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Abstract 

IMPORTANCE It is unclear whether time-restricted eating (TRE) induces cardiometabolic 

benefits independently of the reduction in calorie intake and whether its effects depend on 

the timing of the eating window.  

OBJECTIVE The main objective was to determine whether 8-hour TRE alters insulin sensitivity 

in an isocaloric setting. The secondary objective was to compare effects of early (eTRE) vs. late 

TRE (lTRE) on cardiometabolic outcomes and internal circadian time. 

DESIGN, SETTING, AND PARTICIPANTS The study was a randomized 10-week crossover trial 

conducted at the German Institute of Human Nutrition Potsdam-Rehbruecke, Germany, 

between March 2020 to December 2021. Participants were non-diabetic women with 

overweight or obesity, aged 18 to 70 years. 

INTERVENTIONS All participants underwent two 2-week isocaloric interventions with a 

restriction of the eating period to 8 hours: (i) early in the day (eTRE: 8:00-16:00 hr) and (ii) late 

in the day (lTRE: 13:00-21:00 hr). 

MAIN OUTCOMES AND MEASURES The primary outcome was insulin sensitivity assessed by 

an oral glucose tolerance test. Secondary outcomes included levels of glucose, lipids, 

adipokines, cytokines, oxidative stress markers, and internal circadian phase.  

RESULTS 31 female participants (mean (SD) BMI of 30.5 (2.9) and median [IQR] age of 62 [53-

65] years) completed the trial. Timely adherence was 96.5 % in eTRE and 97.7 % in lTRE. Food 

records showed a minor daily calorie deficit in eTRE (-167 kcal) but not in lTRE. Insulin 

sensitivity did not differ between eTRE and lTRE (-0.07; 95% CI, -0.77 to 0.62, P = .83) and 

showed no within-intervention changes (eTRE: 0.31; 95% CI, -0.14 to 0.76, P = .11; lTRE: 0.19; 

95% CI, -0.22 to 0.60, P = .25). 24-hour glucose levels, lipid, inflammatory, and oxidative stress 

markers showed no clinically meaningful between- and within-intervention differences. lTRE 

delayed the circadian phase in blood monocytes (24 min; 95% CI, -5 to 54 min, P = .10) and 

sleep midpoint (15 min; 95% CI, 7 to 22 min, P = .001) compared to eTRE.  
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CONCLUSIONS AND RELEVANCE In a nearly isocaloric setting, neither eTRE nor lTRE improve 

insulin sensitivity or other cardiometabolic traits despite significant changes in the circadian 

system. 

TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT04351672 

 

 

Key Points 

 

QUESTIONS Does isocaloric time-restricted eating (TRE) alter insulin sensitivity and 

cardiometabolic traits? Do effects differ for early and late TRE? 

FINDINGS In this randomized crossover trial that included 31 women with overweight and 

obesity, isocaloric early and late TRE showed no clinically meaningful differences in insulin 

sensitivity, mean 24-hour glucose or other glycemic, lipid, inflammatory, and oxidative stress 

markers between and within-interventions. Late TRE delayed the circadian clock phase and 

sleep timing compared to early TRE. 

MEANING In an isocaloric setting, neither early nor late TRE influence insulin sensitivity or 

cardiometabolic traits despite shifting internal circadian time. 
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Introduction 

Time-restricted eating (TRE) is a form of intermittent fasting characterized by a daily eating 

window of 10 hours or less and a prolonged fasting period of at least 14 hours over the course 

of the day1. TRE is becoming increasingly popular as a simple dietary approach to control body 

weight and improve metabolic health2,3. In rodents, TRE is protective against diet-induced 

obesity and associated metabolic disturbances4,5. Similarly, human trials on TRE have 

highlighted numerous beneficial cardiometabolic effects, such as improved fasting3,6,7 and 

mean daily3,8 glucose levels, insulin resistance3,7,9 or insulin sensitivity10,11, triglyceride6,8,12,13, 

total13,14 and LDL cholesterol14 levels, and blood pressure2,14,15 as well as moderate body 

weight8,14,16-18and body fat reduction7,14,18. Therefore, beyond its effects on body weight, TRE 

represents a promising approach to combat insulin resistance and diabetes.  

However, results of TRE trials are inconsistent19,20 and require stronger clinical trial evidence21 

to answer several practically relevant questions. Especially, it is unclear whether metabolic 

improvements are induced by the restriction of the daily eating duration itself, by 

accompanying caloric restriction (and respective weight loss), or by the combination of both 

factors. Indeed, most TRE trials did not carefully monitor energy intake and/or other potential 

cofounders. Therefore, we conducted a clinical trial to investigate whether 8-hour TRE can 

improve insulin sensitivity and other cardiometabolic parameters in an isocaloric setting. We 

precisely controlled timely adherence, dietary composition, calorie intake, physical activity, 

and sleep timing during the TRE intervention.  

The secondary objective of the trial was to compare the effects of eating early (eTRE) vs. late 

(lTRE) in the day during the TRE intervention. Although most clinical studies suggest additional 

benefits of eTRE2,3,10,22, which might be explained by circadian rhythms of key metabolic 

processes20,23, trials that directly compare eTRE and lTRE are very limited8,24,25. Based on 

previous research, we hypothesized that an isocaloric TRE would improve insulin sensitivity 

and cardiometabolic health compared to baseline and that eTRE would be more effective than 

lTRE. 

Methods 

Participants 
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Participants with overweight or obesity from the Berlin-Brandenburg area, Germany, were 

recruited between January 2020 and December 2021 through flyers, posters, newspaper 

advertisements, and ads websites. Applicants were eligible if they were female, aged 18 to 70 

years, had a body mass index (BMI) between 25 and 35 kg/m2, stable body weight within the 

past 3 months, and good sleep quality. They were excluded if they had diabetes or other 

severe diseases, traveled across multiple time zones, practiced shift work or TRE before the 

study commencement, as described in eMethods in Supplement 1. This trial was approved by 

the Ethical Committee of the University of Potsdam, Germany (EA No. 8/2019). All participants 

provided written informed consent prior to the study participation. The trial protocol has been 

published previously19. The statistical analysis plan is included in Supplement 2. 

 

Trial Design and Randomization 

The ChronoFast study was a 10-week randomized crossover trial including two 2-week dietary 

intervention periods: (1) eTRE (8-hour eating window between 8:00 and 16:00 hr) and (2) lTRE 

(8-hour eating window between 13:00 and 21:00 hr), preceded by a 4-week baseline period 

and separated by a 2-week washout period19 (Figure 1A). Participants were randomly 

allocated to the eTRE-lTRE or lTRE-eTRE study arms based on their BMI and age using the 

computed minimization method (MinimPy Software)26. 

 

Time-Restricted Eating Interventions  

During the baseline (run-in) period, the participants followed their usual eating habits, 

including their habitual eating times. In the TRE intervention periods, the participants were 

asked to maintain their usual kind and amount of food, and only limit the eating window 

duration to 8 h per day, depending on the predefined time frames for eTRE and lTRE. Only 

water, non-caloric drinks (e.g., tea and black coffee), low-caloric diet sodas, mints, or chewing 

gum with sweeteners were allowed in limited amounts. In the washout phase, participants 

were asked to return to their habitual eating window. Participants were also counseled to 

maintain their habitual physical activity and sleep times throughout the entire trial duration. 

See eMethods in Supplement 1 for more details. 
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Figure 1. Study Design and Participant Flow Diagram.  

A, study design. The ChronoFast study was a 10-week randomized crossover trial including two 2-week 

dietary intervention periods: (1) early time-restricted eating (eTRE: 8-hour eating window between 

8:00 and 16:00 hr) and (2) late time-restricted eating (lTRE: 8-hour eating window between 13:00 and 

21:00 hr), preceded by a 4-week baseline period and separated by a 2-week washout period. Prior to 

baseline, participants were pre-screened by phone and completed comprehensive screening at the 

study center to determine eligibility. Eligible participants were randomly allocated to the eTRE-lTRE or 

lTRE-eTRE study arms based on their BMI and age. During the study center visits (V1-4) before and 

after each intervention, glycemic and other cardiometabolic parameters were assessed in a fasting 

state and in an oral glucose tolerance test. During the 14 days of the baseline and both TRE intervention 

periods, continuous glucose monitoring (CGM), actigraphy, food and sleep diaries were conducted. B, 

CONSORT diagram describing a number of participants throughout the study, from enrollment to 

completion. 

 

Food Intake, Physical Activity, and Sleep Monitoring 

Energy intake, macronutrient composition, and eating times were measured by digital or 

handwritten food records, and physical activity was assessed by actigraphy for 14 consecutive 

days during baseline and both TRE intervention periods at the same time with CGM. Sleep 

times were assessed by sleep diaries, as described in eMethods in Supplement 1. TRE 

intervention adherence was assessed based on: 1) duration of the eating window being less 

than 8 hours; 2) adherence to the prescribed eating time ± 30 minutes; 3) unchanged energy 

intake; 4) unchanged macronutrient composition.  

 

Outcome Measures 

The primary outcome was insulin sensitivity assessed by the Matsuda index in the oral glucose 

tolerance test (OGTT). Secondary outcomes were glucose levels in OGTT, mean 24-hour 

glucose, hormones of glucose metabolism, insulin secretion and beta-cell function indices, as 

well as blood pressure, levels of lipids, liver enzymes, adipokines, and cytokines assessed after 

the overnight fast. Additional outcomes included anthropometric parameters and body 

composition, hunger and satiety scores and hormones, parameters of intervention adherence 

(eating times, calorie intake, macronutrient composition), physical activity, and sleep. The 

exploratory outcomes were the expression of metabolic and inflammatory genes in peripheral 

mononuclear blood cells (PBMC) and the internal circadian phase. Outcomes were assessed 

before and after eTRE and lTRE interventions or during baseline, eTRE, and lTRE periods. 
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Glucose Metabolism Parameters 

Blood samples were collected after the overnight fast and during a 75g OGTT. Glucose levels, 

hormones of glucose metabolism (insulin, C-peptide, glucagon, and hemoglobin A1c (HbA1c)) 

were measured as described in eMethods in Supplement 1. Insulin sensitivity (Matsuda 

index), insulin secretion (insulinogenic index) and beta-cell function (disposition index) were 

assessed using OGTT. Mean 24-hour glucose level was assessed by continuous glucose 

monitoring (CGM) for 14 consecutive days within the baseline, eTRE and lTRE periods; indices 

for glycemic variability were analyzed using EasyGV© software27 (eMethods in Supplement 

1). 

 

Cardiometabolic Parameters, Adipokines, Cytokines, and Oxidative Stress Markers 

Blood pressure, lipid levels, and liver enzymes were measured using standard procedures. 

Adipokines (adiponectin, leptin) and inflammatory markers (interleukin 6 (IL-6), tumor 

necrosis factor alpha (TNFα), monocyte chemoattractant protein 1 (MCP-1, also known as 

CCL2)) were assessed by commercial enzyme-linked immunosorbent assays (ELISA). Oxidative 

stress markers (malondialdehyde, 3-nitrotyrosine, and protein carbonyls) were measured as 

described in eMethods in Supplement 1. 

