Kato-Katz microscopy to detect stool helminth infections, while in the current study 

201 we used highly sensitive qPCR to detect intestinal helminth ova shed in stool. Thus, the results of 

202 this study provide strong new evidence for lack of stool helminth infection, even at very low 

203 concentrations, in most children in Kampala and Jinja. The World Health Organization has 

204 shifted its focus from coverage-based deworming targets to eliminating helminth morbidity as a 

205 public health problem. Elimination of helminth morbidity is defined in this program as <2% 

206 prevalence in children of moderate-to-heavy intensity infection from any STH [30]. However, 

207 there remains a lack of consensus on interpreting qPCR data to determine infection severity 

208 because the number of gene copies per ova varies between species and increases as the ova 

209 develops [31]. For example, the number of gene copies of the Ascaris spp. gene target ITS-1 

210 increases from <10 per egg to approximately 10,000 after 10 days of incubation [32]. Though 

211 our study had a small sample size and did not characterize infection severity, the low prevalence 

212 of any helminth infection we detected provides suggestive evidence that the WHO morbidity 

213 target is close to being achieved in the communities we studied. It is possible that some de-

214 worming resources could be re-allocated from the districts we studied to other districts in 

215 Uganda where intestinal helminths remain a greater public health problem, though this could risk 

216 a recurrence of higher rates of intestinal helminth infection in this area. 
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217 Intestinal helminth surveys in Uganda – as well as in other endemic countries – primarily use 

218 microscopy (e.g., kato-katz, mini-FLOTAC) to detect eggs in stool [8,33]. Molecular techniques, 

219 such as qPCR, offer superior sensitivity to microscopy and may be advantageous for helminth 

220 studies in low-prevalence communities [34]. While microscopy is labor-intensive and requires 

221 highly trained technicians, the reagents and equipment needed for microscopy are substantially 

222 cheaper than for molecular methods. In low- and middle-income countries where helminths are 

223 endemic, molecular methods may be a useful complementary tool to microscopy for surveillance 

224 in communities with a low prevalence of infection.

225 Study limitations include a small sample size, which permitted detection of only large 

226 differences in stool helminth infection rates between children with severe malaria and 

227 community children. In addition, this study’s sample size was much smaller than those of 

228 helminth surveillance studies in Uganda [24]. Study strengths include the rigorously 

229 characterized cohort of children with severe malaria and the use of modern molecular methods 

230 with a higher sensitivity than microscopy [34]. Future work on the relation between intestinal 

231 helminth infection and malaria in communities with a higher prevalence of helminth infection 

232 will be important to better elucidate the relationship between these pathogens. However, the 

233 study results suggest that in Kampala and Jinja, stool helminth infection is rare and therefore an 

234 unlikely contributor to risk of severe malaria.

235 Community helminth and malaria prevalence are mediated by multiple factors including the 

236 environment, household infrastructure, personal behavior (e.g., wearing shoes to prevent 

237 hookworm infection or using insecticide treated bed nets to prevent malaria), and the frequency 

238 of preventative chemotherapy [1,6,35–37]. Integrated approaches – such as those promoted by 

239 the World Health Organization – have made substantial progress in reducing morbidity from 
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240 helminth infections globally since the year 2000 [2]. Control efforts have also dramatically 

241 reduced mortality and morbidity due to malaria in the same period, but climate change, parasite 

242 resistance to frontline medications and insecticides, and humanitarian crises threaten to derail 

243 progress [12]. While evidence for the relationship between helminths and malaria remains 

244 mixed, there is a clear and urgent need to continue integrated efforts towards reducing the global 

245 burden of disease from these parasites.
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