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Abstract  

 

Introduction 

 

Preoperative neurosurgical planning is a keen step to avoiding surgical complications, reducing morbidity, 

and improving patient safety. The incursion of machine learning (ML) in this domain has recently gained 

attention, given the notable advantages in processing large data sets and potentially generating efficient 

and accurate algorithms in patient care.  

 

Objective 

 

To evaluate the evolving applications of ML algorithms in the preoperative planning of brain and spine 

surgery. 

 

Methods 

 

In accordance with the Arksey and O’Malley framework, a scoping review was conducted using three 

databases (Pubmed, Embase, and Web of Science). Articles that described the use of ML for preoperative 

planning in brain and spine surgery were included. Relevant data were collected regarding the 

neurosurgical field of application, patient baseline features, disease description, type of ML technology, 

study’s aim, preoperative ML algorithm description, and advantages and limitations of ML algorithms.  

 

Results 

 

Our search strategy yielded 7,407 articles, of which 8 studies (5 retrospective, 2 prospective, and 1 

experimental study) satisfied the inclusion criteria. Clinical information from 518 patients (62.7% female; 

mean age: 44.8 years) was used for generating ML algorithms, including convolutional neural network 

(14.3%), logistic regression (14.3%), random forest (14.3%), and other algorithms (Table 1). Neurosurgical 

fields of applications included functional neurosurgery (37.5%), tumor surgery (37.5%), and spine surgery 

(25%). The main advantages of ML included automated processing of clinical and imaging information, 

selection of an individualized patient surgical approach and data-driven support for treatment decision-

making. All studies reported technical limitations, such as long processing time, algorithmic bias, limited 

generalizability, and the need for database updating and maintenance.   

 

Conclusion 

 

ML algorithms for preoperative neurosurgical planning are being developed for efficient, automated, and 

safe treatment decision-making. Enhancing the robustness, transparency, and understanding of ML 

applications will be crucial for their successful integration into neurosurgical practice. 
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Introduction  

 

Preoperative neurosurgical planning helps avoid surgical complications, reduce morbidity, and increase 

patient safety.1–3 In addition, this surgical stage allows neurosurgeons to conceive contingency strategies.4,5 

However, neurosurgical planning may require accurate analysis of multiple sources of information, such as 

diagnostic and functional study images.6,7 In this regard, machine learning (ML) algorithms offer the 

opportunity to process the required data efficiently for accurate and more personalized planning for each 

patient.8,9 They also produce correlations and patterns, and these results are used to predict future 

events.10,11 These techniques are used in tumor segmentation, epilepsy treatment, risk assessment, and 

ante position to surgical complications, among others.12,13  

 

Despite promising advances, integrating ML into neurosurgical practice faces several challenges.14–16 

These include the need for extensive, quality data, algorithm development, and the need for rigorous 

regulatory validation and approval.17,18 In addition, the practical implementation of these algorithms in 

clinical settings requires ethics and consideration of workflow integration, user training, and patient 

safety.19–21 

 

While this artificial system is on the rise, addressing the aforementioned challenges will be essential for the 

continued evolution of ML applications in neurosurgical preoperative planning.22 Therefore, we aimed to 

conduct a scoping review to explore and evaluate the evolving applications of ML algorithms in brain and 

spine preoperative planning, highlighting their applications, limitations, and prospects. 

 

 

Material and methods  

 

Search Strategy and Study Selection 

 

In accordance with the Arksey and O’Malley framework and the Preferred Reporting Items for Systematic 

Reviews and Meta-Analyses (PRISMA) extension for Scoping Reviews,23 three databases (PubMed, 

EMBASE, and SCOPUS) were queried from the date of their inception until February 2024. A PROSPERO 

registration was procured (registration number: CRD42024510340) 

 

The search strategy comprised the following MESH terms, keywords, and Boolean operators: ("machine 

learning" OR " ML" OR "artificial intelligence" OR "AI") AND ("planning" OR "planning" OR "pre-operative" 

OR “pre operative) and (“neurosurg*” OR “spine*” OR “spinal*). Furthermore, all articles' Reference lists 

were also screened for additional studies and enhance the comprehensiveness of this study.  

Two independent reviewers screened search results by title, abstract, and full text (W.R.G, A.M.C.E). Any 

discrepancies were resolved by consensus or consultation with a third reviewer (J.E.B.B). For the final 

report and statement of this scoping review, we utilized the PRISMA Checklist.  
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Inclusion and Exclusion Criteria 

 

We included original studies published in English that described the implementation of diverse ML 

algorithms in the preoperative planning of brain or spine surgeries. We excluded editorials, letters, 

commentaries, opinion pieces, conference abstracts, literature reviews, and articles incorporating ML into 

distinct categories different from pre-operative planning, such as diagnosis, risk factor prediction, or 

prognosis.  

