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 2 

Abstract 26 

 27 

Insulin Resistance (IR) is a component of the pathogenesis of type 2 diabetes mellitus (T2DM), 28 

and risk factor for cardiovascular and neurodegenerative diseases. Amino acid and lipid 29 

metabolomic IR diagnostics associate with future T2DM risk in epidemiological cohorts. Whether 30 

these assays can accurately detect altered IR following treatment has not been established. In the 31 

present study we evaluated the ability of metabolomic diagnostics to predict altered IR following 32 

exercise treatment. We evaluated the performance of two distinct insulin assays and built 33 

combined clinical and metabolomic IR diagnostics. These were utilised to stratify IR status in the 34 

pre-intervention fasting samples in three independent cohorts (META-PREDICT (MP, n=179), 35 

STRRIDE-AT/RT (S-2, n=116) and STRRIDE-PD (S-PD, n=149)). Linear and Bayesian 36 

projective prediction strategies were used to evaluate biomarkers for fasting insulin and HOMA2-37 

IR and change in fasting insulin with treatment. Both insulin assays accurately quantified 38 

international standard insulin (R2>0.99), yet agreement for fasting insulin was less congruent 39 

(R2=0.65). Only the high-sensitivity ELISA assay could identify the mean effect of treatment on 40 

fasting insulin. Clinical-metabolomic models were statistically related to fasting insulin (R2 0.33 41 

– 0.39) but had modest capacity to classify HOMA2-IR at a clinically relevant threshold. 42 

Furthermore, no model predicted treatment responses in any cohort. Thus, we demonstrate that the 43 

choice of insulin assay is critical when quantifying the influence of life-style on fasting insulin, 44 

while none of the clinical-metabolomic biomarkers, validated in cross-sectional data, are suitable 45 

for monitoring longitudinally changes in IR status.  46 

 47 

 48 

  49 
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 3 

Introduction 50 

 51 

Chronic hyperinsulinaemia, a feature of type 2 diabetes mellitus (T2DM), contributes to a cycle of 52 

events driving further insulin resistance (IR) 1, promoting cardiovascular 2 and neurodegenerative 53 

diseases 3. Extreme IR also represents a distinct category of T2DM 4. Lifestyle based treatments 54 

are effective at reducing the risk of developing T2DM. 5–8 Such programs, typically involving 55 

exercise training, modify IR with high intra-individual variability. 9–14 Similar variability is 56 

observed in response to drug treatment. 15,16 While monitoring the efficacy of treatment on glucose 57 

tolerance in large cohorts is relatively straightforward 17, the same cannot be said for monitoring 58 

insulin action. 18,19 Furthermore, the varying characteristics of commonly used insulin assays 59 

complicate comparison across studies. 20,21 There are clear clinical definitions for diagnosing 60 

T2DM and impaired glucose tolerance (IGT) but less so for IR, possibly due to the lack of 61 

widespread measurement of insulin. This is problematic because IR is distinct from glucose 62 

intolerance and can precede T2DM and slowly developing age-related diseases by decades and 63 

thus there is an urgent need to enable tracking over time IR. 22,23 64 

 65 

This need for cost-effective practical IR diagnostics has stimulated the development of several 66 

clinical 24 and molecular prototypes, including assays relying on branched-chain amino acids 67 

(BCAA)25–28, plasma lipoproteins29–31 and multi-protein signatures.32 The abundance of several 68 

circulating amino acid and plasma lipids have been incorporated into statistical models that predict 69 

IR in cross-sectional, prospective or retrospective analyses (i.e. predict T2DM risk).25–27,29–31,33 70 

Circulating BCAA are particularly attractive as surrogates for IR because disrupted catabolism of 71 

individual BCAA have been mechanistically and causally linked to IR, cardiovascular and 72 
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neurodegenerative disease processes in recent years 13,28,34–43. It remains unclear how well 73 

abundance of BCAA in the circulation reflects the mechanistic role of BCAA within the key tissues 74 

responsible for their catabolism and therefore in turn their ability to track with changes in 75 

metabolic fitness.   76 

 77 

In addition to predicting IR, it would therefore be ideal if metabolic ‘risk’ biomarkers could 78 

reliably associate with improvements in IR following treatment, so that non-responders could be 79 

reallocated to alternative treatments. 14–16,44,45 There have been attempts to establish if plasma 80 

BCAA abundance tracks treatment responses yielding conflicting conclusions, partly because 81 

existing studies have been too small to reliably explore such relationships. 46,47 Determinants of 82 

insulin action also reflect a combination of distinct acute mechanisms in the hours post-exercise, 83 

and more stable long-term adaptive changes 48 – such as increased tissue vascularisation. 49 Such 84 

temporal influences have not been considered when evaluating these novel biomarkers. 85 

Immediately post-exercise insulin action and glucose tolerance can be impaired, while insulin 86 

responses to an oral glucose tolerance test (OGTT) appear lowest 72hr following the previous 87 

exercise training session.50 88 

 89 

In the present analyses we have assessments of IR within 24hr and 48-72hr after the last training 90 

session of chronic exercise training that was effective in reducing group mean HOMA2IR. The 91 

idea is that novel biomarkers should offer practical (e.g. cost, simplicity) advantages over 92 

laboratory insulin assays, and if they can be shown to predict longitudinal changes in IR, then 93 

efforts to configure low-cost standardised assay from minimally invasive sampling would be 94 

motivated. In the present multi-study analysis, we evaluated, in hundreds of individuals at-risk for 95 
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T2DM, the performance of established BCAA and lipid biomarkers, combined with simple to 96 

measure clinical phenotypes to estimate fasting IR and predict changes in insulin following 97 

supervised lifestyle interventions.9,12,51,52 We established that choice of insulin assay is critical for 98 

capturing interactions between exercise status and fasting insulin, while plasma biomarkers of IR 99 

status, from cross-sectional and prospective studies, are unable to track with treatment responses. 100 

 101 

Results 102 

 103 

Demographic, blood and metabolomic data for the three independent cohorts - STRRIDE AT/RT 104 

(S-2), STRRIDE-PD (S-PD) and MP - are presented in Table 1.  105 

 106 

Comparison of insulin assay and metabolomics assay performance 107 

A long-standing challenge is that commercial assays for insulin show distinct specificity and 108 

sensitivity profiles, with no agreement to move to a single standard assay.20,21 Some historical 109 

insulin assays, utilised in exercise intervention studies (e.g. HERITAGE)53 or included in genome-110 

wide association modelling,54 do not show molecular associations consistent with modern more 111 

specific insulin assays.13 We produced a large-scale comparison of two typical insulin assays (the 112 

immunoassay based automated analyzer (Immulite 2000) and a manual high sensitivity ELISA kit 113 

(Dako, Stockholm, Sweden), run in parallel on samples obtained before and after exercise-training 114 

that reduced IR.55 Both Immulite 2000 and Dako ELISA showed near perfect (>R2=0.99) 115 

correlation with the international WHO standard for insulin (National Institute for Biological 116 

Standards and Control, Figure S1A-B). No cross reaction with c-peptide standard was detected 117 

(data not shown). When plotting insulin values from the same fasting samples, there was moderate 118 
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agreement between the two assays (R2=0.65, Figure S2). Critically, insulin measured using the 119 

high-sensitivity ELISA was able to detect a group mean reduction following exercise training, 120 

while the Immulite 2000 immune-assay could not (Figure 1). All the subsequent analyses relied 121 

on the data generated by the Dako high-sensitivity ELISA (produced in a single laboratory).  122 

 123 

Biomarker association with fasting insulin and HOMA2-IR status 124 

Predictor variables were selected based on the literature summarised above, and availability in all 125 

three cohorts. Linear regression was performed to explore individual relationships between fasting 126 

insulin and the selected clinical and metabolomic biomarkers (Figure 2; full results in Table S1). 127 

In MP, all pre-selected variables other than age (p=0.09) reached statistical significance for 128 

association with fasting insulin (age is a reliable covariate but the age-range in MP was limited). 129 

In S-2 log10 BMI (p<0.001), fasting glucose (p<0.001), HDL (p=0.007), TAG (p<0.001) and amino 130 

acids (isoleucine (ILE) p=0.0005, leucine (LEU) p=0.006, valine (VAL) p<0.001, alanine (ALA) 131 

p=0.0027) were linearly associated with fasting insulin. Similar levels of associations were 132 

observed in the S-PD cohort, except for ALA (p=0.068). For multi-variable predictors of fasting 133 

insulin (or HOMA2-IR) and predictors of treatment responses, variables which showed a 134 

statistically significant association in one or more of the cohorts were considered (as each was 135 

supported with published evidence for having an association in cross-sectional cohorts).  136 

 137 

As each study used some distinct metabolomic methods (see Methods) we performed multivariable 138 

linear regression and logistic regression with K-fold cross validation (k=10) separately in MP, S-139 

2 and S-PD cohorts. Four models were considered; a baseline model (age, BMI and gender), a 140 