 

Anthropometric Measurements, Body Composition, and Blood Pressure 

Anthropometric assessments, including measurements of weight, height, waist and hip 

circumferences, and body composition, were performed following an overnight fast as 

described in eMethods in Supplement 1.  

 

Gene Expression and Circadian Phase in Blood Monocytes 

Gene expression was measured in PBMC by quantitative real-time PCR (eTable 1 in 

Supplement 1). The circadian phase was assessed in CD14+ blood monocytes using BodyTime 

assay 28 (eMethods in Supplement 1). 

 

Statistical analysis 
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Data analyses were performed with SPSS 28.0 software (SPSS, Chicago, IL) using 2-sided tests 

with α = .05. All analyses were intention-to-treat. For the comparison of two groups, either a 

paired Student´s t-test or the Wilcoxon signed rank test was used, depending on the data 

distribution and accordingly to the statistical analysis plan (Supplement 2). See eMethods in 

Supplement 1 for more details. 

 

Results 

Participants Characteristics and Study Flow 

We screened 90 and enrolled 31 participants, of whom 15 were allocated to the eTRE-lTRE 

and 16 to the lTRE-eTRE study arms (Figure 1B). Participants had a mean (SD) BMI of 30.5 (2.9) 

and median (IQR) age of 62 (53-65) years. 18 participants showed a normal (NGT), and 13 - an 

impaired fasting glucose or impaired glucose tolerance (IFG/IGT). All participants were female, 

White, and of Caucasian ethnicity (Table 1). Despite the COVID-19 pandemic, there were no 

dropouts after randomization, and all 31 participants completed the study. Final analysis 

included 31 subjects. No serious adverse events possibly related to the intervention were 

reported (eAppendix in Supplement 1). 

 

Adherence to TRE Interventions and Study Protocol 

All participants showed high adherence to the 8-hour restricted eating window during the TRE 

interventions. During the baseline, they ate within a mean (SD) time period of 12:06 (1:35) 

hours. The eating duration was mean (SD) of 7:09 (0:32) hours in eTRE and of 6:57 (0:50) hours 

in lTRE (Figure 2A, eFigure 1 in Supplement 1). Adherence to the prescribed eating timing was 

high, with a mean (SD) of 96.5% (6.3%) in eTRE and 97.7% (6.1%) in lTRE, according to the food 

record analysis (Figure 2B). Energy intake remained unchanged in lTRE but decreased 

minimally in eTRE (-167 kcal; 95% CI, -249 to -86 kcal; P = 2.4x10-4) compared to the baseline 

(Figure 2C). No changes in percentage of carbohydrate, fat, and protein intake, as well as in 

physical activity levels, were found in both TRE interventions compared to the baseline (Figure 

2D-E, eTable 2 in Supplement 1). 
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Figure 2. Adherence to eTRE and lTRE Regimes 

A, Shown are the times of day (mean [SD]) when participants began eating (left end of box 

and left whisker) and stopped eating (right end of box and right whisker) in the baseline phase, 

eTRE and lTRE intervention phases. The vertical line within the boxes indicates the midpoint 

of the eating window (averaged across all participants). Participants reduced their habitual 

eating duration under 8-hours with a difference to the baseline of 4:57 hours (95% CI, -5:32 

to -4:21 hr, P <.001) in eTRE and of 5:08 hours (95% CI, -5:47 to -4:29 hr, P <.001) in lTRE (P-

values are shown left on the graph). B, Timely adherence, defined as a percentage of the 

adherent timing of eTRE and lTRE to specified times (eTRE: 8 AM to 4 PM ± 30 min and lTRE: 

1 PM to 9 PM ± 30 min), was high within both interventions. Data are shown as means [SD] 

(bars and whiskers). C, Displayed are changes in energy intake compared to the baseline 

demonstrating a decrease within eTRE. Data are shown as means with 95% CI. D, Food 

composition defined as macronutrient intake remained unchanged in eTRE and lTRE. Data 

presenting changes are shown as means with 95% CI. E, Physical activity defines as MET 

remained unchanged in eTRE and lTRE. Data presenting changes are shown as means with 

95% CI.  

 

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted October 7, 2024. ; https://doi.org/10.1101/2024.10.05.24314120doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.05.24314120


13 
 

Body Weight and Composition 

Participants showed a minimal weight loss of -1.08 kg (95% CI, -0.77 to -1.40 kg; P = 9.1x10-8) 

within eTRE and -0.44 kg (95% CI, -0.74 to -0.13; P = .01) within lTRE resulting in a between-

intervention difference of 0.65 kg (95% CI, 0.27 to 1.03 kg; P = .002) (Table 2). BMI decreased 

in eTRE (-0.45 kg/m2; 95% CI, -0.56 to -0.33 kg/m2; P = 5.4x10-9) and lTRE (-0.12 kg/m2; 95% CI, 

-0.21 to -0.03 kg/m2; P = .01) with a between-diet difference of 0.33 kg/m2 (95% CI, 0.21 to 

0.44 kg/m2; P = 2.2x10-6). Fat mass loss (-0.61 kg, 95% CI, -1.01 to -0.22 kg; P= .002) and lean 

mass loss (-0.57 kg; -1.11 to -0.04 kg; P = .04) were observed within eTRE only (Table 2). 

 

Insulin Sensitivity and Glucose Tolerance 

Insulin sensitivity, the primary outcome in this study, showed no differences between the TRE 

interventions (-0.07; 95% CI, -0.77 to 0.62, P = .83 for lTRE vs. eTRE) as well as within eTRE 

(0.31; 95% CI, -0.14 to 0.76, P = .11) and lTRE (0.19; 95% CI, -0.22 to 0.60, P = .25) (Figure 3A). 

AUC glucose in OGTT increased within eTRE (1636; 95% CI, 798 to 2475, P = .001), and its 

changes differed between interventions (-2175; 95% CI, -3088 to 1262, P = 3.6x10-5) (Figure 

3B, C). This suggests a minor decline in glucose tolerance within eTRE and might be explained 

by a decrease of insulin secretion relative to glucose, as indicated by a decline in the 

insulinogenic index (-0.43; 95% CI, -0.69 to -0.16; P = 6.9x10-5; Figure 3D, eFigure 2 in 

Supplement 1). This was also reflected by a decrease in the disposition index, which 

characterizes insulin secretion in combination with insulin sensitivity (-1.58; 95% CI, -2.75 to -

0.41, P = .14; Figure 3E), and by higher free fatty acids in the OGTT after eTRE (eFigure 2 in 

Supplement 1). We further observed a decrease of glucagon in eTRE without differences 

between interventions (eFigure 2 in Supplement 1). Despite minor changes in glucose 

tolerance in OGTT, mean 24-hour glucose assessed by CGM showed no differences between 

TRE interventions and no changes within eTRE and lTRE compared to baseline (Figure 3F, G). 

Glucose variability assessed in CGM showed an increase of intra-day variation and the 

percentage of time in the high-glucose range within eTRE and a decrease of inter-day variation 

within lTRE (eMethods and eTable 3 in Supplement 1).  
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Figure 3. Effects of eTRE and lTRE on Glucose Homeostasis. 

A, Plotted are changes in insulin sensitivity in eTRE and lTRE. Data are shown as means with 

95% CI. B, Presented are glucose values before and at the 30, 60, 90, 120 min of OGTT before 

and after the eTRE and lTRE interventions (mean [SD]). C, Depicted are changes in AUC glucose 

in OGTT which increased within eTRE and differed between interventions. Data are shown as 

means with 95% CI. D, Changes of the insulin secretion (assessed by the insulinogenic index) 

showed a decline within eTRE compared to the value before intervention. Data are shown as 

means with 95% CI. E, Changes of the beta-cell function (assessed by the disposition index) 

showed a decline within eTRE compared to the value before intervention. Data are shown as 

means with 95% CI. F, Plotted are 24-hour glucose profiles assessed by CGM over 14 days in 
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the baseline phase, eTRE and lTRE intervention phase. Solid lines and whiskers represent the 

mean glucose and SD, respectively, summarized all assessed days for 30 participants. G, 

Plotted are the mean 24-hour glucose values assessed by CGM over 14 days in the baseline 

phase, eTRE and lTRE intervention phase. Data are shown as means with 95% CI. H, Circadian 

phase before and after eTRE and lTRE as assessed by BodyTime assay in blood monocytes 

showed between-intervention changes with a delay for 24 min for lTRE compared to eTRE 

(dashed black lines). Comparison of samples collected after both interventions revealed a 

delay for 40 min after lTRE (n=26). Orange and petrol lines bind individual circadian phase 

values before and after eTRE and lTRE, respectively. The circadian phase corresponds to the 

BodyTime-predicted DLMO. I, Sleep onset moved later in lTRE compared to eTRE. J, Sleep 

offset moved later in lTRE compared to eTRE. K, Sleep midpoint moved later in lTRE compared 

to eTRE. L, Sleep duration showed no changes in eTRE and lTRE. I-J: Data are shown as means 

with 95% CI. 

 

Cardiometabolic Parameters 

None of the TRE interventions affected systolic and diastolic blood pressure, total cholesterol, 

LDL cholesterol, and triglyceride levels (Table 2). However, the decline in HDL cholesterol was 

detected within both eTRE (-0.10 mmol/L; 95% CI, -0.14 to -0.06 mmol/L; P = 6.0x10-5) and 

lTRE (-0.07 mmol/L; 95% CI, -0.11 to -0.03 mmol/L, P = .003), with no difference between the 

interventions. Both the eTRE (-3.58 U/L; 95% CI, -5.60 to -1.56 U/L, P = 4.0x10-5) and the lTRE 

(-3.46 U/L; 95% CI -6.14 to -0.79 U/L, P = .001) induced a decrease in γ-glutamyltransferase 

(GGT) but not in aspartate aminotransferase (ALT) and alanine aminotransferase (AST) (Table 

2).  

 

Adipokines, Inflammatory Markers, and Oxidative Stress Markers 

We further investigated levels of adipokines leptin and adiponectin, as well as inflammatory 

markers IL-6, TNFα, MCP-1, and C-reactive protein (hsCRP), which strongly contribute to 

obesity pathogenesis. Leptin levels declined within both eTRE (-8080 pg/mL; 95% CI -15995 to 

-166 pg/mL, P = .02) and lTRE (-10763 pg/mL; 95% CI -19035 to -2492 pg/mL; P = .001) without 

differences between interventions. Adiponectin levels were also reduced within eTRE (-0.94 

pg/mL; 95% CI -1.54 to 0.34 pg/mL, P = .003), with this change differing from lTRE (1.28 pg/mL; 

95% CI -2.36 to -0.20 pg/mL, P = .04) (eFigure 3 in Supplement 1). The analyzed inflammatory 

markers were not affected by either eTRE or lTRE intervention (Table 2, eFigure 3 in 

Supplement 1). Levels of oxidative stress markers malondialdehyde, 3-nitrotyrosine, and 

protein carbonyls were not changed in any TRE intervention (eTable 4 in Supplement 1).  
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Hunger and Satiety 

As assessed by a visual analog scale, participants showed lower desire to eat, hunger, and 

capacity to eat during the lTRE in the morning, but not in the evening compared to the eTRE 

whereas satiety did not differ at any time of day (eTable 5 in Supplement 1). In agreement 

with this, changes in the satiety hormone PYY differed between interventions (34.7 pg/mL; 

95% CI, 18.2 to 51.3 pg/mL, P = 1.9x10-4), showing a decrease within eTRE (-13.0 pg/mL; 95% 

CI -24.5 to -1.5 pg/mL, P = .01) and increase within lTRE (22.5 pg/mL; 95% CI 13.1 to 31.9 

pg/mL, P = 1.6x10-4). Levels of the hunger hormone ghrelin remained unchanged in both TRE 

interventions (eTable 5 in Supplement 1). 