 

Data Extraction and Statistical Analysis 

 

Three independent reviewers (J.E.B.B., W.R.G, A.) extracted the data in a standardized collection form. 

Data fields included a neurosurgical field of application, patient baseline features, disease description, type 

of ML technology, study’s aim, preoperative ML algorithm description, and advantages and limitations of ML 

algorithms. The collected variables of interest were summarized as counts and proportions. Information 

was stored using Microsoft Excel® 2016, and descriptive statistics were performed using IBM SPSS 

version 29.  

 

Expert Consultation  

 

Quality assessment and evaluation of good practices in ML were thoroughly assessed by a ML engineer 

and data scientist from the Grupo de Inteligencia Artificial PUCP- IA-PUCP, Pontificia Universidad Católica 

del Peru (PUCP), Lima, Peru.  

 

 

Results  

 

Our search strategy yielded 7,407 articles, from which 1820 duplicate records were removed, and 5587 

records underwent title and abstract screening. From these, 5563 were excluded, leaving 24 studies that 

were sought for retrieval, from which 2 reports were not retrieved, leaving 22 studies that underwent full-text 

assessment for eligibility. Ultimately, 8 studies (5 retrospective, 2 prospective, and 1 experimental study) 

met the inclusion criteria. The PRISMA flow chart that depicts the rigorous selection process is presented in 

Figure 1. 

 

The characteristics of the included studies are summarized in Table 1. From these, individual studies were 

conducted in the USA, France, Turkey, Israel, and China, and 3 studies were from Germany. Neurosurgical 

fields of applications included functional neurosurgery (37.5%), tumor surgery (37.5%), and spine surgery 

(25%) (Figure 2). Clinical information from 518 patients (62.7% female; mean age: 44.8 years) was used 

for generating ML algorithms, including convolutional neural network (14.3%), logistic regression (14.3%), 

random forest (14.3%), and other algorithms (Tables 2-3). Based on the detailed information presented in 

Tables 2-3, the main advantages of ML have been summarized in three categories, including automated 
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processing of clinical and imaging information, selection of an individualized patient surgical approach, and 

data-driven support for treatment decision-making (Figure 3). Technical difficulties were reported by all 

studies, such as processing time, algorithmic bias, limited generalizability, and the need for database 

updating and maintenance. 
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Figure 1. PRISMA flow diagram. ML: machine learning 
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Figure 2. Distribution of Machine Learning Algorithms across Neurosurgical Specialties 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. Main advantages of using Machine Learning during preoperative neurosurgical plannin
 

ing 
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Table 1. Characteristics of included studies, demographics, and clinical information. AI: artificial intelligence; AIS: adolescent idiopathic scoliosis; CT: computed tomography; DBS: deep 

brain stimulation; DL: deep learning; ML: machine learning; MRI: magnetic resonance imaging; PC: principal components; VS: vestibular schwannoma; 3D: Tridimensional. 

 

Author, Year Country Study design Neurosurgical 

specialty 

Patients 

(n) 

Male/ 

Female (n) 

Age (mean) 

(years) 

Neurological 

condition of study 

ML subset Aim of using ML preoperatively 

Berlin, 202324 Germany Retrospective Spine 100 20/80 14.6 AIS DL Skeleton measurements (e.g., Cobb 

angle, coronal balance) relevant for 

AIS planning  

Baxter, 202225 France Experimental Functional 17 10/7 NR Neurological and 

neurodegenerative 

disorders 

DL Estimation of subthalamic nucleus 

localization for DBS stimulation 

 

Dundar, 20228 Turkey Retrospective Tumor 1 NR NR Intracranial tumors ML Select cranial surgery approaches 

based on individual anatomic features 

Gadot, 202226 USA Retrospective Tumor 124 81/43 52.4 Vestibular 

schwannomas 

ML Decision-making for active treatment 

vs MRI surveillance for patients with 

vestibular schwannomas 

Kamer, 202127 Germany Retrospective Spine 20 2/18 78.65 Non‐or minimally‐ 

displaced fragility 

fractures of the sacrum 

AI and CT 

based 3D 

statistical 

modeling 

Planning of transsacral implant 

position 

Coenen, 

201928 

Germany Prospective Functional 8 5/3 NR Psychiatric disorders, 

specifically major 

depressive disorder 

and obsessive-

compulsive disorder 

ML White matter tract tracking for DBS 

planning. 