BCAA model (age, BMI, gender and sum of BCAA), a lipid model (age, BMI, gender, HDL, LDL 141 
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 7 

and TAG) and finally, a combined model (age, BMI, gender, BCAA, HDL, LDL and TAG). The 142 

combined model estimated fasting insulin (R2 0.33 – 0.39), with the results in agreement with 143 

previous observations (Table 2). Fasting glucose was excluded when predicting IR status. For IR 144 

ROC analysis, insulin sensitive (IS, HOMA2-IR <1.3) and insulin resistant (IR, HOMA2-IR ³1.3) 145 

was defined based on results from a large population study (n=95,540) where HOMA2-IR ³1.3 146 

was associated with an increased risk for the development of T2DM over a median of 4.7y (hazard 147 

ratio of 3.2 (95% CI 1.9-5.3)). 56 The four models were assessed in each cohort for their ability to 148 

classify IS vs IR (Figure 3). The baseline model had no discriminatory performance in S-2, so the 149 

metabolomics variables improved that model substantially, however metabolomics did not add 150 

further to the clinical model ROC performance in MP or S-PD, and the best models had a modest 151 

Cohens Kappa (Table S2). This illustrates that even though BCAA and lipid models statistically 152 

associate with IR status, they do not contribute to a clinically useful model. 153 

 154 

Biomarker based prediction of IR status in response to lifestyle intervention. 155 

We established that each biomarker statistically associated with fasting insulin in each study 156 

(Table S1) and as reported by others. Finally, we examined the utility of these biomarkers for 157 

predicting exercise treatment related insulin responses in IR. For this analysis we were able to 158 

include changes in fasting glucose (easy and inexpensive to measure) as we did not rely on the 159 

HOMA model. Figure 4 displays the univariable linear relationships of changes in clinical and 160 

metabolomic biomarkers with changes in fasting insulin as measured with the high sensitivity 161 

ELISA over an exercise intervention in all three cohorts (Figure S3 provides the correlation 162 

coefficients (including for individual amino acids). To examine the classification utility of 163 

individual and combinations of biomarkers we built Bayesian linear models, independently for 164 
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 8 

each cohort, modelling change in fasting insulin after each intervention. The models included age 165 

and changes over the intervention in individual BCAA, fasting glucose, BMI, lipids, systolic blood 166 

pressure and alanine. The full models (“reference” models) were considered as the optimum 167 

solution to the prediction task.57 The posterior predictive distributions showed the models 168 

performed well and were able to predict data like that of the observed data (Fig 4A-C). Using 169 

projective prediction, we found that the biomarkers did not, however, improve predictive 170 

performance over a null model i.e. the intercept term (Figure 4D-F).58 Thus, change in biomarkers 171 

(alone or additively combined) could not predict change in fasting insulin following an exercise 172 

intervention.  173 

 174 

Discussion 175 

Development of a cost-effective diagnostic for insulin sensitivity would help better understand the 176 

aetiology of T2DM and aligning clinical practice with the key recommendations of the 177 

International Diabetes Federation, namely early detection and prevention of pre-diabetes.59 178 

Hyperinsulinaemia drives altered insulin receptor expression potentially leading to further IR.1 IR 179 

in turn contributes to cardiovascular disease2 and dementia risk. 3 Insulin is not, however, routinely 180 

measured in the clinic and thus crucial information regarding the temporal nature of IR is lacking. 181 

Previous work has identified several potential biomarkers for IR in cross-sectional and prospective 182 

settings. 25–27,29–31,33 The present study extends this body of work to evaluate these IR biomarkers 183 

in the context of their ability to accurately classify changes in fasting insulin in response to exercise 184 

(MP and S2) or lifestyle (S-PD) based treatment for individuals with multiple risk-factors for 185 

T2DM.  186 

 187 
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 9 

Importance of the insulin assay  188 

To our knowledge we are the first to demonstrate the importance of insulin assay choice on 189 

detecting changes in fasting insulin in large scale treatment studies. The MP cohort represents a 190 

typical group of sedentary middle-aged individuals with multiple risk factors for T2DM.12 We note 191 

that the Immulite 2000 immunoassay was unable to detect exercise induced improvements in 192 

fasting insulin, while concurrent measurements using a high sensitivity ELISA assay did. Notably 193 

neither assay demonstrated any cross-reactivity with c-peptide and they both performed well in a 194 

standard curve analysis. The American Diabetes Association attempted to reach a consensus on 195 

standardizing the measurement of insulin.20,21 Our analysis indicates that if environmental 196 

influences or treatment effects on fasting insulin levels are to be captured, a high-sensitivity ELISA 197 

assay should be utilised. We have previously reported that some older insulin assays, with 198 

undocumented specificity (e.g. HERITAGE),60 were unsuitable for genomic association 199 

analysis.13 Indeed, it is plausible that the use of insulin assays insensitive to variations across the 200 

‘normal’ range of fasting insulin, or with cross-reactivity for C-peptide, have undermined genome-201 

wide association modelling of fasting insulin.61 While suboptimal insulin assays will not be 202 

voluntarily retired by manufacturers, it would seem sensible that the research community adopt 203 

the use of high-sensitivity assays for studies of fasting insulin in all situations (other than extreme 204 

hyperinsulinaemia)20,21 especially when subtle gene-environment interactions are of interest to 205 

study.  206 

 207 

Metabolomic components of the IR biomarker models 208 

There is a well-established positive correlation between individual circulating BCAA and greater 209 

IR 25–27 and pathways that control BCAA catabolism have gained interest as possible targets for 210 
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 10 

reversing IR.28,62,63 Furthermore, BCAA have been combined with clinical parameters to 211 

reportedly increase the performance of models that predict both IR and risk of T2DM.29,31,33 We 212 

previously identified, using four independent cohorts, a transcriptional signature including BCAA 213 

catabolism pathway genes, that related to IR after adjustment for age, VO2max and BMI (n=564). 214 

We also found that in response to four independent lifestyle interventions (n=196), expression of 215 

16 genes in human skeletal muscle changed in proportion to improvements in insulin sensitivity, 216 

with 25% of those related to BCAA metabolism.13 While this makes sense, as by mass, skeletal 217 

muscle has the largest capacity for BCAA catabolism in humans 64 it does not provide evidence 218 

that circulating levels of BCAA’s will dynamically reflect tissue responses to insulin. In fact, 219 

insulin mediated BCAA clearance may also rely on other organs including the liver.65 220 

 221 

In a recent study, Lee et al claimed that baseline plasma BCAA levels related to change in glucose 222 

infusion rate during a hyperinsulinaemic−euglycaemic clamp (a measure of insulin sensitivity and 223 

liver fat content 47). This was despite no change in total plasma BCAA levels and an increase in 224 

muscle BCAA catabolism pathway gene expression. We also found no change in group mean 225 

blood BCAA abundance with any exercise training protocol (Table 1), which might be 226 

understandable as only ~40% of subjects demonstrate a numerical improvement in HOMA2-IR 227 

and some demonstrate an increase in IR.12,13 Nevertheless we did not find that changes in combined 228 

plasma BCAA were able to predict changes in IR status. This observation is consistent with earlier 229 

modelling approaches applied to the STRRIDE cohorts, where the combination of BCAA and 230 

lipid-based IR biomarkers could not predict changes in a measure of insulin sensitivity.17 Various 231 

other combinations of BCAA and protein metabolites have been considered as IR models and 232 

while some shared variance has been observed,66 these are most likely attributable to random 233 
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differences in small cohorts. Using energy restriction to modify IR, we recently reported that group 234 

mean differences in plasma BCAA abundance were also unchanged, despite group mean 235 

improvements in IR. 66 All of these observations contrast with a previous study, relying on a sample 236 

size a 10th of the present work, where changes in plasma BCAA abundance did track with improved 237 

IR status.46  238 

 239 

We attempted several modelling strategies, including several distinct clinical and metabolomic 240 

variables, and modelled both fasting insulin and HOMA2-IR values to ensure our negative 241 

conclusions were rigorous. We used Bayesian modelling and projective prediction 67,68 to establish 242 

a sparse model that retained the ability to provide useful predictions of circulating insulin changes. 243 

Projective prediction uses the predictions from the reference (full) model to identify a subset of 244 

variables with predictive ability as close as possible to that of the full model. We were unable to 245 

identify any set of variables useful for predicting change in circulating insulin after lifestyle 246 

intervention using this strategy. Conventional regression modelling, against changes in HOMA2-247 