 

Analysis in participants with impaired glucose metabolism 

Additional analysis in a subcohort with impaired glucose metabolism (IFG/IFT) revealed no 

differences in the insulin sensitivity and mean 24-hour glucose between and within TRE 

interventions. Other secondary glycemic, cardiometabolic, inflammatory, and oxidative stress 

outcomes also showed effects similar to the whole cohort (eTable 6, 7 in Supplement 1). 

 

PBMC Gene Expression 

To elucidate molecular pathway potentially induced by TRE, we then measured the expression 

of genes coding inflammatory markers (IL6, TNFα, CCL2, IL10), as well as key metabolic genes 

(CPT1A, PDK4, SIRT1, FASN, LPL), and clock genes (CLOCK, BMAL1, PER1, PER2, NR1D1, CRY1, 

CRY2, RORA) in PBMC samples. Core clock genes PER1 (-0.30; 95% CI, -0.57 to -0.03, P = .03) 

and NR1D1 (-0.24; 95% CI, -0.48 to -0.01, P = .02), which are strongly involved in metabolic 

regulation29, declined their expression levels within eTRE without between-intervention 

difference. Other genes showed no TRE-induced expression changes (eFigure 4 in Supplement 

1). 

 

Sleep Timing and Circadian Phase 

Considering the results of clock gene expression in PBMC and literature data on the effect of 

food intake on circadian clocks25,30-32, we tested whether the eating time during the TRE 

affects internal circadian clocks. Circadian phase was defined by the predicted dim-light 

melatonin onset (DLMO) and assessed using the BodyTime assay in blood monocytes28. TRE-
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induced circadian phase changes showed a between-intervention difference with a tendency 

to the delay for 24 min (-5 to 54 min, P = .10) in lTRE. When comparing samples collected at 

the end of both interventions, the circadian phase after lTRE was 40 minutes later than that 

after eTRE (18 to 62 min, P = .002) (Figure 3H). In agreement with this, the self-reported sleep 

onset (9 min; 0 to 18 min, P = .048), offset (20 min; 9 to 32 min, P = .001), and midpoint (15 

min; 7 to 22 min, P = .001) all occured later in lTRE as compared to eTRE. Sleep duration was 

not altered by eTRE and lTRE (Figure 3I-L). 

 

Discussion 

We conducted a randomized crossover trial comparing 8-hour early vs. late TRE in an isocaloric 

setting. Using several digital approaches33,34 for 24-hour monitoring, we confirmed high 

adherence to both interventions as evidenced by successful reductions of eating window 

under 8 hours, timely compliance being over 96%, unchanged dietary composition, and 

physical activity.  

The main finding of this study is that neither eTRE nor lTRE improve insulin sensitivity or induce 

other clinically meaningful changes of cardiometabolic and inflammatory traits in nearly 

isocaloric conditions. This contradicts our study hypothesis and most published data on TRE, 

which show beneficial effects on insulin sensitivity3,7,9 10,11, glucose3,6,7 3,8 and lipid6,8,12-14 

levels, as well as body weight and body fat7,8,14,16-18, whereas eTRE is suggested to be more 

effective compared to the late or mid-day TRE2,24,25,35. In contrast, long eating windows16, late 

evening16,36 and night37,38 eating, which are common in modern society, are associated with 

an risk of obesity, diabetes, and other metabolic diseases, at least partly due to the 

desynchronization of circadian clocks39,40. 

However, the beneficial cardiometabolic effects of TRE might be rather induced by TRE-

mediated calorie restriction and not by the shortening of the eating window itself. Indeed, 

spontaneous calorie restriction up to 30% due to the restriction of the eating window was 

reported in several TRE trials10,13-15,18. In this trial, the intensive dietary counselling ensured 

unchanged energy intake in lTRE, whereas in eTRE spontaneous calorie restriction could not 

be completely avoided. Energy intake in eTRE minimally decreased by 167 kcal, which 

approximately corresponds two hard-boiled eggs. This can happen, for example, if subjects 

skip high-fat or sweet snacks or alcohol drinks often consumed in the evening. Both eTRE and 
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lTRE showed minor weight loss of 1.08 kg and 0.44 kg, respectively, which was more 

pronounced in eTRE, and the fat loss was observed in eTRE only.  

Despite unavoidable minor decrease of energy intake in eTRE and minimal weight loss within 

both interventions, insulin sensitivity, the primary outcome, showed no between- and within-

intervention difference. This finding aligns with a recent study in subjects with type 2 diabetes, 

which reported no improvement in insulin sensitivity after three weeks of 10-hour self-

selected TRE39. However, it contradicts another study that demonstrated an improvement in 

insulin sensitivity in 8 overweight men with prediabetes after 5 weeks of eTRE2, although a 

weight loss was minor in both studies (1.0 kg and 1.4 kg, respectively) and similar to our trial. 

Thus, timing or duration of eating window as well as difference in study populations may 

contribute to the data heterogeneity. 

We further highlighted that the 24-hour mean glucose levels, which reflected glycemic control 

in real-life conditions over 14 days and has a high clinical relevance, did not show any 

differences within or between the TRE interventions. This contrasts to the glucose and insulin 

changes, which were detected in the experimental OGTT setting and may be explained by the 

design limitations as discussed below. Finally, the absence of TRE-induced changes in most 

lipid, inflammatory, and oxidative stress markers (as confirmed at the transcriptional level in 

PBMC) supports the idea that calorie restriction, but not shortening of the eating timing itself, 

is crucial to induce positive metabolic effects of TRE.  

Because our trial observed no effects of TRE on most analyzed parameters in an isocaloric 

setting, we were unable to compare effects of eTRE and lTRE. When calorie intake is 

spontaneously reduced, metabolic effects of eTRE are apparently more beneficial compared 

to lTRE2,3,10,22, but only few trials directly compared eTRE and lTRE8,24,25. Xie at al.24 compared 

early and mid-day TRE in a parallel-arm study and revealed that early eating is more effective 

for improving of insulin sensitivity, fasting glucose, body mass, and inflammation. Similarly, 

Zhang et al.25 reported improvements in mean glucose, fasting insulin, and insulin resistance 

after the eTRE, whereas leptin was reduced after both eTRE and lTRE. Notably, our trial 

observed similar effects on leptin, confirming TRE's influence on adipose tissue. In contrast, a 

single published cross-over study comparing 7-day eTRE and lTRE 8 found no significant 

difference in improvements in postprandial glucose and fasting triglycerides between the two 

eating windows. Recent research suggests that the most beneficial eating timing may vary for 
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individuals based on chronotype, genetic, social and other personal factors41-43, highlighting 

the need for further investigation. 

The second key finding of this study is that alterations of eating timing shift internal circadian 

time. We found that shifting the eating window by 5 hours from eTRE to lTRE induces 1) a 

delay in the circadian phase as estimated by transcript biomarkers in blood monocytes 

(BodyTime assay), which strongly correlates with DLMO28; 2) expression changes of core clock 

genes PER1 and NR1D1 at a single time point (which can also be caused by the clock phase 

shift); 3) a delay in sleep timing, which is also controlled by the circadian system44. This finding 

confirms in humans that food intake acts as a zeitgeber for circadian clocks as shown in 

multiple animal studies30,31 and very few human trials32,45,46. The study of Koppold-Liebscher 

et al.32, which used the same monocyte assay as in our study, observed transient shifts of 

circadian phase after religious intermittent fasting, characterized by eating at unusual time 

before sunrise and after the sunset; this effect disappeared 3 months after the return to usual 

eating time. Wehrens et al.45 demonstrated a delay of PER2 mRNA rhythms in adipose tissue 

by about one hour after the 5-hour delay in meal times, whereas our study observed a 40-

minute shift in samples collected after the lTRE vs. eTRE. Finally, a very recent trial showed that 

eTRE can advance sleep in late sleepers46. The regulation of peripheral, and possibly also of 

central, clocks by the timing of food intake may be mediated by postprandial changes of 

nutrients, metabolites, and hormones47, with insulin apparently playing an essential role48. Our 

data suggest that meal timing-based strategies may help resynchronize and adjust circadian 

rhythms in individuals with circadian rhythm disturbances, shift workers, and travelers. 

Finally, this trial elucidated an altered hunger regulation by the eating timing during the TRE. 

In eTRE, subjects felt more hunger, desire and capacity to eat in the morning than in lTRE. This 

can be explained by longer fasting after the last meal in eTRE at the day before the visit and 

by a habituation effect to the early eating window, so that the body “expects” the food intake 

early in the day49. Our study also revealed a novel hormonal mechanism which might 

contribute to the hunger regulation by the TRE timing. Whereas the ghrelin levels did not 

differ, the morning levels of anorectic hormone PYY increased within lTRE and declined in 

eTRE, suggesting a role of PYY in the observed lower hunger in the morning after the lTRE. 

Whether the eating/fasting timing during TRE alters the circadian rhythm of PYY secretion50,51 
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in humans and how it can be related to possible changes in the gut microbiome52 needs to be 

investigated in the future. 

 

Limitations 

Our study has several limitations. The duration of the trial was short based on our previous 

trials demonstrated marked metabolic changes even after one week of the isocaloric dietary 

intervention53,54. In planning the 2-week interventions, we aimed to achieve the maximally 

accurate 24-hour monitoring of food intake, glucose levels, physical activity, and sleep, and to 

ensure isocaloric conditions through intensive dietary counselling. Despite these efforts, we 

could not fully avoid a minor caloric reduction in eTRE. We enrolled exclusively women to 

ensure cohort homogeneity, which limits the generalizability of our findings to men. The OGTT 

was conducted at the same time of day, at 9:30 hr, to avoid diurnal variation of glucose 

tolerance 55,56. However, this resulted in a longer fasting before the test in eTRE compared to 

lTRE, which may partially explain the observed decrease in glucose tolerance within eTRE, 

because longer fasting can reduce insulin secretion 57,58. Finally, we did not perform indirect 

calorimetry due to hygienic standards during the COVID-19 pandemic, and therefore, we could 

not compare energy expenditure between eTRE and lTRE. 