Gazit, 201629 Israel Prospective Functional 76 37/39 NR Epilepsy ML Preoperative language area mapping 

 

Zhai, 202130 China Retrospective Tumor 172 37/135 52.8 Meningioma ML Meningioma tumor consistency 

assessment prior to surgery 
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Table 2. Details related to ML algorithms, advantages and limitations. AI: artificial intelligence; CNN: convoluted neural networks; CT: computed tomography; DBS: deep 

brain stimulation; DL: deep learning; dMRI: Diffusion magnetic resonance imaging; ML: machine learning; HAMLET: Hierarchical Harmonic Filters for Learning Tracts from Diffusion MRI; MRI: 

magnetic resonance imaging; STN: subthalamic nucleus; slMFB: superolateral medial forebrain bundle  

 

Author Algorithm Type Preoperative ML algorithm description Advantages of using ML preoperatively Limitations of ML algorithms 

 

Berlin, 202324 CNN Automated algorithm containing a DL-CNN to at 

first identify different anatomical structures in 

anteroposterior spine X-rays and subsequently 

compute parameters based on the network’s 

output. 

 

The reliability and speed offered by the AI-

algorithm could contribute to the efficient analysis 

of large datasets (e.g., registry studies) and 

measurements in clinical practice. 

The AI algorithm measured exclusively 

coronal parameters. 

  

     

Baxter, 202225 CNN Two-stage separable learning workflow for STN 

segmentation. The first part used a multiresolution 

CNN to determine an estimate of the subthalamic 

nucleus location, which was then used to heavily 

crop the input images to the much smaller region of 

interest. The second network then directly 

segmented these images using a U-Net style 

architecture. 

Two-step segmentation significantly outperformed 

the comparative registration-based method 

currently used in clinics and approaches the 

fundamental limit on variability due to the image 

resolution.                                                                     

The human-computer interaction experiment 

showed that the additional interaction mechanism 

allowed by separating STN segmentation into two 

steps significantly improves the users' ability to 

correct errors and further improves performance. 

 

The study coupled interaction for left and 

right STNs, which affected the timing and 

ease-of-use results.  

Dundar, 20228 Heuristic algorithm 

and Q-learning 

reinforcement 

learning algorithm  

In the first stage, a heuristic algorithm was used 

with MRI data to compute optimal surgical paths, 

avoiding critical structures in the brain and 

selecting the best ones based on reward and 

penalties. 

In the second stage, the Q-learning reinforcement 

learning algorithm was employed with optimal 

linear paths as entry points. This algorithm 

searched for the best nonlinear routes, minimizing 

the risk of damage to critical brain structures 

Personalized surgical planning with optimized, 

precise and accurate trajectories. 

Manual segmentation and specification of 

anatomical points, difficulties with image 

fusion, lengthy processing time, and limited 

automatic segmentation. 
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Gadot, 202226 Decision tree and 

Random Forest 

Decision trees were trained to predict the decision 

of active treatment or surveillance based on 

preoperative variables. A random forest with 500 

trees was used to predict the decision of active 

treatment versus surveillance in patients with 

vestibular schwannoma. 

These algorithms were trained and validated with 

the goal of identifying which preoperative variables 

had the most weight in the intervention decision 

and could be used to guide future surgical decision 

making. 

 

Accurate prediction of intervention, identification of 

predictive factors, personalized treatment, support 

in decision making and reduction of clinical 

variability. 

 

Dependency on training data, interpretability, 

limited generalization, algorithmic bias, 

computational and resource requirements, 

and need for continuous update. 

Kamer, 202127 Linear regression  Authors trained, validated, and tuned classification 

models for the binary existence of S1 corridors and 

regression models for the numeric PC scores and 

the S1 diameter as responses. Models were 

trained using supervised ML. Predictor variables 

were the features. Response variables were the 

binary existences of S1 corridors, the S1 corridor 

diameter, and the PC scores as mentioned above. 

 

Improved and facilitated clinical evaluation, 

therapeutic decision‐making, and treatment 

planning with lower treatment risks in patients 

affected by fragility fractures of the sacrum.  

CTs with low image resolution (CTs with 2 

and 2.5 mm in the z‐axis (=patient axis) 

compromised data processing and analysis. 

Coenen, 201928 Image 

segmentation-

based algorithm  

The HAMLET algorithm used harmonic filters and 

ML to identify and represent the slMFB beam on 

individual dMRI images, facilitating preoperative 

surgical planning for DBS. 