IR also failed to identify a useful model. We can conclude that the present clinical-metabolic 248 

measures are not useful for classifying a HOMA2-IR threshold value indicative of 3-fold elevated 249 

risk of T2DM over 5 years, nor track altered fasting insulin with life-style interventions. This is 250 

even though our ELISA-based insulin values were strongly associated with causal molecular 251 

drivers of T2DM and insulin signalling in tissue samples.13 252 

 253 

Clinical evaluation of IR biomarker models 254 

Diagnosing IR is challenging not least because defining IR remains controversial. The gold 255 

standard method is commonly described as the ‘clamp’ technique or intravenous glucose tolerance 256 
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test.19,69 However, substantial resources are required for this such that it is rarely used for diagnosis 257 

and by their nature both can be supraphysiological (re levels of insulin). Alternative IR indices 258 

exist and include the homeostatic model assessment (HOMA and HOMA2 70,71, Matsuda index 72 259 

and the disposition index (DI).73 These are not used in clinical practice, largely due to a lack of 260 

routine measurement of insulin. Although several epidemiological studies use HOMA and 261 

HOMA2 for modelling IR, there is limited basis for defining a clinical cut off value. Several studies 262 

unwisely use a percentile cut off identified within their individual cohort, and then apply ROC 263 

curve analysis to determine the threshold for a diagnosis of IR and then relate this to relative risk 264 

for relevant clinical outcomes e.g. progression to T2DM or cardiovascular disease. As a result, the 265 

HOMA IR threshold used across studies, to define ‘at risk’, has varied from 1.8 to 3.9 depending 266 

on the population studied and methods used.18 This represents a form of model overfitting. 267 

 268 

It was estimated that a HOMA2-IR more than 1.3 represented a hazard ratio of >3.2 for developing 269 

T2DM over ~5 years in 95,450 subjects.74 This analysis is the largest study to date linking a 270 

particular HOMA2-IR value to incipient diabetes and we used this cutoff in the present study. 271 

Interestingly, in exploratory analysis, 83% of those with the most severe IR (HOMA2-IR≥2.4) 272 

were not classified as metabolically compromised when using fasting glucose or their 2-hour-273 

glucose OGTT data.12 The current reliance on glucose-centric risk assessment also limits our 274 

ability to identify and hence intervene in those people with the “least effective” response to insulin 275 

(defined as the totality of all of insulin’s key physiology). Nevertheless, all the surrogate variables 276 

investigated in the present study have limited ability to diagnose IR in a cross-sectional setting, 277 

and no ability to track changes in IR with life-style treatment.  278 
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In summary, we evaluated multiple predictive models for IR, including models incorporating well 279 

validated cholesterol species and BCAA. These models failed to forecast change in IR status 280 

following supervised lifestyle modification. A limitation of our study is the limited metabolomic 281 

variables gathered across cohorts (although this would mainly impact on the identification of novel 282 

metabolites to consider). Nevertheless, any new blood based metabolic disease biomarkers 283 

reported to track improvements in insulin sensitivity across multiple independent cohorts would 284 

require substantial independent clinical studies to validate beyond the level of the models evaluated 285 

in the present study.  286 

 287 

 288 

Materials and Methods 289 

 290 

Clinical Cohorts 291 

The MP cohort consisted of 189 active participants, recruited as previously described from five 292 

geographical regions across Europe.12 All clinical methods relied on cross-site standard operating 293 

procedures (SOPs), while insulin and metabolomic measures were performed in a single central 294 

laboratory. All participants were classified as sedentary (<600 metabolic equivalents (METs) 295 

min·wk-1) using a modified International Physical Activity Questionnaire,75 and had a fasting 296 

blood glucose level consistent with World Health Organisation (WHO) criteria for impaired 297 

glucose tolerance (5.5 < IGT <7.0 mmol·l-1), and/or a BMI >27 kg·m-2. Participants were excluded 298 

if they had evidence of active cardiovascular, cerebrovascular, respiratory, gastrointestinal or renal 299 

disease or had a history of malignancy, coagulation dysfunction, musculoskeletal or neurological 300 

disorders, recent steroid or hormone replacement therapy, or any condition requiring long-term 301 
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drug prescriptions. Exercise training was supervised and consisted of three high intensity cycling 302 

sessions per week for 6 weeks as previously described.12 Prior to the baseline assessments, 303 

participants were instructed to refrain from exercise for three days. Supine blood pressure (Omron 304 

M2, Omron Healthcare, Kyoto, Japan) and resting heart rate (RHR) were determined as the 305 

average of three consecutive measurements. Blood glucose (from a dorsal hand vein) was analysed 306 

before and during an (OGTT) using a YSI 2300 STAT Plus glucose analyser (Yellow Springs Inc. 307 

Ohio, USA). Blood was collected in lithium heparin spray-coated vacutainers (Becton Dickinson, 308 

New Jersey, USA) for analysis of insulin. The MP trial registration code is NCT01920659. The 309 

STRRIDE cohorts were composed of sedentary middle-aged individuals at risk of developing 310 

cardio-metabolic disease. 9,51,52 Following baseline assessments, each subject was randomized to 311 

one of a variety of exercise training programs for six to eight months with or without a modified 312 

diet.9,51,52 Pre and post clinical and physiological assessments and outcomes were as previously 313 

reported.9,51,52 314 

 315 

Plasma sample insulin analysis 316 

The samples from MP and the STRIDDE studies were analysed using high sensitivity insulin 317 

ELISA (Dako A/S, Sweden). Two levels of QC solutions were run for insulin. Coefficients of 318 

variation (CV) were acceptable; 4.68-8.03 % on both levels. As we were also using the 319 

automated analyser (Immulite 2000) for analyses of all OGTT time points for insulin and c-320 

peptide from the MP study, we also assessed available fasting sample profiles using this lower 321 

sensitivity immune-assay.  To assure comparability of the results, we independently checked the 322 

assay performance for cross detection of insulin and C-peptide. The WHO standard for insulin 323 

and C-peptide were obtained from NIBSC (The National Institute for Biological Standards and 324 
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Control). A dilution series for both analytes was prepared and run on Dako ELISA and Immulite 325 

2000. The diluted WHO insulin standards were subjected to the same procedure as the samples. 326 

The results for both Immulite 2000 and Dako ELISA showed an acceptable correlation of 327 

expected versus measured concentration with R2 = 0.9995 and R2 = 0.9923 for Immulite 2000 328 

and Dako ELISA, respectively. The results are presented in Figure S1. No cross reaction 329 

between insulin and c-peptide were detected. The two assays were in broad agreement over the 330 

large concentration range of insulin used in this standard assay evaluation protocol Figure S2. 331 

 332 

Plasma sample metabolomic analysis 333 

Metabolomic analyses for MP has not been previously published (other than fasting glucose and 334 

insulin). All samples were randomized for sample preparation and analyses resulting in an equal 335 

distribution of all centres and possible responders and non-responders. We used hierarchical 336 

clustering of metabolomic variables to highlight that there was no systematic centre specific bias 337 

(Figure S4). All samples were taken after an overnight fast as arterialized venous blood and run 338 

in duplicate. Results within ±20% CV were accepted unless otherwise stated; if this limit was not 339 

met the sample was rerun. Quality controls (QC) were run for all analyses and with each batch of 340 

sample preparation to ensure stable performance of the analysis procedure. QC for all analyses 341 

included in house controls made from pooled EDTA plasma from healthy controls originating 342 

from a previous study. The following methods were used for each metabolite. Sample analysis 343 

used a Konelab 20XTi photospectrometer (Thermo Fisher Scientific, Thermo Electron Oy, Vantaa 344 

Finland) for high density lipoprotein HDL cholesterol, LDL cholesterol and triacylglycerides 345 

(TAG). Amino acids were analyzed using HPLC 2695 (Waters, Watford, UK) with online 346 

derivatization and a fluorescence detector 474 (Waters, Watford, UK) using a method described 347 
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previously.76,77 Fatty acids were analyzed using ultra-high performance liquid chromatography 348 

(Ultimate 3000 UHPLC, Thermo Fisher Scientific, Germering, Germany) coupled to a TSQ 349 

Vantage with electrospray ionization (ESI) and triple quadrupole mass spectrometer (MS/MS) 350 

(Thermo Fisher Scientific, San Jose, CS, USA). For the blood obtained from the STRRIDE 351 

cohorts’ samples were analysed for plasma glucose concentration at the research site (Duke 352 

University, USA) using a Beckman–Coulter DxC600 clinical analyser (Brea, CA, United States). 353 

Insulin was analyzed (in the Stockholm lab) using the high sensitivity insulin ELISA assay (Dako 354 

Denmark A/S, Glostrup, Denmark); and fasted plasma samples were analysed on 400 MHz nuclear 355 

magnetic resonance profilers at LipoScience, now LabCorp (Morrisville, NC, United States), as 356 

previously described 78. The lipoprotein parameters and the BCAA were identified by 357 

retrospectively analysing digitally stored spectra using the newly developed NMR-based 358 

lipoprotein LP4 algorithm, which correlate with mass spectrometry methods.79  359 

 360 

As distinct methodologies were utilised for the metabolomic analyses between MP and STRRIDE 361 

cohorts we explore the compatibility of the common metabolomic data used in our diagnostic 362 

models. For S-2 and S-PD, two methodologies were utilised for lipid related metabolomics and 363 