 

Conclusion 

In a nearly isocaloric setting, neither eTRE nor lTRE improve insulin sensitivity or other 

glycemic, cardiometabolic, and inflammatory traits despite significant changes in circadian 

system. This trial highlights the importance of calorie restriction in positive metabolic effects 

of TRE. Carefully controlled studies should investigate whether the timing of eating influences 

TRE outcomes in a hypocaloric setting. Further, future research should focus on precision 

nutrition to identify who will benefit more from eTRE or lTRE interventions.   
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Table 1. Baseline Characteristics 

 All participants 

(n = 31) 

eTRE - lTRE group 

(n = 15) 

lTRE - eTRE group 

(n =16) 

Variable 

Demographic characteristics 

Age, median (IQR), y 62 (53-65) 62 (53-65) 60 (52-65) 

Sex, female:male 31:0 15:0 16:0 

Race, white:other 31:0 15:0 16:0 

Ethnicity: Caucasian:other 31:0:0 15:0:0 16:0:0 

Body composition 

Weight, mean (SD), kg 82.5 (8.4) 83.2 (8.8) 81.9 (8.2) 

Fat mass, mean (SD), kg 34.1 (6.6) 35.0 (6.4) 33.3 (6.9) 

Lean mass, mean (SD), kg 48.4 (5.4) 48.2 (4.7) 48.6 (6.1) 

Waist circumference, mean (SD), cm 99 (9) 101 (9) 98 (9) 

BMI, mean (SD), kg/m2 30.5 (2.9) 30.7 (2.9) 30.2 (3.0) 

Glucose homeostasis    

Fasting glucose, median (IQR), mg/dL 90 (87-96) 88 (82-96) 91 (89-102) 

HbA1c, mean (IQR), %ᵃ 5.50 (5.22-5.70)  5.41 (5.16-5.68) 5.50 (5.23-5.70) 

Glycemic state by OGTT, NGT:IFG/IGT 18:13 9:6 9:7 

Cardiometabolic parameters    

Systolic blood pressure, median (IQR), mm Hg 117 (110-135) 120 (112-132) 116 (108-137) 
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Diastolic blood pressure, median (IQR), mm Hg 75 (68-79) 75 (70-79) 74 (66-80) 

Total cholesterol, mean (SD), mmol/L 5.63 (0.92) 5.60 (0.89) 5.66 (0.97) 

HDL cholesterol, median (IQR), mmol/L 1.46 (1.33-1.65) 1.51 (1.31-1.76) 1.46 (1.34-1.63) 

LDL cholesterol, mean (SD), mmol/L 3.47 (0.82) 3.41 (0.80) 3.54 (0.86) 

Triglycerides, mean (SD), mmol/L 1.35 (0.62) 1.30 (0.52) 1.40 (0.72) 

ASAT, mean (SD), U/L 32.2 (6.6) 31.2 (5.8) 33.1 (7.4) 

ALAT, median (IQR), U/L 22.1 (19.8-27.6) 22.2 (17.7-26.3) 22.0 (19.8-28.3) 

GGT, median (IQR), U/L 21.2 (18.0-25.3) 19.5 (15.8-24.1) 23.8 (19.6-35.9) 

hsCRP, median (IQR), mg/L 1.30 (0.80-2.60) 1.30 (0.90-2.10) 1.55 (0.55-3.28) 

Eating habits and physical activity    

Eating duration, mean (SD), h:m 12:06 (1:35) 11:52 (1:28) 12:20 (1:43)  

Eating start time, mean (SD), h:m 8:30 (1:03) 8:27 (0:49) 8:33 (1:15) 

Eating end time, mean (SD), h:m 20:38 (1:11) 20:08 (0:56) 21:06 (1:14) 

MET, mean (SD)ᵇ 1.59 (0.15) 1.63 (0.13) 1.57 (0.14) 

Internal clock and sleep timing    

Chronotype (MSFsc), early:normal:late 18:11:2 11:3:1 7:8:1 

Sleep duration, mean (SD), h:m 7:53 (0:51) 7:59 (0:58) 7:47 (0:46) 

Sleep onset, mean (SD), h:m 23:29 (0:54) 23:14 (0:56) 23:44 (0:49) 

Sleep offset, mean (SD), h:m 7:23 (0:40) 7:14 (0:39) 7:32 (0:39) 

Abbreviations: eTRE, early time-restricted eating; lTRE, late time-restricted eating; WHR, waist-to-hip ratio; BMI, body mass index; NGT, normal glucose tolerance; 

IFG, impaired fasting glucose; IGT, impaired glucose tolerance; HbA1c, hemoglobin A1C, HDL, high-density lipoprotein; hsCRP, high sensitive C-reactive protein; 
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LDL, low-density lipoprotein; MSFsc, the midpoint of the sleep phase on days off, corrected for sleep deprivation accumulated on work days; MET, metabolic 

equivalent of task. 

SI conversion factors: To convert cholesterol mmol/L to mg dL divide by 0.0259; glucose mg/dL to mmol/L multiply by 0.0555; insulin mU/L to pmol/L multiply by 

6.945; triglycerides mg/dL to mmol/L multiply by 0.0113. 

ᵃ One baseline value in group B (lTRE-eTRE) was not measured due to loss of the sample. 

ᵇ Two baseline values for MET were excluded in all groups due to defect actigraphs. 
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Table 2. TRE Effects on Body Composition, Glucose Homeostasis, and Cardiometabolic Parameters. 

 Change (95% CI)  Difference between 

lTRE vs. eTRE 

interventions (95% CI) 

 

 

P value 

 

Outcome 

 

eTRE (n = 31) 

 

P value 

  

lTRE (n = 31)ᵃ 

 

P value 

 

Body Composition         

Weight, kg -1.08 (-1.40 to -0.77) 9.1x10-8  -0.44 (-0.74 to -0.13) .01  0.65 (0.27 to 1.03) .002 

Fat mass, kgᵃ -0.61 (-1.01 to -0.22) .002  0.02 (-0.36 to 0.39) .92  0.65 (0.19 to 1.11) .007 

Lean mass, kgᵃ -0.57 (-1.11 to -0.04) .04  -0.28 (-0.78 to 0.23) .27  0.25 (-0.31 to 0.81) .37 

Waist circumference, cm -0.36 (-1.65 to 0.92) .57  0.48 (-0.97 to 1.92) .51  0.84 (-1.21 to 2.89) .41 

BMI, kg/m2 -0.45 (-0.56 to -0.33) 5.4x10-9  -0.12 (-0.21 to -0.03) .01  0.33 (0.21 to 0.44) 2.3x10-6 

Glucose Homeostasis         

Fasting glucose, mg/dl -0.16 (-0.31 to -0.01) .04  0.08 (-0.02 to 0.18) .07  0.24 (0.06 to 0.42) .01 

Fasting insulin, µU/ml -2.25 (-3.33 to -1.17) 3.1x10-4  -1.54 (-3.77 to 0.69) .23  0.71 (-1.86 to 3.27) .09 

HbA1c, % -0.01 (-0.05 to 0.03) .73  -0.02 (-0.06 to 0.01) .22  -0.01 (-0.06 to 0.03) .50 

Cardiometabolic Parameters         

Systolic blood pressure, mm Hg 0.61 (-3.41 to 4.62) .76  4.23 (-0.05 to 8.51) .05  2.04 (-3.46 to 7.54) .45 

Diastolic blood pressure, mm Hg 0.29 (-2.68 to 3.25) .84  1.10 (-1.92 to 4.12) .69  0.11 (-3.93 to 4.15) .83 

Total cholesterol, mmol/L -0.12 (-0.32 to 0.08) .24  -0.12 (-0.30 to 0.06) .19  0.00 (-0.28 to 0.28) .94 

HDL cholesterol, mmol/L -0.10 (-0.14 to -0.06) 6.0x10-5  -0.07 (-0.11 to -0.03) .003  0.03 (-0.04 to 0.09) .45 

LDL cholesterol, mmol/L 0.21 (-0.15 to 0.57) .24  0.22 (-0.10 to 0.55) .17  0.01 (-0.54 to 0.56) .77 

Triglycerides, mmol/L 0.06 (-0.08 to 0.21) .27  -0.01 (-0.15 to 0.13) .56  -0.07 (-0.22 to 0.08) .34 

ASAT, U/L -0.55 (-1.77 to 0.68) .37  -0.66 (-2.31 to 0.99) .42  -0.12 (-2.51 to 2.27) .90 

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted October 7, 2024. ; https://doi.org/10.1101/2024.10.05.24314120doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.05.24314120


30 
 

ALAT, U/L -1.74 (-3.71 to 0.22) .13  -2.08 (-5.43 to 1.28) .72  -0.34 (-4.33 to 3.66) .56 

GGT, U/L -3.58 (-5.60 to -1.56) 4.0x10-5  -3.46 (-6.14 to -0.79) .001  0.11 (-2.02 to 2.24) .59 

hsCRP, mg/L 0.08 (-2.02 to 2.18) .59  -0.07 (-0.38 to 0.24) .61  -0.15 (-2.29 to 1.98) .83 

Beta-Hydroxybutyrate, mmol/L 0.03 (0.00 to 0.05) .02  0.00 (-0.02 to 0.03) .83  -0.02 (-0.05 to 0.00) .09 

Abbreviations: WHR, waist-to-hip ratio; BMI, body mass index; HDL, high-density lipoprotein; hsCRP, high sensitive C-reactive protein; LDL, low-density 

lipoprotein; ASAT, aspartate-aminotransferases; ALAT, alanine-aminotransferases; GGT, gamma-glutamyltransferases 

ᵃ one eTRE and three lTRE data sets (pre and post) were excluded because of invalid bioelectrical impedance analysis 
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eMethods  

Reporting Guidelines and Informed Consent. We followed the CONSORT reporting guidelines. 

The written informed consent was obtained from all study participants prior to enrollment. 

Eligibility Criteria. Participants were excluded when they had a male sex; didn’t meet the age 

range between 18 to 70 years; had a BMI lower than 18 kg/m2 or higher than 35 kg/m2; did 

shift work; travelled over more than one time zone in the month prior to the study start; 

reported weight changes of more than 5% in the past 3 months prior to the study start; were 

pregnant or breastfeeding; had severe intestinal diseases; practiced special diets, e.g., 

intermittent fasting; had low sleep quality (Pittsburgh Sleep Quality Index1 higher than 10) or 

sleep disorders; had diabetes type 1 or 2 or other endocrinological diseases; reported severe 

renal and liver diseases; reported a stroke the 6 months prior to the study start; had cancer in 

the 2 years prior to the study start; were on medication with glucocorticoids; had coagulation 

disorders; were on anticoagulant medication; reported severe anemia or systemic infections; 

had psychiatric diseases, addictive diseases, or depression. In the case of using other 

medication or food allergies, the study doctor individually considered whether study 

participation was possible.  