Tha algorithm provided a more accurate and 

objective representation of the slMFB anatomy in 

each patient, and eliminated the subjectivity 

associated with manual and deterministic 

tractography methods. Thus, facilitating more 

refined surgical planning by identifying and 

excluding unwanted fibers, which may improve 

clinical outcomes for patients.  

 

Training data dependence, interpretation of 

results, overfitting, need for updating and 

maintenance, risks of algorithmic bias, and 

computational and resource cost. 

Gazit, 201629 Logistic regression  The probabilistic logistic regression algorithm was 

used to predict language lateralization in patients 

The algorithm can improve the accuracy of 

diagnoses, optimize treatment plans, prevent 

Data quality, overfitting, interpretability, data 

privacy and security, algorithmic bias, 
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with epilepsy before brain surgery, using fMRI data 

and other clinical and neuropsychological 

measures. This approach provided an accurate, 

non-invasive assessment of language 

lateralization, which helped guide surgical planning 

and improve outcomes.  

 

complications, and improve surgical outcomes, 

benefiting both patients and healthcare providers. 

computational resources, domain specificity, 

ethical and regulatory concerns. 

Zhai, 202130 Logistic 

regression, 

Random Forest, 

Nearest neighbor, 

Support Vector 

Machine, and 

Adaboost classifier  

MRI and regions of interest were delineated in 

meningioma images. The, the algorithm were 

trained to obtain the predictive accuracy of each 

model in terms of under the curve (AUC), 

sensitivity, specificity, and accuracy on an 

independent test data set. 

The use of algorithms offered several advantages 

such as individualized prediction, non-invasive, 

improved precision, and facilitated decision-

making. 

Interpretability, generalization, data 

collection, bias and equity, update and 

maintenance. 
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Table 3. Prevalence of Machine Learning Algorithms in Neurosurgical Preoperative Planning 

 

 

 

 

 

 

 

 

 

 

 

 

 

Discussion 

 

In this study, the dynamic integration of ML is explored in neurosurgical planning, which is a field critical for 

enhancing patient safety and surgical precision. As dissected the use of various ML algorithms across eight 

studies involving 518 patients, it becomes evident that ML brings forth substantial advantages alongside 

significant challenges.  

 

Advantages and Prospects of ML Algorithms in Neurosurgical Planning 

 

The profound impact of ML in neurosurgery lies in its ability to transform preoperative planning through a 

host of advantages, which this review details meticulously. Primarily, ML facilitates highly personalized 

surgical strategies. Algorithms such as convolutional neural networks, logistic regression, and random 

forests have the capability to process complex datasets and tailor surgical approaches to the specific 

anatomical and pathological characteristics of individual patients.24 This level of customization is paramount 

in neurosurgery, where the accuracy of the surgical approach can drastically affect patient outcomes.  

 

Furthermore, ML significantly automates the processing of clinical data. This automation is a critical 

advancement as it alleviates the manual burden on neurosurgeons by quickly and accurately sifting through 

large volumes of patient data to extract relevant insights.25 Such efficiency not only speeds up the 

preoperative planning process but also enhances the reliability of the outcomes, reducing the likelihood of 

errors that might occur with manual data handling.8,25 

 

Additionally, ML algorithms excel in supporting complex decision-making processes.8,25 They provide 

neurosurgeons with enhanced analytical capabilities, presenting data-derived insights and predictive 

analytics that help in making more informed, strategic decisions about surgical approaches and 

Algorithm description n (%) 

Logistic Regression  2 (14.3) 

Convolutional Neural Network 2 (14.3) 

Random Forest 2 (14.3) 

Decision Tree  1 (7.1) 

Heuristic Algorithm  1 (7.1) 

Nearest Neighbor 1 (7.1) 

Q-learning Reinforcement Learning Algorithm  1 (7.1) 

Support Vector Machine 1 (7.1) 

Magnetic resonance segmentation-based algorithm  1 (7.1) 

Adaboost classifier  1 (7.1) 

Linear regression  1 (7.1) 
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interventions.8,25 For instance, algorithms can predict the risk of specific preventable complications based 

on patient data, thereby aiding surgeons in choosing the safest and most effective surgical paths.26–28 

 

ML also plays a pivotal role in risk assessment.24,27 By identifying potential surgical complications before 

they occur, ML algorithms contribute to a proactive approach to surgical planning.26,28 This predictive 

capability is invaluable in neurosurgery, where preemptive identification of risk factors can lead to 

significant improvements in surgical safety and patient outcomes.29,30  

 