Bland-Altman analysis was performed to assess measurement agreement between HDL and TAG 364 

with NMR versus mass spectroscopy (Figure S5-8). There was good linear agreement between 365 

methods for HDL (S-2 r2 0.96, p<0.001; S-PD r2 0.89, p<0.001) and TAG (S-2 r2 0.99, p<0.001; 366 

S-PD r2 0.95, p<0.001). Bland-Altman analysis revealed a mean measurement error of -0.06 367 

mmol/L for HDL (S-2 Figure 5B, S-PD Figure S7B) and +0.04mmol/L (S-2 Figure 6B, S-PD 368 

Figure S8B) for TAG with 95% of observations within 1.96 standard deviation of mean. Work by 369 

Wolak-Dinsmore et al demonstrated that NMR overestimates VAL and LEU by >25% (mean 370 
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value) and underestimates ILE by 10-15% (mean value) and while MS was used in MP, S-2 and 371 

S-PD relied on NMR for BCAA quantification. Based on these known systematic differences,79 372 

modelling was performed independently in each cohort using cross-validation methods. 373 

 374 

Statistical Modelling 375 

Raw data from the clinical chemistry analyses was analysed with GraphPad Prism 5 (Software 376 

MacKiev, 2007, version 5.01) and more advanced analysis was accomplished using STATISTICA 377 

10 (StatSoft Inc., 2011, version 10.0.228.2). All subsequent analysis was performed in R version 378 

4.1.1 and 4.3.2. We utilised conventional and Bayesian strategies to model data in the present 379 

work. Potentially predictive variables were selected based on known associations with IR and 380 

T2DM. Linear regression modelling was applied to investigate associations between dependent 381 

and independent variables. Briefly, after reducing each dataset to complete cases common 382 

variables were identified across all three cohorts. The criterion for considering a clinically useful 383 

variable was pragmatic – it had to be something that could be measured cheaply and reliably in a 384 

primary care setting. Laboratory measures like maximal aerobic capacity related to IR status in 385 

some but not all cohorts but was not considered because of the time and cost required to measure 386 

it accurately. Several variables were selected based on these ease/low-cost criteria; some variables 387 

were dropped because of high collinearity (e.g. systolic blood pressure was retained in favour of 388 

diastolic blood pressure and mean arterial pressure in the Bayesian analysis). We removed 389 

participants with obesity class III (BMI >40kg/m2) for the Bayesian analysis and all continuous 390 

variables were normalised. The latter steps were carried out using the tidymodels R package 391 

(10.32614/CRAN.package.tidymodels) and applied consistently across all datasets. Collinearity 392 

between variables was checked for each dataset separately (Figure S3). Apart from BCAA in the 393 
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MP dataset there were no pairwise correlations with an absolute value >0.5. Linear models were 394 

built with student-t priors on both the intercept and slope coefficient terms (df=3, mean=0 and 395 

scale=4). These were mildly informative on the scale of the normalised data. Details are in the 396 

supplementary material. 397 

 398 

We built Bayesian multivariable linear models using the brms package to predict change in 399 

circulating insulin using relevant clinical variables, circulating BCAA levels and selective lipids.80 400 

These full models were considered reference models. We then used projective prediction to 401 

identify a subset of variables with predictive performance as close as possible to that of the 402 

reference model.58 Briefly projective prediction first generates a solution path - the variable 403 

ranking - for each sub model examined. Next a leave-one-out cross-validation process determines 404 

the predictive performance of each sub model along the predictor ranking.  405 

 406 

Funding 407 

The clinical data utilised in this study was funded by multiple sources: European Union Seventh 408 

Framework Programme (META-PREDICT, HEALTH-F2-2012-277936); STRRIDE II 409 

(NCT00275145) by NHLBI grant HL-057354 and STRRIDE-PD (NCT00962962) by NIDDK 410 

DK-081559 and R01DK081559. The data modelling was supported by Augur Precision Medicine 411 

LTD.  412 

 413 

Competing interests 414 

None declared. JT is a major shareholder in APM, however there is no commercial link between 415 

APM and the present study. There are no other financial conflicts of interest to disclose.  416 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 8, 2024. ; https://doi.org/10.1101/2024.10.06.24314962doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.06.24314962
http://creativecommons.org/licenses/by-nd/4.0/


 19 

 417 

Contributions 418 

RJB, JAT, OR and IJG conceptualized aims and designed the analysis strategy. All authors 419 

contributed to the project design, data collection and/or pre-processing. RJB and IJG performed 420 

data analysis and JAT contributed to interpretation. JAT and RJB wrote the first draft and JAT, 421 

RJB and IJG produced a full manuscript that all authors contributed to and have read and approved 422 

the final manuscript. JT wrote the HEALTH-F2-2012-277936 grant application. 423 

 424 

Data and code availability 425 

Some or all datasets generated during and/or analysed during the current study are not publicly 426 

available but are available from the corresponding author on reasonable request. Data and the 427 

analysis script can be found at 10.5281/zenodo.13819578. 428 

 429 

References 430 

1. Cen HH, Hussein B, Botezelli JD, et al. Human and mouse muscle transcriptomic analyses 431 
identify insulin receptor mRNA downregulation in hyperinsulinemia-associated insulin resistance. 432 
FASEB Journal. 2022;36(1). doi:10.1096/fj.202100497RR 433 

2. Wamil M, Coleman RL, Adler AI, McMurray JJV, Holman RR. Increased Risk of Incident Heart 434 
Failure and Death Is Associated With Insulin Resistance in People With Newly Diagnosed Type 2 435 
Diabetes: UKPDS 89. Diabetes Care. 2021;44(8):1877-1884. doi:10.2337/DC21-0429 436 

3. Folch J, Olloquequi J, Ettcheto M, et al. The Involvement of Peripheral and Brain Insulin 437 
Resistance in Late Onset Alzheimer’s Dementia. Front Aging Neurosci. 2019;11(September):1-16. 438 
doi:10.3389/fnagi.2019.00236 439 

4. Dennis JM, Shields BM, Henley WE, Jones AG, Hattersley AT. Disease progression and 440 
treatment response in data-driven subgroups of type 2 diabetes compared with models based on 441 
simple clinical features: an analysis using clinical trial data. Lancet Diabetes Endocrinol. 442 
2019;7(6):442-451. doi:10.1016/S2213-8587(19)30087-7 443 

5. Knowler WC, Fowler SE, Hamman RF, et al. 10-year follow-up of diabetes incidence and weight 444 
loss in the Diabetes Prevention Program Outcomes Study. Lancet. 2009;374(9702):1677-1686. 445 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 8, 2024. ; https://doi.org/10.1101/2024.10.06.24314962doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.06.24314962
http://creativecommons.org/licenses/by-nd/4.0/


 20 

6. Wing RR, Bolin P, Brancati FL, et al. Cardiovascular effects of intensive lifestyle intervention in 446 
type 2 diabetes. New England Journal of Medicine. 2013;369(2):145-154. 447 
doi:10.1056/NEJMoa1212914 448 

7. Uusitupa M, Peltonen M, Lindström J, et al. Ten-year mortality and cardiovascular morbidity in 449 
the Finnish Diabetes Prevention Study - Secondary analysis of the randomized trial. PLoS One. 450 
2009;4(5):1-8. doi:10.1371/journal.pone.0005656 451 

8. Hivert MF, Christophi CA, Franks PW, et al. Lifestyle and metformin ameliorate insulin 452 
sensitivity independently of the genetic burden of established insulin resistance variants in 453 
diabetes prevention program participants. Diabetes. 2016;65(2):520-526. doi:10.2337/db15-0950 454 

9. Ross LM, Slentz CA, Kraus WE. Evaluating Individual Level Responses to Exercise for Health 455 
Outcomes in Overweight or Obese Adults. Front Physiol. 2019;10. doi:10.3389/fphys.2019.01401 456 

10. Huffman KM, Slentz CA, Bateman LA, et al. Exercise-induced changes in metabolic 457 
intermediates, hormones, and inflammatory markers associated with improvements in insulin 458 
sensitivity. Diabetes Care. 2011;34(1):174-176. doi:10.2337/dc10-0709 459 

11. AbouAssi H, Slentz C a, Mikus CR, et al. The Effects of Aerobic, Resistance and Combination 460 
Training on Insulin Sensitivity and secretion in Overweight Adults from STRRIDE AT/RT: A 461 
Randomized Trial. J Appl Physiol (1985). 2015;118(919):jap.00509.2014. 462 
doi:10.1152/japplphysiol.00509.2014 463 

12. Phillips BE, Kelly BM, Lilja M, et al. A practical and time-efficient high-intensity interval training 464 
program modifies cardio-metabolic risk factors in adults with risk factors for type II diabetes. 465 
Front Endocrinol (Lausanne). 2017;8(SEP):1-11. doi:10.3389/fendo.2017.00229 466 