Overview of Measurements at the Baseline, Examination Days, and TRE Intervention 

Periods. The ChronoFast study was a 10-week randomized crossover trial including two 2-

week dietary intervention periods: (1) early time-restricted eating (eTRE) and (2) late time-

restricted eating (lTRE), preceded by a 2-4-week baseline (run-in) period and separated by a 

2-week washout period. Participants visited the clinical study center at the German Institute 

of Human Nutrition Potsdam-Rehbrücke for the initial screening as well as before and after 

each dietary intervention (eTRE and lTRE). Visit days began at 8:30 hr and included 

anthropometrical measurements, fasting blood collection, an oral glucose tolerance test 

(OGTT), and nutritional instruction by a dietician. During the 14 days of the baseline and both 

TRE intervention periods (eTRE and lTRE), continuous glucose monitoring (CGM) and 

actigraphy were performed, and food, sleep and weight diaries were maintained. 

Time-Restricted Eating Interventions. During the baseline period, the participants followed 

their usual eating habits, including their habitual eating times. In contrast, during the TRE 

interventions, participants had to restrict their eating duration to 8 hours per day but consume 

their usual kind and amount of food. In the eTRE intervention, participants had to consume 

food between 8:00 and 16:00 hr, and in the lTRE, between 13:00 and 21:00 hr. During the daily 

16-hour fasting period, participants had to consume non-caloric drinks only, such as water, 

black coffee, or tea, as well as sugar-free chewing gums or mints. Participants were free to 

divide their meals within the predetermined eating windows. As instruction, and to maintain 

their habitual daily calorie intake, food composition, and minimize body weight changes, 

participants received a copy of their individual 14-days food diaries from the baseline period. 

Within the 2-week washout period, participants were requested to return to their habitual 

eating behavior, including their usual eating window. 

Food Intake Documentation. Food documentation was conducted within the baseline period 

and both TRE intervention periods for 14 consecutive days. Participants were asked to digitally 

document their food selection, amount, and time of consumption using the free smartphone 
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app FddB Extender (https://fddb.info/) 2. Participants who were not familiar with using a 

smartphone completed paper-based dietary records, which were then transferred to the FddB 

Extender app by a study assistance. Prior to the baseline period, all participants received 

detailed instruction for digital or handwritten food documentation. They were requested to 

weigh their food whenever possible (or use household measures, e.g., glasses, cups, 

teaspoons), to add supplemental information (e.g., brand names) and the time of food 

consumption. The FDDB food database (Fddb Internetportale GmbH, https:// fddb.info/) was 

used for analyzing eating timing, energy intake, and macronutrient composition as validated 

previously 2.  

TRE Intervention Adherence. TRE intervention adherence was assessed based on the 

following criteria: 1) duration of the eating window of less than 8 hours; 2) adherence to the 

prescribed eating time within ± 30 minutes; 3) unchanged energy intake; and 4) unchanged 

macronutrient composition. Participants were also asked to maintain a constant body weight 

throughout the study. They were instructed to record their weight daily and report any weight 

fluctuation of ≥ 700 g on 2 consecutive days. Participants were called by the dietician after 7 

days of the baseline period and each TRE intervention period to promote adherence to the 

assigned intervention and answer questions. The FddB Extender app enabled accurate and 

simple real-time monitoring2 of compliance, including the adherence to the given time frames 

and potential weight changes. Accessing the nutrition log during the intervention allowed a 

dietician to intervene rapidly and contact the study subjects in case of adherence problems. 

For the quantification of timely adherence, the daily eating window corresponding to the 

period between the first and last calorie intake was assessed. All days when the subjects 

followed the required TRE eating time frame with a maximum deviation of ± 30 minutes were 

considered as compliant. Further, during the baseline and TRE intervention periods, calorie 

intake and macronutrient composition were carefully monitored using the FddB app and FDDB 

food database. 

Anthropometric Measurements, Body Composition, and Blood Pressure. Body weight was 

measured with a digital scale, and body height was measured with a stadiometer. Waist and 

hip circumferences were measured using a metric tape. Body composition was assessed by 

bioelectrical impedance analysis (BIA; Bioimpedance Analyzer Quantum S, Akern, Italy), with 

fat and lean mass (in kg and percentage) calculated using the related BodygramTM software 

(Akern, Italy). Blood pressure was measured on the left upper arm after at least a 3-minute 

rest, three times, and an average value was calculated.  

 

Blood Sampling, Oral Glucose Tolerance Tests and OGTT indices. Fasting blood samples were 

collected after an overnight fast. For the OGTT, participants consumed a syrup (ACCU-CHEK® 

Dextrose O.G-T., Roche Diabetes Care, Mannheim, Germany) containing 75g glucose at 9:30 

hr within a 5-minute time frame. Blood samples were collected after 30, 60, 90, and 120 

minutes using EDTA and serum monovettes (Sarstedt, Germany) via an intravenous catheter. 

To analyse incretins, 10 μg/ml aprotinin (Roth, Germany) and 50 μM DPP4 inhibitor (Merck 

Millipore, Darmstadt, Germany) were added to the blood samples. Serum and plasma samples 

were centrifuged at 1,800 × g for 10 min at 4°C and stored at −80°C until analysis. In OGTT, 

indices of insulin sensitivity (Matsuda index), insulin secretion in response to glucose challenge 
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(insulinogenic index), and beta-cell function (disposition index, which characterizes insulin 

secretion in combination with insulin sensitivity) were calculated based on fasting and 

postprandial glucose and insulin levels 3. The disposition index is often used as a predictor for 

the development of type 2 diabetes 4. For glucose, free fatty acids, and hormone secretion in 

OGTT, areas under the curve (AUC) were determined using the trapezoidal method. 

Continuous Glucose Monitoring and Calculation of CGM Indices. The 24h glucose profile was 

examined using a Freestyle Libre 2 CGM system (Abbott, Wiesbaden, Germany), which 

measures interstitial fluid glucose with 15 min sampling intervals during the baseline and TRE 

intervention periods for 14 consequent days. To prevent data loss, participants were 

instructed to scan the subcutaneous placed sensor on their upper arm with a portable reader. 

Glycemic control was described by 24-hour mean sensor glucose level (MSG) and the 

minimum and maximum sensor glucose level. Glycemic variability (GV) was assessed using the 

EasyGV© software version 9.0.R2 5 (available for non-commercial use at 

https://www.phc.ox.ac.uk/research/resources/easygv). For this, following intra-day indices 

were calculated as described previously 6: (1) standard deviation (SD) of mean glucose value, 

indicating variation from the average glucose; (2) mean amplitude of glucose excursions 

(MAGE), describing the height of glucose excursions above one SD; (3) continuous overlapping 

net glycemic action (CONGA) as a descriptor for varying glucose levels at intervals which were 

previously set as 60 minutes. Mean of daily differences (MODD), representing the inter-day 

GV, was calculated as the average of equally timed glucose values across different days. The 

Easy GV tool also converted glucose data into risk scores, such as the low blood glucose index 

(LBGI: <0) and high blood glucose index (HBGI: >0). As additional parameter of GV, the 

coefficient of variation in percentage (CV%) was calculated using the formula SD/MSG x 100 6. 

Biochemical Measurements. Measurement of routine laboratory parameters, i.e., aspartate 

aminotransferase, alanine aminotransferase, gamma glutamyltransferase, C-reactive protein, 

glucose, HbA1c, total cholesterol, HDL cholesterol, and non-esterified free fatty acids, were 

performed using ABX Pentra (HORIBA ABX SAS, Montpellier, France). LDL cholesterol was 

determined using the Friedewald equation. Circulating levels of insulin (10-1113-01), C-

peptide (10-1136-01) and glucagon (10-1271-01, all from Mercodia Inc., NC, USA), MCP-1 

(DCP00, Quantikine®ELISA, R&D Systems Inc., MN, USA), IL-6 (HS600C) and TNF-α (HSTA00E, 

both Quantikine®ELISA HS, R&D Systems Inc., MN, USA), PYY (EZHPYYT66K, Merck Millipore, 

Germany), adiponectin (RD195023100, Biovendor, Germany), and leptin (DLP00, 

Quantikine®ELISA, R&D Systems Inc., MN, USA) were quantified using commercial ELISA kits 

using a DSX® 4-Plate ELISA Processing System (DYNEX Technologies GmbH, Denkendorf, 

Germany). Ghrelin ELISA (RA194063500R, Biovendor, Germany) was conducted using a BioTek 

Eon™ plate reader (BioTek Instruments, Bad Friedrichshall, Germany).  

Oxidative Stress Markers. Malondialdehyde (MDA) was measured in plasma samples after 

derivatization with thiobarbituric acid (TBA) and separation by reverse-phase HPLC coupled 

with fluorescence detection. 3-Nitrotyrosine and protein carbonyls were assessed by indirect 

in-house ELISA with nitrated BSA and oxidized BSA as standards, respectively, as previously 

described 7. 
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Assessment of Physical Activity and Metabolic Equivalent. Participants were asked to 

maintain their habitual physical activity throughout the entire trial duration. 24-hour physical 

activity was monitored using a blinded accelerometer (ActiGraph wGT3X-BT, ActiGraph, 

Netherlands), which was placed on the wrist of the non-dominant arm for 14 days during the 

baseline phase and both TRE interventions. The device was to be removed only during bathing 

or swimming, and participants were asked to record non-wear times in a protocol. The analysis 

of energy expenditure, physical activity levels, and the metabolic equivalent of task (MET) was 

conducted using ActiLife software version 6.13.4 (ActiGraph, Netherlands). 

Chronotype assessment and Sleep Timing. Individual chronotypes were assessed using the 

Munich Chronotype Questionnaire (MCTQ)8 and the Horne-Östberg Morningness-

Eveningness Questionnaire (MEQ)9. For chronotype classification, the MSFsc value (midsleep 

on free days corrected for the sleep debt over the working days) was used. MCF-Sc <4 was 

defined as an early chronotype, MCF-Sc >5 as a late chronotype, and intermediate values as a 

normal chronotype. Classification in MEQ also based on standardized criteria with a range 

from 59-69 for early chronotypes, 31-41 for late chronotypes, and intermediate values for 

normal chronotypes. Extreme values in MEQ outside the mentioned ranges were counted as 

early and late chronotypes and not classified as extreme chronotypes. In case of heterogenous 

results in both questionnaires, the MCTQ was used for the final chronotype classification. 

Participants were asked to maintain their habitual sleep times throughout the trial. Sleep 

timing (sleep onset and offset) was monitored using a sleep diary for 14 days during the 

baseline and both intervention periods. 

Hunger and Satiety Scores. The assessment of hunger and satiety was conducted on the last 

day of both TRE-intervention periods in the morning (at 8:00 hr) and in the evening (at 20:00 

hr) using a Visual Analog Scale (VAS). The questionnaire included four questions about (i) the 

desire to eat, (ii) hunger, (iii) satiety, and (iv) the capacity to eat. 

Gene Expression and Circadian Phase in Blood Monocytes. Peripheral blood mononuclear 

cells (PBMC) were isolated from fasting EDTA blood collected between 8:30 and 11:00 hr using 

BD Vacutainer® CPT with an integrated FICOLL™ gradient (BD Biosciences). For gene 

expression analysis, total RNA was purified using the NucleoSpin RNA midi kit (Macherey-

Nagel, Berlin, Germany). RNA concentration was measured using a ND-1000 

spectrophotometer (Nanodrop, PeqLab). Single-stranded cDNA was synthesized using the 

high-capacity cDNA reverse transcription kit (Applied Biosystems™, Carlsbad, USA). 