However, despite these substantial advantages, the implementation of ML in neurosurgery is not without its 

challenges.25,27 The success of ML algorithms depends heavily on the availability of extensive, high-quality 

data sets, which are often difficult to gather, particularly for less common conditions.25,27 Issues such as 

algorithmic bias and the challenge of generalizing results across diverse patient populations further 

complicate the effectiveness of ML applications.8,28,29 Moreover, the technical demands and resource 

intensity required to implement and maintain these systems pose significant hurdles, especially in settings 

with limited technological infrastructure.24,27  

 

In addition, the complexity of machine learning models can make them less accessible to clinicians without 

specialized training in data science, potentially hindering broader adoption and trust in these tools.8 Ethical 

considerations, such as patient consent and data privacy, along with the evolving regulatory environment 

for AI technologies, underscore the need for careful management of these innovative tools within clinical 

practice.25  

 

A notable example is the study by Baxter et al.,25 which utilized a CNN in a two-stage separable learning 

workflow for subthalamic nucleus segmentation. The initial phase employed a multi-resolution CNN to 

estimate the nucleus's location, guiding the cropping of images to a smaller region for precise segmentation 

using a U-Net style architecture. This method outperformed traditional registration-based methods and 

included a human-computer interaction mechanism that significantly improved error correction by users. 

Therefore, the Baxter study illustrates the potential of ML to personalize surgical planning, enhancing 

surgical accuracy, minimizing risks, and tailoring interventions to specific anatomical details. Despite its 

success, this study also highlights the need for ongoing interaction and updates to ensure optimal algorithm 

performance. This necessity emphasizes the broader requirement for continuous maintenance, regular 

updates, and a collaborative approach involving clinicians and data scientists to ensure the efficacy and 

safety of these technologies in real-world settings. 

 

Recommendations and Analysis of Good Practices for Implementing ML Algorithms 

 

It is important to note that regardless of the type of ML algorithm, authors are required to spend significant 

time validating and selecting the data for which the models are going to be trained. This implies that the 

retrieved information is representative of common clinical scenarios and not a pool of outliers. Moreover, it 

is advisable to leave a record of the authors who conducted these processes.31 
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In the case of poor-quality data (e.g., computed tomography scans with low image resolution), efforts must 

be made to optimize this crucial component, which can translate into a model yielding good performance.32 

� 

Before an algorithm is applied, data processing, training, and evaluation must be documented, replicated, 

and approved by specialists. This allows individuals interested in the ML algorithm to conduct audits and 

ensure that the model is accurate rather than a result of chance. Additionally, it enhances transparency in 

the process to ascertain whether best practices were used and if a thorough analysis was performed to 

eliminate overfitting.31  

Once the models have been trained, their predictions need to be evaluated to understand the situations in 

which they are most and least successful. This process should also be carried out using new data before 

retraining the model. Depending on the specific scenario, a policy needs to be established for retraining the 

model when its performance deteriorates. 

 

Special care should be taken when using tree-type models – as in the case of Gadot et al.26 – as they may 

have good performance but are prone to overfitting. In such scenarios, it is advisable to use ensemble 

algorithms, such as random forest, LightGBM, or XGBoost.33 

It is important that the person in charge of training the models defines and generates the interpretation 

mechanisms (preferably visually). For instance, in a decision tree algorithm, trees can be graphed to 

understand its decision-making process.34 For convolutional neural networks, show heat maps in each 

prediction to understand which regions the algorithm focused on.35 In linear or logistic regression 

algorithms,  evaluate the coefficients and intercept. In the “K Nearest Neighbor” algorithm, show which are 

the neighbors on which the algorithm bases its prediction.36 For more complex algorithms, the use of 

SHapley Additive exPlanations (SHAP) can be recommended to explain the result of the algorithm and 

even to evaluate how the features influence the model predictions.37  

 

Finally, it's crucial to ensure that the features used in training the models are ethically balanced to avoid 

introducing biases, such as in gender or age groups. This is important because certain medical conditions 

may have a higher correlation or prevalence in specific demographic cohorts. 

 

In summary, while machine learning offers transformative potential for neurosurgical preoperative planning, 

realizing this potential requires navigating a landscape filled with both technological promise and significant 

challenges. Enhancing the robustness, transparency, and accessibility of ML applications will be crucial for 

their successful integration into neurosurgical practice, ensuring they improve patient care while adhering to 

the highest standards of ethical medical practice.  

 

Conclusion  

 

ML algorithms for preoperative neurosurgical planning are being developed for efficient, automated, and 

safe treatment decision-making. Enhancing the robustness, transparency, and understanding of ML 

applications will be crucial for their successful integration into neurosurgical practice. 
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