13. Timmons JA, Atherton PJ, Larsson O, et al. A coding and non-coding transcriptomic perspective 467 
on the genomics of human metabolic disease. Nucleic Acids Res. 2018;46(15):7772-7792. 468 
doi:10.1093/nar/gky570 469 

14. Álvarez C, Ramírez-Campillo R, Ramírez-Vélez R, Izquierdo M. Effects and prevalence of 470 
nonresponders after 12 weeks of high-intensity interval or resistance training in women with 471 
insulin resistance: a randomized trial. J Appl Physiol. 2017;122:985-996. 472 
doi:10.1152/japplphysiol.01037.2016.-Our 473 

15. Sears DD, Hsiao G, Hsiao A, et al. Mechanisms of human insulin resistance and 474 
thiazolidinedione-mediated insulin sensitization. Proc Natl Acad Sci U S A. 2009;106(44):18745-475 
18750. doi:10.1073/pnas.0903032106 476 

16. Ustinova M, Ansone L, Silamikelis I, et al. Whole-blood transcriptome profiling reveals signatures 477 
of metformin and its therapeutic response. PLoS One. 2020;15(8 August):1-17. 478 
doi:10.1371/journal.pone.0237400 479 

17. Ross LM, Slentz CA, Zidek AM, et al. Effects of Amount, Intensity, and Mode of Exercise 480 
Training on Insulin Resistance and Type 2 Diabetes Risk in the STRRIDE Randomized Trials. 481 
Front Physiol. 2021;12(February):1-10. doi:10.3389/fphys.2021.626142 482 

18. Tang Q, Li X, Song P, Xu L. Optimal cut-off values for the homeostasis model assessment of 483 
insulin resistance (HOMA-IR) and pre-diabetes screening: Developments in research and 484 
prospects for the future. Drug Discov Ther. 2015;9(6):380-385. doi:10.5582/DDT.2015.01207 485 

19. Ferrannini E, Mari A. How to measure insulin sensitivity. J Hypertens. 1998;16(7):895-906. 486 
doi:10.1097/00004872-199816070-00001 487 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 8, 2024. ; https://doi.org/10.1101/2024.10.06.24314962doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.06.24314962
http://creativecommons.org/licenses/by-nd/4.0/


 21 

20. Manley SE, Stratton IM, Clark PM, Luzio SD. Comparison of II human insulin assays: 488 
Implications for clinical investigation and research. Clin Chem. 2007;53(5):922-932. 489 
doi:10.1373/clinchem.2006.077784 490 

21. Miller WG, Thienpont LM, Van Uytfanghe K, et al. Toward standardization of insulin 491 
immunoassays. Clin Chem. 2009;55(5):1011-1018. doi:10.1373/clinchem.2008.118380 492 

22. Thambisetty M, Metter EJ, Yang A, et al. Glucose intolerance, insulin resistance, and pathological 493 
features of Alzheimer disease in the Baltimore Longitudinal Study of Aging. JAMA Neurol. 494 
2013;70(9):1167-1172. doi:10.1001/jamaneurol.2013.284 495 

23. Rodríguez-Mañas L, Angulo J, Carnicero JA, El Assar M, García-García FJ, Sinclair AJ. Dual 496 
effects of insulin resistance on mortality and function in non-diabetic older adults: findings from 497 
the Toledo Study of Healthy Aging. Geroscience. 2022;44(2):1095-1108. doi:10.1007/s11357-498 
021-00384-4 499 

24. Clausen JO, Borch-Johnsen K, Ibsen H, et al. Insulin sensitivity index, acute insulin response, and 500 
glucose effectiveness in a population-based sample of 380 young healthy Caucasians: Analysis of 501 
the impact of gender, body fat, physical fitness, and life-style factors. Journal of Clinical 502 
Investigation. 1996;98(5):1195-1209. doi:10.1172/JCI118903 503 

25. Zheng Y, Ceglarek U, Huang T, et al. Weight-loss diets and 2-y changes in circulating amino 504 
acids in 2 randomized intervention trials. American Journal of Clinical Nutrition. 505 
2016;103(2):505-511. doi:10.3945/ajcn.115.117689 506 

26. Shah SH, Bain JR, Muehlbauer MJ, et al. Association of a peripheral blood metabolic profile with 507 
coronary artery disease and risk of subsequent cardiovascular events. Circ Cardiovasc Genet. 508 
2010;3(2):207-214. doi:10.1161/CIRCGENETICS.109.852814 509 

27. Bloomgarden Z. Diabetes and branched-chain amino acids: What is the link? J Diabetes. 510 
2018;10(5):350-352. doi:10.1111/1753-0407.12645 511 

28. Newgard CB, An J, Bain JR, et al. A branched-chain amino acid-related metabolic signature that 512 
differentiates obese and lean humans and contributes to insulin resistance. Cell Metab. 513 
2009;9(4):311-326. doi:10.1016/J.CMET.2009.02.002 514 

29. Floegel A, Stefan N, Yu Z, et al. Identification of serum metabolites associated with risk of type 2 515 
diabetes using a targeted metabolomic approach. Diabetes. 2013;62(2):639-648. 516 

30. Shalaurova I, Connelly MA, Garvey WT, Otvos JD. Lipoprotein insulin resistance index: a 517 
lipoprotein particle-derived measure of insulin resistance. Metab Syndr Relat Disord. 518 
2014;12(8):422-429. doi:10.1089/MET.2014.0050 519 

31. Flores-Guerrero JL, Gruppen EG, Connelly MA, et al. A newly developed diabetes risk index, 520 
based on lipoprotein subfractions and branched chain amino acids, is associated with incident type 521 
2 diabetes mellitus in the prevend cohort. J Clin Med. 2020;9(9):1-17. doi:10.3390/jcm9092781 522 

32. Zanetti D, Stell L, Gustafsson S, et al. Plasma proteomic signatures of a direct measure of insulin 523 
sensitivity in two population cohorts. Diabetologia. 2023;66(9):1643-1654. doi:10.1007/s00125-524 
023-05946-z 525 

33. Wang TJ, Larson MG, Vasan RS, et al. Metabolite profiles and the risk of developing diabetes. 526 
Nat Med. 2011;17(4):448-453. doi:10.1038/NM.2307 527 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 8, 2024. ; https://doi.org/10.1101/2024.10.06.24314962doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.06.24314962
http://creativecommons.org/licenses/by-nd/4.0/


 22 

34. White PJ, Lapworth AL, McGarrah RW, et al. Muscle-Liver Trafficking of BCAA-Derived 528 
Nitrogen Underlies Obesity-Related Glycine Depletion. Cell Rep. 2020;33(6). 529 
doi:10.1016/j.celrep.2020.108375 530 

35. Zhou M, Shao J, Wu CY, et al. Targeting BCAA catabolism to treat obesity-associated insulin 531 
resistance. Diabetes. 2019;68(9):1730-1746. doi:10.2337/db18-0927 532 

36. Lin C, Sun Z, Mei Z, et al. The causal associations of circulating amino acids with blood pressure: 533 
a Mendelian randomization study. BMC Med. 2022;20(1). doi:10.1186/s12916-022-02612-w 534 

37. Biswas D, Duffley L, Pulinilkunnil T. Role of branched-chain amino acid–catabolizing enzymes in 535 
intertissue signaling, metabolic remodeling, and energy homeostasis. FASEB Journal. 536 
2019;33(8):8711-8731. doi:10.1096/fj.201802842RR 537 

38. White PJ, McGarrah RW, Herman MA, Bain JR, Shah SH, Newgard CB. Insulin action, type 2 538 
diabetes, and branched-chain amino acids: A two-way street. Mol Metab. 2021;52. 539 
doi:10.1016/J.MOLMET.2021.101261 540 

39. Jang C, Oh SF, Wada S, et al. A branched-chain amino acid metabolite drives vascular fatty acid 541 
transport and causes insulin resistance. Nat Med. 2016;22(4):421-426. doi:10.1038/nm.4057 542 

40. Lynch CJ, Adams SH. Branched-chain amino acids in metabolic signalling and insulin resistance. 543 
Nat Rev Endocrinol. 2014;10(12):723-736. doi:10.1038/nrendo.2014.171 544 

41. Timmons JA, Anighoro A, Brogan RJ, et al. A human-based multi-gene signature enables 545 
quantitative drug repurposing for metabolic disease. Elife. 2022;11. doi:10.7554/eLife.68832 546 

42. Soto M, Cai W, Konishi M, Kahn CR. Insulin signaling in the hippocampus and amygdala 547 
regulates metabolism and neurobehavior. Proc Natl Acad Sci U S A. 2019;116(13):6379-6384. 548 
doi:10.1073/pnas.1817391116 549 

43. Chen W, Huang Q, Lazdon EK, et al. Loss of insulin signaling in astrocytes exacerbates 550 
Alzheimer-like phenotypes in a 5xFAD mouse model. Proceedings of the National Academy of 551 
Sciences. 2023;120(21):e2220684120. doi:10.1073/PNAS.2220684120 552 