Quantitative real-time PCR (qPCR) was performed with the ViiA 7 sequence detection system 

using Power SYBR Green PCR Master Mix (Applied Biosystems, USA) and specific primers 

(eTable 1). Gene expression was assessed by the standard curve method and normalized to 

the housekeeper gene beta-2-microglobulin (B2M). 

The circadian phase was defined by dim light melatonin onset predicted (DLMO), which 

typically occurs about two hours before habitual bedtime, and was assessed using the recently 

validated BodyTime assay. This assay requires only one blood sample to objectively determine 

the phase of the circadian clock of an individual 10. For the analysis, blood monocytes were 

purified from PBMC samples using CD14 microbeads (Bergisch Gladbach, Germany) via 

positive magnetic sorting. Total RNA was isolated from monocytes using TRIzol reagent 

(Invitrogen, Germany). 1 µg RNA was used to analyze the expression of 20 biomarker genes 
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using the NanoString nCounter platform (NanoString Technologies, Seattle, WA, US) as 

described 10. 

Sample Size Calculation. 

Power calculation was completed using the G-Power software v.3.1 11 for the primary end 

point of change in insulin sensitivity. The calculation was based on the difference in insulin 

sensitivity observed in the meal tolerance tests conducted in the morning and in the evening 

in subjects with IFG/IGT in our previous study 12. The trial was statistically powered to detect 

a difference in insulin sensitivity of 12.8 % plus or minus 7.1 % at a significance level of 0.05 

and a statistical power of 80%. Assuming a 10% dropout rate, an estimated 33 enrollees were 

needed to ensure that 30 individuals completed the trial. The allocation of subjects to study 

arms was performed by matching for age and BMI using a minimization method and the 

MinimPy software 13. Recruitment stopped once the target sample size was exceeded (n=31). 

Blinding. Participants and intervention staff were unblinded. Prior to randomization, all 

outcomes were collected blinded. About 70% of the post-intervention data were assessed 

blinded. Specifically, all blood parameters, CGM, physical activity, and gene expression 

measurements were performed blinded, whereas anthropometric measurements, food 

intake, and chronotype assessments were not. The dietician who analyzed food records and 

estimated TRE adherence was not blinded to group assignments. Other investigators and 

statisticians were blinded during the study procedures and were unblinded only after all data 

had been analyzed. 

Data Handling. Collected data was stored in a database on servers at the German Institute of 

Human Nutrition. Regular data backups were performed, and access was restricted to 

authorized personnel. During data collection, data was pseudonymized, with research data 

stored separately from identifying information. Anonymization was completed once the data 

collection process was finished. Anonymized data was used for subsequent research and will 

be archived for at least 10 years on servers at the German Institute of Human Nutrition, in 

accordance with good scientific practice. 

Statistical Methods. Data analyses were performed using SPSS 28.0 software (SPSS, Chicago, 

IL) using 2-sided tests at α = .05, according to the statistical analysis plan (Supplement 2). All 

analyses were intention-to-treat. All data were initially checked for missing values, cleaned, 

and inspected to determine ranges, identify outliers, and assess data distribution using the 

Shapiro–Wilk test. Absolute values were expressed as mean ± SD when normally distributed 

and median (IQR) when not normally distributed. Within-intervention comparisons (values 

after/during the intervention vs. values before the intervention) and between-intervention 

(parameter changes in lTRE vs. changes in eTRE) comparisons were assessed using paired 

Student's t-test for normally distributed data or the Wilcoxon test for non-normally 

distributed data. Changes within-intervention and differences between-intervention were 

expressed as mean (95% CI). Comparisons of two independent groups were conducted using 

Student's unpaired t-test for normally distributed data or the Mann–Whitney U-test for non-

normally distributed data. Data for endpoints involving repeated measures will be analyzed 

using the repeated measures ANOVA. Our analyses did not adjust p-values for multiple 

comparisons when analyzing cardiometabolic outcomes, consistent with a majority of 
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published nutritional and weight loss clinical trials. The visualization of the data was 

performed using GraphPad Prism software version 10.2.3 (GraphPad Prism Inc., La Jolla, CA, 

USA).  
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eAppendix. Adverse Events 

Adverse events were assessed during the phone call within each intervention. There were 30 

adverse events possibly related to the study, none were serious. In the eTRE, there were 10 

adverse events possibly related to the intervention, including irregular defecation (n=3), 

fatigue (n=1), headaches (n=2), vomiting after breakfast (n=1), dizziness (n=1), feeling cold 

(n=1), and night hypoglycemia (n=1). In the lTRE, there were 20 adverse events possibly 

related to the intervention, including irregular defecation (n=3), diarrhea (n=1), fatigue (n=3), 

stomach pain (n=3) or grumbling (n=1), gastric reflux after the dinner (n=1), headaches (n=3), 

dizziness (n=3), feeling cold (n=1), sweeting in the evening (n=1). 
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eTable 1. Primer Sequences. Sequences of primers used for the quantitative real-time PCR in 
PBMC are shown. Genes were selected based on the previously published human or animal 
data on their circadian rhythmicity and/or their potential role in the TRE-induced metabolic 
effects. 
 

Gene name Gene 
symbol 

Forward primer Reverse primer 

Clock genes 

Clock circadian regulator CLOCK ATTCCACAAGGCATGTCCCA TTTGCTTCTATCATGCGTGTCC 

Basic helix-loop-helix ARNT like 1 BMAL1 CATTAAGAGGTGCCACCAATCC CAAAAATCCATCTGCTGCCC 

Period circadian regulator 1 PER1 ATTCCGCCTAACCCCGTATGT CCGCGTAGTGAAAATCCTCTTG 

Period circadian regulator 2 PER2 AGCAGGTGAAAGCCAATGAAG AGGTAACGCTCTCCATCTCCTC 

Nuclear receptor subfamily 1 group 
D member 1 

NR1D1 
TGACCTTTCTCAGCATGACCAA CAAAGCGCACCATCAGCAC 

Cryptochrome circadian regulator 1 CRY1 GGGACCTGTGGATTAGTTGGG GCTCCAATCTGCATCAAGCAA 

Cryptochrome circadian regulator 2 CRY2 TGCATCTGTTGACACTCATGATTC GGTACTCCCCCAGCCCAG 

RAR related orphan receptor A RORA ACTCCTGTCCTCGTCAGAAGA CATCCCTACGGCAAGGCATTT 

Metabolic genes 

Carnitine palmitoyltransferase 1A CPT1A ATTATGCCATGGATCTGCTG AGCGGAGCAGAGTGGAATC 

Fatty acid synthase FASN AGACACTCGTGGGCTACAGCAT ATGGCCTGGTAGGCGTTCT 

Pyruvate dehydrogenase kinase 4 PDK4 CCCTGAGAATTATTGACCGCCT AAGCCGTAACCAAAACCAGCC 

Sirtuin 1 SIRT1 ATGCTGGCCTAATAGAGTGGCA CCTCAGCGCCATGGAAAAT 

Lipoprotein lipase LPL TGCAGGAAGTCTGACCAATAAG CCCTCTGGTGAATGTGTGTAAG 

Inflammation genes  

Interleukin 6 IL6 AGCCCTGAGAAAGGAGACATGTA TCTGCCAGTGCCTCTTTGCT 

Tumor necrosis factor alpha TNFα GGACCTCTCTCTAATCAGCCCTC TCGAGAAGATGATCTGACTGCC 

Monocyte chemotactic protein 1 CCL2 CATAGCAGCCACCTTCATTCC TCTGCACTGAGATCTTCCTATTGG 

Housekeeper gene 

Beta-2-microglobulin B2M CTATCCAGCGTACTCCAAAG AAACCCAGACACATAGCAAT 
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eTable 2. Changes of Physical Activity. There were no between-intervention and within-intervention differences in the changes in metabolic 
equivalent of task (MET) as well as light, moderate, and sedentary activity in eTRE and lTRE. 
 

 Change (95% CI)    

 
 
Outcome 

 
 
eTRE (n = 29a 

 
 
P value 

  
 
lTRE (n = 29)a 

 
 
P value 

 Difference between 
lTRE vs. eTRE 
interventions (95% 
CI)a 

 
 
P value 

MET -0.02 (-0.05 to 0.01) .19  -0.01 (-0.04 to 0.02) .52  0.01 (-0.02 to 0.04) .54 
Light activity 0.15 (-1.03 to 1.33) .97  -0.29 (-1.39 to 0.81) .58  -0.44 (-1.64 to 0.75) .45 
Moderate activity -0.51 (-1.34 to 0.32) .22  -0.26 (-1.26 to 0.74) .59  0.25 (-0.74 to 1.23) .61 
Sedentary activity 0.35 (-1.29 to 2.00) .16  0.56 (-0.85 to 1.96) .21  0.20 (-1.42 to 1.83) .97 

 

Abbreviations: eTRE, early Time-Restricted Eating; lTRE, late Time-Restricted Eating; MET, metabolic equivalent of task 
 
a Two baseline values for physical activity parameters were excluded in all pairwise comparisons due to two defect actigraphs at baseline. 
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eTable 3. Changes of Continuous Glucose Monitoring Indices. Glucose variability assessed in continuous glucose monitoring (CGM) showed an 
increase of intra-day variation indices (SD: 0.13; 95% CI, 0.02 to 0.24, P = .03; CV: 2.78; 95% CI, 0.28 to 5.28, P = .006) and percentage in the high-
glucose range (HBGI: 0.23; 95% CI, 0.08 to 0.37, P = .006) within eTRE as well as a decrease of inter-day variation (MODD: -0.09; 95% CI, -0.14 to -
0.03; P = .003) within lTRE. Between-intervention differences are shown in the table below. 
 