44. Mutch DM, Temanni MR, Henegar C, et al. Adipose gene expression prior to weight loss can 553 
differentiate and weakly predict dietary responders. PLoS One. 2007;2(12). 554 
doi:10.1371/journal.pone.0001344 555 

45. Newton RL, Johnson WD, Larrivee S, et al. A Randomized Community-based Exercise Training 556 
Trial in African American Men: Aerobic Plus Resistance Training and Insulin Sensitivity in 557 
African American Men. Med Sci Sports Exerc. 2020;52(2):408-416. 558 
doi:10.1249/MSS.0000000000002149 559 

46. Glynn EL, Piner LW, Huffman KM, et al. Impact of combined resistance and aerobic exercise 560 
training on branched-chain amino acid turnover, glycine metabolism and insulin sensitivity in 561 
overweight humans. Diabetologia. 2015;58(10):2324-2335. doi:10.1007/s00125-015-3705-6 562 

47. Lee S, Gulseth HL, Langleite TM, et al. Branched-chain amino acid metabolism, insulin 563 
sensitivity and liver fat response to exercise training in sedentary dysglycaemic and 564 
normoglycaemic men. Diabetologia. 2021;64(2):410-423. doi:10.1007/s00125-020-05296-0 565 

48. Dimenna FJ, Arad AD. The acute vs. chronic effect of exercise on insulin sensitivity: nothing lasts 566 
forever. Cardiovasc Endocrinol Metab. 2021;10(3):149-161. 567 
doi:10.1097/XCE.0000000000000239 568 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 8, 2024. ; https://doi.org/10.1101/2024.10.06.24314962doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.06.24314962
http://creativecommons.org/licenses/by-nd/4.0/


 23 

49. Zheng C, Liu Z. Vascular function, insulin action, and exercise: an intricate interplay. Trends 569 
Endocrinol Metab. 2015;26(6):297-304. doi:10.1016/J.TEM.2015.02.002 570 

50. King DS, Baldus PJ, Sharp RL, Kesl LD, Feltmeyer TL, Riddle MS. Time course for exercise-571 
induced alterations in insulin action and glucose tolerance in middle-aged people. J Appl Physiol 572 
(1985). 1995;78(1):17-22. doi:10.1152/JAPPL.1995.78.1.17 573 

51. Slentz CA, Bateman LA, Willis LH, et al. Effects of exercise training alone vs a combined 574 
exercise and nutritional lifestyle intervention on glucose homeostasis in prediabetic individuals: a 575 
randomised controlled trial. Diabetologia. 2016;59(10):2088-2098. doi:10.1007/s00125-016-4051-576 
z 577 

52. Slentz CA, Bateman LA, Willis LH, et al. Effects of aerobic vs. resistance training on visceral and 578 
liver fat stores, liver enzymes, and insulin resistance by HOMA in overweight adults from 579 
STRRIDE AT/RT. Am J Physiol Endocrinol Metab. 2011;301(5):1033-1039. 580 
doi:10.1152/ajpendo.00291.2011 581 

53. An P, Teran-Garcia M, Rice T, et al. Genome-wide linkage scans for prediabetes phenotypes in 582 
response to 20 weeks of endurance exercise training in non-diabetic whites and blacks: The 583 
HERITAGE Family Study. Diabetologia. 2005;48(6):1142-1149. doi:10.1007/s00125-005-1769-4 584 

54. Bouchard C, Rankinen T, Timmons JA. Genomics and genetics in the biology of adaptation to 585 
exercise. Compr Physiol. 2011;1(3):1603-1648. doi:10.1002/cphy.c100059 586 

55. Phillips BE, Kelly BM, Lilja M, et al. A practical and time-efficient high-intensity interval training 587 
program modifies cardio-metabolic risk factors in adults with risk factors for type II diabetes. 588 
Front Endocrinol (Lausanne). 2017;8(SEP). doi:10.3389/fendo.2017.00229 589 

56. Marott SCW, Nordestgaard BG, Tybjaerg-Hansen A, Benn M. Causal associations in type 2 590 
diabetes development. Journal of Clinical Endocrinology and Metabolism. 2019;104(4):1313-591 
1324. doi:10.1210/jc.2018-01648 592 

57. Pavone F, Piironen J, Bürkner PC, Vehtari A. Using reference models in variable selection. 593 
Comput Stat. 2023;38(1):349-371. doi:10.1007/s00180-022-01231-6 594 

58. Piironen J, Paasiniemi M, Vehtari A. Projective inference in high-dimensional problems: 595 
Prediction and feature selection. Electron J Stat. 2020;14(1):2155-2197. doi:10.1214/20-EJS1711 596 

59. IDF Strategic Plan.; 2023. 597 

60. Keller P, Vollaard NBJ, Gustafsson T, et al. A transcriptional map of the impact of endurance 598 
exercise training on skeletal muscle phenotype. J Appl Physiol. 2011;110(1):46-59. 599 
doi:10.1152/japplphysiol.00634.2010 600 

61. Manning AK, Hivert MF, Scott RA, et al. A genome-wide approach accounting for body mass 601 
index identifies genetic variants influencing fasting glycemic traits and insulin resistance. Nat 602 
Genet. 2012;44(6):659-669. doi:10.1038/ng.2274 603 

62. Crossland H, Smith K, Idris I, Phillips BE, Atherton PJ, Wilkinson DJ. Exploring mechanistic 604 
links between extracellular branched-chain amino acids and muscle insulin resistance: an in vitro 605 
approach. Am J Physiol Cell Physiol. 2020;319(6):C1151-C1157. 606 
doi:10.1152/AJPCELL.00377.2020 607 

63. Roth Flach RJ, Bollinger E, Reyes AR, et al. Small molecule branched-chain ketoacid 608 
dehydrogenase kinase (BDK) inhibitors with opposing effects on BDK protein levels. Nat 609 
Commun. 2023;14(1). doi:10.1038/S41467-023-40536-Y 610 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 8, 2024. ; https://doi.org/10.1101/2024.10.06.24314962doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.06.24314962
http://creativecommons.org/licenses/by-nd/4.0/


 24 

64. Sitryawan A, Hawes JW, Harris RA, Shimomura Y, Jenkins AE, Hutson SM. A molecular model 611 
of human branched-chain amino acid metabolism. Am J Clin Nutr. 1998;68(1):72-81. 612 
doi:10.1093/AJCN/68.1.72 613 

65. Shin AC, Fasshauer M, Filatova N, et al. Brain Insulin Lowers Circulating BCAA Levels by 614 
Inducing Hepatic BCAA Catabolism. Cell Metab. 2014;20(5):898-909. 615 
doi:10.1016/J.CMET.2014.09.003 616 

66. Sayda MH, Abdul Aziz MH, Gharahdaghi N, et al. Caloric restriction improves glycaemic control 617 
without reducing plasma branched-chain amino acids or keto-acids in obese men. Sci Rep. 618 
2022;12(1). doi:10.1038/S41598-022-21814-Z 619 

67. Pavone F, Piironen J, Bürkner PC, Vehtari A. Using reference models in variable selection. 620 
Comput Stat. 2023;38(1):349-371. doi:10.1007/S00180-022-01231-6/FIGURES/9 621 

68. Piironen J, Paasiniemi M, Vehtari A. Projective inference in high-dimensional problems: 622 
Prediction and feature selection. https://doi.org/101214/20-EJS1711. 2020;14(1):2155-2197. 623 
doi:10.1214/20-EJS1711 624 

69. Tripathy D, Cobb JE, Gall W, et al. A novel insulin resistance index to monitor changes in insulin 625 
sensitivity and glucose tolerance: The ACT NOW study. Journal of Clinical Endocrinology and 626 
Metabolism. 2015;100(5):1855-1862. doi:10.1210/jc.2014-3824 627 

70. Wallace TM, Levy JC, Matthews DR, Homa T. Use and Abuse of HOMA Modeling. Diabetes 628 
Care. 2004;27(6):1487-1495. 629 

71. Levy JC, Matthews DR, Hermans MP. Correct homeostasis model assessment (HOMA) 630 
evaluation uses the computer program. Diabetes Care. 1998;21(12):2191-2192. 631 
doi:10.2337/DIACARE.21.12.2191 632 

72. Matsuda M, Defronzo RA. Insulin Sensitivity Indices Obtained From Comparison with the 633 
euglycemic insulin clamp. Diabetes Care. 1999;22(9):1462-1470. 634 

73. Utzschneider KM, Prigeon RL, Faulenbach M V., et al. Oral Disposition index predicts the 635 
development of future diabetes above and beyond fasting and 2-h glucose levels. Diabetes Care. 636 
2009;32(2):335-341. doi:10.2337/dc08-1478 637 

74. Marott SCW, Nordestgaard BG, Tybjaerg-Hansen A, Benn M. Causal associations in type 2 638 
diabetes development. Journal of Clinical Endocrinology and Metabolism. 2019;104(4):1313-639 
1324. doi:10.1210/jc.2018-01648 640 

75. Hagströmer M, Oja P, Sjöström M. The International Physical Activity Questionnaire (IPAQ): a 641 
study of concurrent and construct validity. Public Health Nutr. 2006;9(6):755-762. 642 

76. Godel H, Graser T, Földi P, Pfaender P, Fürst P. Measurement of free amino acids in human 643 
biological fluids by high-performance liquid chromatography. J Chromatogr A. 1984;297:49-61. 644 
doi:https://doi.org/10.1016/S0021-9673(01)89028-2 645 

77. Vesali RF, Klaude M, Rooyackers O, Wernerman J. Amino acid metabolism in leg muscle after an 646 
endotoxin injection in healthy volunteers. Am J Physiol Endocrinol Metab. 2005;288:360-364. 647 
doi:10.1152/ajpendo.00248.2004.-Decreased 648 

78. Jeyarajah EJ, Cromwell WC, Otvos JD. Lipoprotein particle analysis by nuclear magnetic 649 
resonance spectroscopy. Clin Lab Med. 2006;26(4):847-870. doi:10.1016/J.CLL.2006.07.006 650 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 8, 2024. ; https://doi.org/10.1101/2024.10.06.24314962doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.06.24314962
http://creativecommons.org/licenses/by-nd/4.0/


 25 

79. Wolak-Dinsmore J, Gruppen EG, Shalaurova I, et al. A novel NMR-based assay to measure 651 
circulating concentrations of branched-chain amino acids: Elevation in subjects with type 2 652 
diabetes mellitus and association with carotid intima media thickness. Clin Biochem. 2018;54:92-653 
99. doi:10.1016/J.CLINBIOCHEM.2018.02.001 654 

80. Bürkner PC. brms: An R package for Bayesian multilevel models using Stan. J Stat Softw. 655 
2017;80. doi:10.18637/jss.v080.i01 656 

 657 
  658 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 8, 2024. ; https://doi.org/10.1101/2024.10.06.24314962doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.06.24314962
http://creativecommons.org/licenses/by-nd/4.0/


 26 

Table 1.659 

 660 
 661 

Table 1. Demographics. Median and IQR. All available samples were utilised for baseline 662 
modelling. In each analysis, only subjects with complete data were used in the pre/post 663 
modelling, resulting in ~ 20% fewer subjects than recruited or completing the intervention. 664 

 665 

 

 MP 
Pre             Post 

S2 
Pre          Post 

S-PD 
Pre          Post 

N 179 109 116 85 149 122 
Gender 

(f:m) 100:79 58:51 58:58 43:41 89:60 71:51 

Age 38 (18) 38 (18) 50 (14.5) 50 (17) 59 (11) 59 (12) 
Weight (kg) 91.5 (20.1) 91.6 (21) 88 (17.5) 85.5 (13.2) 86.2 (17.4) 83.7 (16.5) 

BMI 31 (5.5) 30.6 (4.766) 30.4 (4.88) 30 (5) 30.2 (4.45) 29.4 (4.6) 
SBP 

(mmHg) 125 (14) 121 (16) 119 (16) 121 (18) 126 (16) 122 (21) 

DPB 
(mmHg) 78 (13) 77 (14) 80 (14) 80 (14) 75 (12) 72 (13) 

MAP 
(mmHg) 94 (13) 90 (12) 93 (15) 80 (14) 91 (13) 89 (13) 

Resting HR 70 (12) 68 (12) 74 (16) NA NA NA 
VO2 max 

(mL/min/kg) 27.5 (10) 30.2 (11) 26.7 (7.56) 30.7 (9.6) 23.8 (7.05) 26 (8.25) 

Fasting 
glucose 

(mmol/L) 
4.61 (0.43) 4.6 (0.4) 5.26 (0.65) 5.33 (0.77) 5.78 (0.78) 5.81 (0.74) 

2-hour 
glucose 

(mmol/L) 
6.67 (1.51) 6.32 (1.9) NA NA 7.66 (3.43) 7.22 (2.3) 

Fasting 
insulin 
(imm) 

84.4 (65.4) 78.7 (51.7) 55.7 (43.7) 44.3 (33.5) 236 (234) 195 (199) 

Fasting 
insulin 

(ELISA) 
57.7 (42.5) 50.9 (37.6) 30.7 (43.7) 36.6 (33.2) 49.6 (58.4) 40.3 (47.2) 

HOMA2 IR 1.2 (0.9) 1.07 (0.8) 1.07 (1) 0.81 (0.71) 1.12 (1.3) 0.95 (1.07) 
Sum BCAA 

(µmol/L) 424 (133) 438 (139) 424 (90.4) 465 (85.5) 439 (99.1) 429 (96.1) 

Leucine 
(µmol/l) 120 (40.6) 126 (39) 153 

(36.2) 171.7 (39.5) 148 (37.9) 148 (35.1) 

Isoleucine 
(µmol/L) 62.89 (22.6) 63.8 (21.7) 66.8 

(20.1) 65.6 (22.5) 62.8 (19.7) 59.8 (14.5) 

Valine 
(µmol/l) 239 (70.2) 247 (75.5) 208 (51.8) 230 (50) 221 (50.2) 220 (49.5) 

HDL 
(mmol/L) 1.02 (0.39) 1.04 (0.4) 0.9 

(0.33) 1.12 (0.33) 1.06 (0.39) 1.11 (0.37) 

LDL 
(mmol/L) 2.64 (0.99) 2.5 (0.96) 2.45 

(0.87) 2.72 (0.75) 3.12 (0.96) 2.96 (0.82) 

TAG 
(mmol/L) 1.17 (0.75) 1.09 (0.72) 1.4 

(0.85) 1.25 (0.78) 1.3 (0.83) 1.18 (0.95) 

ALA 
(µmol/L) 321 (107) 326 (127) 419 

(110) 405 (150) 399 (98) 390 (123) 
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Table 2.  666 

 667 
 668 
Table 2. K-fold cross validation multiple linear regression predicting baseline log10 fasting insulin from 669 
clinical and metabolomic variables. 670 
  671 

 

Cohort Model RMSE MAE r2 Adj r2 p value 

MP 
n=179 

1 0.208 0.167 0.272 0.255 <0.001 
2 0.205 0.164 0.302 0.282 <0.001 
3 0.208 0.161 0.309 0.281 <0.001 
4 0.206 0.161 0.327 0.295 <0.001 

S-2 
n=116 

1 0.267 0.215 0.265 0.238 <0.001 
2 0.271 0.221 0.298 0.266 <0.001 
3 0.255 0.208 0.366 0.325 <0.001 
4 0.254 0.208 0.389 0.343 <0.001 

S-PD 
n=149 

1 0.295 0.237 0.202 0.18 <0.001 
2 0.281 0.227 0.265 0.239 <0.001 
3 0.293 0.229 0.304 0.269 <0.001 
4 0.291 0.223 0.339 0.301 <0.001 

Model 1 = age+gender+log10BMI+fasting glucose 
Model 2 = model 1 + sumBCAA 
Model 3 = model 1 + HDL+LDL+TAG 
Model 4 = model 1 + HDL+LDL+TAG+sumBCAA 
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 672 
Figure 1. Insulin assay statistical performance for identifying differences in pre vs post exercise 673 
training samples (MP cohort). Fasting insulin (pmol/L) was measured using a high sensitivity 674 
ELISA (left) and the Immulite 2000 automated analyser (right). P-values are calculated from 675 
paired t-tests on log10 fasting insulin (pmol/L). Only the ELISA could detect a significant 676 
treatment effect.  677 
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 680 
 681 
Figure 2. Scatter plots with OLS line of best fit (95% CI shaded) between log10 fasting insulin 682 
and clinical and metabolic variables. A) MP, B) S-2 and C) S-PD 683 
 684 
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 685 
Figure 3. Utility of baseline clinical and metabolomic variables to classify HOMA2-IR status at 686 
1.3 unit threshold reflecting the analysis of Marott et al. K-fold cross validation logistic 687 
regression ROC curves for A. MP, B. S-2 and C. S-PD. 688 
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 689 
 690 
Figure 4. Scatter plots with OLS line of best fit (95% CI shaded) between delta fasting insulin 691 
and clinical and metabolic variables. A) MP, B) S-2 and C) S-PD 692 
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 694 
Figure 5. Left panel; Posterior predictive distributions for A. MP, B. S-2 and C. S-PD. Right 695 
panel; Expected log predictive density (Elpd, upper trace) and root mean square error (RMSE, 696 
lower trace) for D. MP, E. S-2 and F. S-PD. Elpd and RMSE are shown with 95% nominal 697 
coverage intervals.698 
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Table S1. Linear regression modelling using log10 fasting insulin as dependant variable. Note the sample sizes reflecting all subjects 699 
with data for each individual clinical parameter or metabolomic measure. In final integrated modelling only subjects with all 700 
completes values were included. 701 