 Change (95% CI)    

 
 
Outcome 

 
 
eTRE (n = 30)a 

 
 
P value 

  
 
lTRE (n = 30)ᵃ 

 
 
P value 

 Difference between 
lTRE vs. eTRE 
interventions (95% 
CI)a 

 
 
P value 

MSG [mmol/L] -0.03 (-0.26 to 0.21) .82  0.12 (-0.08 to 0.31) .23  0.14 (-0.06 tot 0.35) .17 
SD [mmol/L] 0.13 (0.02 to 0.24) .003  -0.03 (-0.09 to 0.03) .34  -0.16 (-0.28 to -0.05) .002 
CV [%] 2.78 (0.28 to 5.28) .006  -0.85 (-1.88 to 0.18) .10  -3.63 (-6.37 to -0.89) .001 
MAGE [mmol/L] 0.09 (-0.01 to 0.18) .08  -0.08 (-0.16 to 0.01) .07  -0.16 (-0.25 to -0.07) .001 
CONGA [mmol/L] 0.08 (-0.14 to 0.31) .47  0.18 (0.00 to 0.36) .05  0.10 (-0.08 to 0.29) .27 
MODD [mmol/L] -0.06 (-0.12 to 0.00) .08  -0.09 (-0.14 to -0.03) .003  -0.03 (-0.09 to 0.03) .38 
LBGI 2.84 (-2.29 to 7.97) .18  -0.44 (-1.02 to 0.13) .24  -3.28 (-8.56 to 1.99) .04 
HBGI 0.23 (0.08 to 0.37) .006  -0.02 (-0.17 to 0.12) .40  -0.25 (-0.43 to -0.08) .003 

 

Abbreviations: eTRE, early Time-Restricted Eating; lTRE, late Time-Restricted Eating; MSG, Mean Sensor Glucose; SD, Standard Deviation; CV, Percentage 

Coefficient of Variation for Glucose; MAGE, Mean Amplitude of Glycemic Excursions; CONGA, Continuous Overall Net Glycemic Action; MAG change, Mean 

Absolute Glucose change; MODD, Mean of Daily Differences; LBGI, Low Blood Glucose Index; HBGI, High Blood Glucose Index. 

aOne participant was excluded from CGM analysis due to incomplete CGM data. Data gaps can be attributed to non-regular measurement by the participant 

which avoided the saving of the data. 
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eTable 4. Changes of Oxidative Stress Markers. Levels of oxidative stress markers malondialdehyde, 3-nitrotyrosine, and protein carbonyls were 
not changed in eTRE and lTRE interventions. 
 

 Change (95% CI)    

 
 
Outcome 

 
 
eTRE (n = 31) 

 
 
P value 

  
 
lTRE (n = 31) 

 
 
P value 

 Difference between 
lTRE vs. eTRE 
interventions (95% CI) 

 
 
P value 

Malondialdehyde, µmoL/L 0.002 (-0.09 to 0.09) .98  0.08 (-0.02 to 0.19) .22  0.08 (-0.04 to 0.21) .29 

3-nitrotyrosine, pmol/mg 0.03 (-1.32 to 1.39) .95  -0.08 (-1.03 to 0.86) .73  -0.12 (-1.64 to 1.40) .95 

Protein carbonyls, nmol/mg -0.05 (-0.13 to 0.03) .23  0.02 (-0.06 to 0.11) .60  0.07 (-0.06 to 0.20) .27 

 

Abbreviations: eTRE, early Time-Restricted Eating; lTRE, late Time-Restricted Eating 
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eTable 5. Feeling of Hunger and Satiety and Changes of Related Hormones. As assessed by a visual analog scale, participants showed lower desire 

to eat (-1.49; -2.58 to -0.40, P = .02), hunger (-1.16; 95% CI, -2.28 to -0.03, P = .04), and capacity to eat (-1.16; 95% CI, -2.28 to -0.03, P = .03) during 

the lTRE in the morning, but not in the evening compared to the eTRE whereas the satiety did not differ at any daytime. Changes of satiety hormone 

PYY differ between interventions (34.7 pg/mL; 95% CI, 18.2 to 51.3 pg/mL, P = 1.9x10-4) showing a decrease within eTRE (-13.0 pg/mL; 95% CI -24.5 

to -1.5 pg/mL, P = .01) and increase within lTRE (22.5 pg/mL; 95% CI 13.1 to 31.9 pg/mL, P = 1.6x10-4). Levels of the hunger hormone ghrelin were 

unchanged in both TRE interventions. 

 
 
Outcome 

 
 
eTRE 

 
 
P 
value 

  
 
lTRE 

 
 
P value 

 Difference between 
lTRE vs. eTRE 
interventions (95% CI) 

 
 
P value 

Hunger and Satiety Scores in the Morning         
Desire to eat, median (IQR)a 4.40 (2.25-5.35)   1.20 (0.25-5.60)   -1.49 (-2.58 to -0.40) .02 
Hunger, median (IQR) a 3.20 (2.10-4.80)   1.30 (0.15-4.30)   -1.16 (-2.28 to -0.03) .04 
Satiety, median (IQR) a 5.10 (2.65-6.30)   5.40 (1.80-9.00)   0.90 (-0.45 to 2.24) .22 
Capacity to eat, median (IQR) a 5.00 (3.10-5.80)   2.90 (0.80-5.05)   -1.16 (-2.28 to -0.03) .03 
Hunger and Satiety Scores in the Evening        
Desire to eat, median (IQR) a 4.50 (2.20-7.65)   3.30 (0.70-5.75)   -0.85 (-1.82 to 0.12) .10 
Hunger, median (IQR) a 3.60 (1.95-6.55)   3.20 (0.25-5.15)   -0.58 (-1.68 to 0.53) .25 
Satiety, median (IQR) a 5.00 (2.75-7.85)   6.70 (3.35-9.00)   0.75 (-0.52 to 2.08) .12 
Capacity to eat, median (IQR) a 4.40 (2.60-5.40)   3.30 (1.00-5.35)   -0.55 (-1.59 to 0.48) .28 
Changes of Hormones Related to Hunger and Satiety        
Peptide YYb, 95% CI -13.0 (-24.5 to -1.5) .01  22.5 (13.1 to 31.9) 1.6x10-4  34.7 (18.2 to 51.3) 1.9x10-4 
Ghrelinc, 95% CI 1.31 (-2.30 to 4.92) .50  -0.10 (-1.91 to 1.72) .59  -1.36 (-5.42 to 2.69) .94 

 
Abbreviations: eTRE, early Time-Restricted Eating; lTRE, late Time-Restricted Eating. 
a Two participants in each intervention were identified were excluded for paired analysis (eTRE n = 29; lTRE n = 29; Difference between TRE interventions n = 27). 

 
b One participant in each intervention were identified as outliner and therefore were excluded for paired analysis (eTRE n = 30; lTRE n = 30; Difference between 

TRE interventions n = 29). 
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c Two participants in both interventions and one further participant in lTRE intervention were identified as outliner and therefore were excluded for paired 
analysis (eTRE n = 29; lTRE n = 28; Difference between TRE interventions n = 28)  
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eTable 6. Baseline Characteristics in Participants with Impaired Glucose Metabolism.  
 

 Participants with 

NGT (n = 18) 

Participants with 

IFG/IGT (n =13) 

Age, mean (SD), y 55 (9) 63 (5) 

Sex, female:male 18:0 11:0 

Race, white:other 18:0 11:0 

Ethnicity: Caucasian:other 18:0:0 11:0:0 

Weight, mean (SD), kg 80.9 (7.6) 84.8 (9.3) 

Fat mass, mean (SD), kg 31.7 (6.2) 37.4 (5.9) 

Lean mass, mean (SD), kg 49.1 (5.9) 47.4 (4.7) 

Waist circumference, mean (SD), cm 96 (8) 104 (8) 

BMI, mean (SD), kg/m2 29.2 (2.6) 32.2 (2.4) 

Glucose homeostasis   

Fasting glucose, mean (SD), mg/dL 87 (7) 101 (12) 

Glucose 120 min in OGTT, mean (SD), mg/dL 101 (17) 153 (29) 

HbA1c, mean (SD), %a 5.35 (0.26) 5.64 (0.33) 

Cardiometabolic parameters   

Systolic blood pressure, median (IQR), mm Hg 114 (110-125) 120 (115-139) 

Diastolic blood pressure, median (IQR), mm Hg 76 (69-78) 73 (68-80) 

Total cholesterol, mean (SD), mmol/L 5.75 (0.98) 5.47 (0.84) 

HDL cholesterol, mean (SD), mmol/L 1.64 (0.43) 1.42 (0.27) 

LDL cholesterol, mean (SD), mmol/L 3.52 (0.82) 3.41 (0.86) 

Triglycerides, mean (SD), mmol/L 1.30 (0.77) 1.42 (0.35) 

ASAT, mean (SD), U/L 30.1 (6.0) 25.2 (5.9) 

ALAT, median (IQR), U/L 21.8 (17.2-23.8) 26.6 (21.0-29.0) 

GGT, median (IQR), U/L 19.4 (15.8-24.3) 24.1 (20.4-31.9) 

hsCRP, median (IQR), mg/L 1.15 (0.50-3.05) 1.60 (1.30-2.45) 

Abbreviations: eTRE, early time-restricted eating; lTRE, late time-restricted eating; WHR, waist-to-hip 

ratio; BMI, body mass index; NGT, normal glucose tolerance; IFG, impaired fasting glucose; IGT, 

impaired glucose tolerance; HbA1c, hemoglobin A1C, HDL, high-density lipoprotein; hsCRP, high 

sensitive C-reactive protein; LDL, low-density lipoprotein. 

SI conversion factors: To convert cholesterol mmol/L to mg/dL divide by 0.0259; glucose mg/dL to 

mmol/L multiply by 0.0555; triglycerides mg/dL to mmol/L multiply by 0.0113. 

ᵃ One baseline value in group B (lTRE-eTRE) was not measured due to loss of the sample. 
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eTable 7. TRE Effects on Body Composition, Glucose Homeostasis, and Cardiometabolic Parameters in Participants with Impaired Glucose 
Metabolism. No differences in the insulin sensitivity and mean 24-hour glucose between and within TRE interventions were observed. Other 
cardiometabolic, inflammatory, and oxidative stress outcomes showed similar effects as in the whole cohort (Table 2, Figure 3). 
 

 Change (95% CI)  Difference between 

lTRE vs. eTRE 

interventions (95% CI) 

 

 

P value 

 

Outcome 

 

eTRE (n = 31) 

 

P value 

  

lTRE (n = 31) 

 

P value 

 

Body Composition         

Weight, kg -1.45 (-1.96 to -0.93) .002  -0.73 (-1.24 to -0.22) .005  0.72 (-0.06 to 1.49) .07 

Fat mass, kgᵃ -0.82 (-1.78 to 0.14) .08  0.16 (-0.44 to 0.76) .56  0.98 (0.12 to 1.84) .03 

Lean mass, kgᵃ -0.76 (-1.94 to -0.42) .05  -0.48 (-1.13 to 0.17) .09  0.28 (-0.68 to 1.24) .53 

Waist circumference, cm -1.05 (-2.78 to 0.67) .21  -0.87 (-2.88 to 1.15) .36  0.19 (-2.32 to 2.69) .87 

BMI, kg/m2 -0.63 (-0.78 to -0.48) 9.7x10-7  -0.16 (-0.28 to -0.06) .007  0.46 (0.29 to 0.64) 8.6x10-5 

Glucose Homeostasis         

Insulin sensitivityb 0.29 (-0.33 to 0.91) .28  0.21 (-0.21 to 0.64) .35  -0.08 (-0.95 to 0.79) .85 

Insulin secretionc -0.35 (-0.70 to -0.01) .007  0.03 (-0.13 to 0.20) .42  0.39 (-0.01 to 0.79) .06 

Beta-cell functiond -1.03 (-2.89 to 0.83) .15  0.55 (-0.08 to 1.17) .10  1.58 (-0.60 to 3.77) .10 

Fasting glucose, mg/dL -0.05 (-0.36 to 0.25) .72  0.04 (-0.15 to 0.23) .46  0.09 (-0.24 to 0.42) .56 

AUC glucose, mg/dL x 120 min 865 (-413 to 2144) .17  -1213 (-2380 to -45) .04  -2078 (-3768 to 388) .02 

Fasting insulin, µU/mL -1.91 (-3.78 to -0.03) .02  -2.77 (-8.15 to 2.60) .20  -0.87 (-6.71 to 4.98) .86 

AUC insulin, µU/mL x 120 min -1372 (-3828 to 1084) .51  368 (-2491 to 3227) .75  1740 (-2077 to 5557) .25 

HbA1c, % -0.01 (-0.08 to 0.06) .77  -0.03 (-0.08 to 0.03) .30  0.02 (-0.07 to 0.10) .68 

Mean 24-hour glucose, mg/dL -2.18 (-7.62 to 3.27) .40  -0.95 (-6.06 to 4.17) .69  1.23 (-3.70 to 6.16) .60 
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Cardiometabolic Parameters         

Systolic blood pressure, mm Hg 1.80 (-4.61 to 8.21) .54  6.54 (-1.64 to 14.72) .11  2.20 (-9.86 to 14.26) .69 

Diastolic blood pressure, mm Hg 0.40 (-6.52 to 7.32) .90  0.62 (-5.15 to 6.38) .82  -2.00 (-12.09 to 8.09) .67 

Total cholesterol, mmol/L -0.22 (-0.57 to 0.13) .19  -0.12 (-0.29 to 0.05) .16  0.11 (-0.33 to 0.54) .92 

HDL cholesterol, mmol/L -0.09 (-0.14 to -0.04) .003  -0.09 (-0.15 to -0.04) .008  0.002 (-0.05 to 0.05) .95 

LDL cholesterol, mmol/L -0.72 (-0.50 to 0.35) .72  0.19 (-0.16 to 0.54) .27  0.26 (-0.44 to 0.96) .44 

Triglycerides, mmol/L 0.06 (-0.14 to 0.26) .51  -0.10 (-0.31 to 0.11) .32  -0.16 (-0.42 to 0.09) .19 

ASAT, U/L -0.50 (-0.82 to 1.82) .42  -1.39 (-3.36 to 0.58) .15  -1.89 (-4.41 to 0.62) .13 

ALAT, U/L 0.42 (-1.02 to 1.86) .53  -3.52 (-10.06 to 3.02) .20  -3.95 (-11.47 to 3.58) .12 

GGT, U/L -3.21 (-5.62 to -0.80) .008  -3.05 (-6.40 to 0.30) .06  0.15 (-4.33 to 4.64) .86 

Adipokines, Inflammatory Markers, and Oxidative Stress Markers       

Leptin, pg/mL -14954 (-31015 to 1106) .046  -19537 (-33645 to -5429) .002  -4583 (-20391 to 11226) .60 

Adiponectin, pg/mL -0.001 (-1.20 to 1.20) .10  -0.91 (-2.02 to 0.19) .99  -0.91 (-2.57 to 0.75) .26 

IL-6, pg/mL -0.23 (-0.82 to 0.37) .44  0.83 (-1.55 to 3.22) .92  -1.06 (-3.46 to 1.33) .97 

TNFα, pg/mL -0.003 (-0.04 to 0.04) .75  -0.01 (-0.06 to 0.04) .69  -0.007 (-0.06 to 0.05) .80 

MCP-1, pg/mL -20.10 (-64.39 to 24.19) .32  -27.61 (-61.99 to 6.77) .11  -7.51 (-40.74 to 55.77) .60 

hsCRP, mg/L 0.08 (-2.02 to 2.18) .59  -0.07 (-0.38 to 0.24) .61  -0.15 (-2.29 to 1.98) .83 

Malondialdehyde, µmoL/L -0.06 (-0.24 to 0.12) .63  0.01 (-0.11 to 0.13) .81  -0.07 (-0.28 to 0.14) .47 

3-nitrotyrosine, pmol/mg 0.20 (-1.84 to 2.23) .84  -0.05 (-0.78 to 0.69) .76  0.24 (-1.67 to 2.16) .92 

Protein carbonyls, nmol/mg -0.02 (-0.12 to 0.09) .76  0.10 (-0.04 to 0.23) .14  -0.11 (-0.27 to 0.05) .16 
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Abbreviations: WHR, waist-to-hip ratio; BMI, body mass index; HDL, high-density lipoprotein; hsCRP, high sensitive C-reactive protein; LDL, low-density 

lipoprotein; ASAT, aspartate-aminotransferases; ALAT, alanine-aminotransferases; GGT, gamma-glutamyltransferases 

a one eTRE and two lTRE data sets (pre and post) were excluded because of invalid bioelectrical impedance analysis 

b assessed by Matsuda index in OGTT 

c assessed by insulinogenic index in OGTT 

d assessed by disposition index in OGTT 
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eFigure 1. Individual Eating Times at the Baseline and during eTRE and lTRE. Plotted are 
individual times of day when participants started eating (left whisker) and stopped eating 
(right whisker) as well as the midpoint of eating (mean for each individual) in the baseline 
phase, eTRE and lTRE intervention phases. All participants reduced their habitual eating 
window below the 8-hour value during the eTRE and lTRE showing a high timely adherence. 
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eFigure 2. Hormones of Glucose Homeostasis and Free Fatty Acids in Oral Glucose Tolerance 
Test. A, C, E, G, Plotted are levels for insulin, C-peptide, glucagon, and free fatty acids in the 
oral glucose tolerance test (OGTT) before and after eTRE and lTRE intervention (mean [SD]). 
B, D, F, H, Shown are changes in the areas under the curve (AUC) for above mentioned 
hormones and fatty acids in OGTT before and after eTRE and lTRE. Data are shown as means 
with 95% CI. eTRE decreased AUC of glucagon (-46.3 pmol/L; -81.6 to -11.0 pmol/L, P = .01) 
and increased AUC of free fatty acids (4.45 mmol/L; 1.15 to 7.74 mmol/L, P = .03) within 
intervention. No between-intervention differences were observed. 
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eFigure 3. Adipokine and Cytokine Levels. 
Adipokine leptin (A) was decreased after both eTRE (-8080 pg/mL; 95% CI -15995 to -166 
pg/mL, P = .02) and lTRE (-10763 pg/mL; 95% CI -19035 to -2492 pg/mL; P = .001) compared 
to the intervention start without between-intervention differences. Adiponectin (B) was 
reduced within eTRE only (-0.94 pg/mL; 95% CI -1.54 to -0.34 pg/mL, P = .003) and these 
changes differ from lTRE (1.28 pg/mL; 95% CI 0.20 to 2.36 pg/mL, P = .04 for lTRE vs. eTRE). 
Cytokines IL-6 (C), TNFα (D), MCP-1 (also known as CCL2) (E) were not affected by eTRE or lTRE 
intervention. Data are shown as means with 95% CI. 
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eFigure 4. Gene Expression in Peripheral Blood Mononuclear Cells. Levels of the mRNA 
expression were measured by qPCR in peripheral blood mononuclear cells (PBMC) collected 
between 8:30 and 11:00 hr before and after each intervention. Changes in the expression of 
genes coding (A) clock genes, (B) key metabolic genes, and (C) inflammatory genes are shown 
as means with 95% CI. Core clock genes PER1 (-0.30; 95% CI, -0.57 to -0.03, P = .03) and NR1D1 
(-0.24; 95% CI, -0.48 to -0.01, P = .02) decreased their expression levels within eTRE without 
between-intervention difference. Other genes showed no TRE-induced expression changes.  
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STATISTICAL ANALYSIS PLAN 

Original Statistical Plan: The funding provided by the German Science Foundation (DFG RA 

3340/3-1, project number 434112826) and Ethic Committee of the University of Potsdam, 

Germany (EA No. 8/2019), required a preassigned statistician to draft the statistical analysis 

plan, as a stipulation of applying for funding and ethic approval. The original statistical analysis 

plan was as follows: 

 

Power calculation was completed using the G-Power software v.3.1 1 for the primary end point 

change in insulin sensitivity. The power calculation was based on the diurnal difference in 

insulin sensitivity in the meal tolerance tests conducted in the morning and in the evening in 

subjects with IFG/IGT in the previous study 2. The trial will be statistically powered to detect a 

difference in insulin sensitivity of 12.8 % plus or minus 7.1 % at a significance level of 0.05 and 

a statistical power of 80%. Assuming a 10% dropout rate, an estimated 33 enrollees will be 

needed to ensure that 30 individuals completed the trial. The allocation of subjects to study 

arms will be performed by matching for age and BMI using a minimization method and the 

MinimPy software 3. Recruitment will be stopped once the target sample size is met. 

The primary outcome will be insulin sensitivity assessed by Matsuda index in the oral glucose 

tolerance test (OGTT). Secondary outcomes will be glucose levels in OGTT and mean 24-hour 

glucose in continuous glucose monitoring (CGM), hormones of glucose metabolism in OGTT, 

insulin secretion and beta-cell-function indices, as well as fasting cardiometabolic parameters 

(blood pressure, lipid levels, liver enzymes), adipokine and cytokine levels assessed after 

overnight fast. Additional outcomes will be anthropometric parameters and body 

composition, hunger and satiety scores and hormones, parameters of intervention adherence 

(eating times, calorie intake, macronutrient composition), physical activity, and sleep. The 

exploratory outcome will be the expression of metabolic and inflammatory genes in peripheral 

mononuclear blood cells (PBMC) and internal circadian phase. Most outcomes will be 

measured before and after eTRE and lTRE interventions, except of parameters of food intake, 

CGM, physical activity and sleep, which will be assessed during 14 days within baseline, eTRE 

and lTRE periods. Hunger and satiety scores will be assessed at the end of eTRE and lTRE 

interventions. 

Statistical analyses will be performed with SPSS software (SPSS, Chicago, IL) using 2-sided tests 

with α = .05. All analyses will be intention-to-treat. All data will initially be checked for missing 

values, cleaned, and inspected to determine the ranges, identify outliers, and check for the 

data distribution using the Shapiro–Wilk test (continuous variables only). The within-

intervention (values after/during the intervention vs. values before the intervention) and 

between-intervention (parameter changes in lTRE vs. changes in eTRE) comparisons will be 
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assessed by paired Student's t-test for normally distributed data or the Wilcoxon signed rank 

test for non-normally distributed data. Comparisons of two independent groups will be 

conducted using Student's unpaired t-test for normally distributed data or the Mann–Whitney 

U-test for non-normally distributed data. Data for endpoints that involve repeated measures 

will be analyzed using the repeated measures ANOVA. P-values and confidence intervals will 

be not adjusted for multiple comparisons, which is consistent with most of the published 

nutritional and weight loss clinical trials. For glucose, and glucose-induced hormone secretion, 

and free fatty acid levels in OGTT, areas under the curve (AUC) will be determined by 

trapezoidal method. Insulin sensitivity and insulin secretion indices in OGTT will be calculated 

as described 4.  
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