 702 

META-PREDICT 

Model n Intercept p Intercept estimate Estimates 95% CI p Adj r2 

Age 188 <0.0001 1.8737 -0.0032 -0.0069 – 0.0005 0.0918 0.010 

Gender 186 <0.0001 1.8254 -0.1227 -0.1928 – -0.0527 0.0007 0.056 

BMI (log10) 188 0.5690 -0.2714 1.3532 0.7283 – 1.9781 <0.0001 0.084 

SBP 175 <0.0001 1.1684 0.0048 0.0016 – 0.0080 0.0038 0.042 

DBP 174 <0.0001 1.2888 0.0060 0.0020 – 0.0099 0.0030 0.044 

MAP 174 <0.0001 1.1370 0.0066 0.0026 – 0.0106 0.0013 0.053 

Fasting glucose 188 0.1037 -51.5267 25.7240 12.2694 – 39.1787 0.0002 0.066 

HDL 185 <0.0001 2.0214 -0.2481 -0.3604 – -0.1358 <0.0001 0.089 

LDL 184 <0.0001 1.5896 0.0599 0.0157 – 0.1041 0.0082 0.032 

Triglycerides 187 <0.0001 1.6140 0.1110 0.0615 – 0.1604 <0.0001 0.091 

Sum of BCAA 184 <0.0001 1.3981 0.0008 0.0005 – 0.0011 <0.0001 0.123 

Isoleucine 184 <0.0001 1.4579 0.0045 0.0027 – 0.0063 <0.0001 0.115 

Leucine 184 <0.0001 1.4408 0.0025 0.0015 – 0.0036 <0.0001 0.106 

Valine 184 <0.0001 1.3818 0.0015 0.0009 – 0.0021 <0.0001 0.126 
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Alanine 184 <0.0001 1.5930 0.0005 0.0001 – 0.0009 0.0148 0.027 

STRRIDE-2 

Model n Intercept p Intercept estimate Estimates 95% CI p Adj r2 

Age 128 <0.0001 1.7792 -0.0027 -0.0082 – 0.0027 0.3227 0 

Gender 128 <0.0001 1.7628 -0.0886 -0.2063 – 0.0290 0.1386 0.009 

BMI (log10) 128 0.0024 -2.8007 3.0012 1.7913 – 4.2110 <0.0001 0.154 

SBP 111 <0.0001 1.2972 0.0029 -0.0017 – 0.0076 0.2139 0.005 

DBP 111 0.0001 1.1314 0.0066 -0.0004 – 0.0136 0.0650 0.022 

MAP 111 0.0002 1.1428 0.0055 -0.0009 – 0.0119 0.0911 0.017 

Fasting glucose 118 0.0001 0.9260 0.1394 0.0582 – 0.2206 0.0009 0.083 

HDL 128 <0.0001 1.8172 -0.2448 -0.4208 – -0.0687 0.0068 0.049 

LDL 128 <0.0001 1.8172 -0.0606 -0.1486 – 0.0274 0.1753 0.007 

Triglycerides 128 <0.0001 1.4320 0.1329 0.0677 – 0.1981 0.0001 0.107 

Sum of BCAA 126 <0.0001 0.8578 0.0017 0.0009 – 0.0024 0.0001 0.117 

Isoleucine 126 <0.0001 1.2102 0.0066 0.0029 – 0.0102 0.0005 0.085 

Leucine 126 <0.0001 1.1699 0.0027 0.0008 – 0.0047 0.0064 0.051 

Valine 126 <0.0001 0.8261 0.0035 0.0019 – 0.0050 <0.0001 0.13 

Alanine 128 <0.0001 1.2359 0.0010 0.0003 – 0.0016 0.0027 0.062 
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STRRIDE PD 

Model n Intercept p Intercept estimate Estimates 95% CI p Adj r2 

Age 155 <0.0001 1.9753 -0.0046 -0.0116 – 0.0024 0.1944 0.005 

Gender 155 <0.0001 1.7253 -0.0395 -0.1455 – 0.0665 0.463 0 

BMI (log10) 155 0.1983 -1.2123 1.9683 0.7168 – 3.2198 0.0023 0.053 

SBP 134 <0.0001 1.2980 0.0032 -0.0009 – 0.0074 0.1260 0.010 

DPB 134 <0.0001 1.4408 0.0035 -0.0025 – 0.0096 0.2507 0.002 

MAP 134 <0.0001 1.2897 0.0045 -0.0014 – 0.0105 0.1365 0.009 

Fasting glucose 154 0.2343 0.3187 0.2357 0.1464 – 0.3251 <0.0001 0.146 

HDL 153 <0.0001 2.0821 -0.3326 -0.4602 – -0.2051 <0.0001 0.144 

LDL 151 <0.0001 1.5234 0.0568 -0.0180 – 0.1316 0.1355 0.008 

Triglycerides 153 <0.0001 1.5573 0.0961 0.0311 – 0.1610 0.0040 0.047 

Sum of BCAA 155 <0.0001 1.1048 0.0014 0.0007 – 0.0021 0.0001 0.091 

Isoleucine 155 <0.0001 1.2519 0.0071 0.0038 – 0.0104 <0.0001 0.098 

Leucine 155 <0.0001 1.3715 0.0022 0.0004 – 0.0041 0.0159 0.031 

Valine 155 <0.0001 0.9665 0.0033 0.0021 – 0.0046 <0.0001 0.147 

Alanine 155 <0.0001 1.4536 0.0006 -0.0000 – 0.0013 0.0675 0.015 

 703 
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 704 
Table S2 - K-fold cross validation logistic regression model statistics for combined model predicting insulin resistance (HOMA2 IR 705 
³1.3) using age, BMI, gender, sum of branched chain amino acids, HDL, LDL and triglycerides. 706 
 707 

708 

 MP S2 S-PD 

Accuracy (95% CI) 0.676 (0.602-0.744) 0.707 (0.615-0.788) 0.644 (0.562-0.721)   

Kappa 0.339 0.347 0.27            

Sensitivity 0.58           0.512 0.563         

Specificity 0.755 0.822 0.706 

PPV 0.662 0.629 0.59 

NPV 0.685 0.741 0.682 

Prevalence 0.453           0.371 0.43 

Detection rate 0.263 0.19 0.242 
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 709 
Figure S1. Performance of the insulin assays. A) (Immulite using titration international insulin 710 
standard), B) (ELISA using titration international insulin standard), and C) Immulite vs ELISA 711 
standard curve values using international insulin standard once converted to uIU/ml)  712 

Figure S1. Performance of the insulin assays. A) (Immulite using titration international 
insulin standard), B) (ELISA using titration international insulin standard), and C) 
Immulite vs ELISA standard curve values using international insulin standard once 
converted to uIU/ml)

A

B
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713 
Figure S2. Correlation of participant fasting insulin measured using Dako ELISA and Immulite 714 
2000 assays. 715 
 716 
  717 

Figure S2. Correlation of individual fasting insulin samples (MP) measured using Dako 
ELISA and Immulite 2000 assays.
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 718 
Figure S3. Correlation plots showing strength of correlation between the variables used in the 719 
generation of linear models to predict change in circulating insulin across lifestyle interventions. 720 
A. MP, B. S-2 and C. S-PD.  721 

A

B

C

Figure S3. Correlation plots showing strength of correlation between the variables used in the 
generation of linear models to predict change in circulating insulin across lifestyle interventions. A. MP, 
B. S-2 and C. S-PD 
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 722 

 723 
Figure S4. Hierarchical clustering of subjects by their metabolomic profile demonstrating that 724 
there is no centre specific bias. 725 
 726 
  727 

Figure S4. Hierarchical clustering of subjects by their metabolomic profile demonstrating that 
there is no centre specific bias.
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 728 
Figure S5-6. S5) S-2 HDL assay performance. A) Comparison of mass spectroscopy and nuclear 729 
magnetic resonance (NMR) measurement of HDL using linear regression. B) Bland-Altman plot 730 
to estimate of bias with 95% confidence interval shown in blue, with upper (green) and lower 731 
(red) limits. S6). S-2 TAG assay performance. A) Comparison of mass spectroscopy and nuclear 732 
magnetic resonance (NMR) measurement of TAG using linear regression. B) Bland-Altman plot 733 
to estimate of bias with 95% confidence interval shown in blue, with upper (green) and lower 734 
(red) limits. 735 
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 737 
Figure S7-8. S7) S-PD HDL assay performance. A) Comparison of mass spectroscopy and 738 
nuclear magnetic resonance (NMR) measurement of HDL using linear regression. B) Bland-739 
Altman plot to estimate of bias with 95% confidence interval shown in blue, with upper (green) 740 
and lower (red) limits. S8). S-PD TAG assay performance. A) Comparison of mass spectroscopy 741 
and nuclear magnetic resonance (NMR) measurement of TAG using linear regression. B) Bland-742 
Altman plot to estimate of bias with 95% confidence interval shown in blue, with upper (green) 743 
and lower (red) limits. 744 
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