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22 Abstract

23 Background:

24 Gynecological cancers are among the most prevalent cancers in women worldwide. 

25 Brachytherapy, often used as a boost to external beam radiotherapy, is integral to 

26 treatment. Advances in computation, algorithms, and data availability have popularized 

27 machine learning.

28 Objective:

29 To develop and compare machine learning models for predicting grade 3 or higher 

30 toxicities in gynecological cancer patients treated with high dose rate (HDR) 

31 brachytherapy, aiming to contribute to personalized radiation treatments.

32 Methods:

33 A retrospective analysis on gynecological cancer patients who underwent HDR 

34 brachytherapy with Syed-Neblett or Tandem and Ovoid applicators from 2009 to 2023. 

35 After exclusions, 233 patients were included. Dosimetric variables for the high-risk clinical 

36 target volume (HR-CTV) and organs at risk, along with tumor, patient, and toxicity data, 

37 were collected and compared between groups with and without grade 3 or higher 

38 toxicities using statistical tests. Six supervised classification machine learning models 

39 (Logistic Regression, Random Forest, K-Nearest Neighbors, Support Vector Machines, 

40 Gaussian Naive Bayes, and Multi-Layer Perceptron Neural Networks) were constructed 

41 and evaluated. The construction process involved sequential feature selection (SFS) 
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42 when appropriate, followed by hyperparameter tuning. Final model performance was 

43 characterized using a 25% withheld test dataset.

44 Results:

45 The top three ranking models were Support Vector Machines, Random Forest, and 

46 Logistic Regression, with F1 testing scores of 0.63, 0.57, and 0.52; normMCC testing 

47 scores of 0.75, 0.77, and 0.71; and accuracy testing scores of 0.80, 0.85, and 0.81, 

48 respectively. The SFS algorithm selected 10 features for the highest-ranking model. In 

49 traditional statistical analysis, HR-CTV volume, Charlson Comorbidity Index, Length of 

50 Follow-Up, and D2cc - Rectum differed significantly between groups with and without 

51 grade 3 or higher toxicities.

52 Conclusions:

53 Machine learning models were developed to predict grade 3 or higher toxicities, achieving 

54 satisfactory performance. Machine learning presents a novel solution to creating 

55 multivariable models for personalized radiation therapy care.

56 Introduction

57 Gynecological cancers rank among the most diagnosed malignancies affecting women 

58 on a global scale [1]. In the United States of America, it is estimated that there will be 

59 116,930 new cases and 36,250 deaths in 2024 attributable to gynecologic malignancies 

60 [2]. Treatments for gynecologic cancers include surgery, chemotherapy, and/or 

61 radiotherapy [3]. Brachytherapy is necessary in the management of locally advanced 

62 cervical cancer, since patients who do not receive brachytherapy following concurrent 
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63 external beam radiation therapy and chemotherapy have significantly worse overall 

64 survival [4]. Colson-Fearon et al. reported that the 4-year overall survival in locally 

65 advanced cervical cancer patients treated with brachytherapy versus without 

66 brachytherapy is 67.7% versus 45.7%, respectively [5]. With 3-dimensional magnetic 

67 resonance image-guided brachytherapy for cervical cancer, the 5-year local control is 

68 92% [6].

69

70 Machine learning (ML) has been defined as an optimization problem to find the most 

71 suitable predictive model for new data based on an existing dataset obtained from a similar 

72 context [7]. The recent rise in popularity of ML has been due to the development of new 

73 algorithms, theory, data availability, and improvements in low-cost computation [8]. For 

74 many problems, ML has shown to have better overall predictive metrics than conventional 

75 statistical models (CSM) [9-11].

76

77 ML is a bottom-up approach that has the advantages of being data-driven, of not requiring 

78 strict a-priori assumptions about the forms of the relationships between variables and 

79 outcomes, and of accounting for complex interactions among input features. In contrast, 

80 CSMs can be viewed as top-down approaches, and their main advantages are their 

81 interpretability due to usually focusing on the parsimonious relationships between input 

82 and response, the low computational resources needed to fit the models, and being less 

83 susceptible to overfitting with large datasets [12-13]. 

84
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85 Binary classification, in which the ML model predicts an output that is either one of two 

86 possible classes, is one of the most common tasks that can be solved with supervised 

87 machine learning [14]. For this problem, a model is trained with data that contains both 

88 features and the response labels, and the algorithm compares the actual and predicted 

89 results using an appropriate assessment metric [15]. This study aims to build and 

90 compare some of the more common binary classification machine learning models in the 

91 context of predicting if a patient is going to develop grade 3 or higher toxicities (Output: 

92 Yes/No) in gynecologic cancer patients treated with EBRT and brachytherapy.

93 Methods

94 Data Collection

95 A comprehensive retrospective analysis was conducted, encompassing a total of 233 

96 patients who had undergone high dose rate (HDR) brachytherapy with Syed-Neblett or 

97 Fletcher-Suit-Delclos Tandem and Ovoid (T&O) applicators for treatment of gynecological 

98 cancer (cervix, endometrium, vagina, or vulva) at a single institution spanning the period 

99 from 2009 to 2023. Demographic details, tumor characteristics, treatment variables, 

100 dosimetric information (including if the patient received an EBRT boost), and occurrences 

101 of gastrointestinal (GI), genitourinary (GU), and vaginal (VAG) toxicities during and post-

102 treatment were gathered. The exclusion criteria included the following: patients with a 

103 prior brachytherapy history, those treated with more than a single type of brachytherapy 

104 applicator, conflicting dosimetric data found in records, concurrent external beam 

105 radiotherapy for a distinct proximal disease site, or a combination of low dose rate (LDR) 
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106 and HDR treatments. Toxicities were classified according to the Common Terminology 

107 Criteria for Adverse Events (CTCAE) version 5.0 [16], and the integrity of the database 

108 was reviewed three times by both a physician and a medical physicist to ensure its 

109 accuracy and reliability. For treatment planning, the dosimetry goals as detailed in the 

110 EMBRACE trials and ASTRO Clinical Practice Guideline were followed [6,17]. All patients 

111 received EBRT and Brachytherapy. The process used to calculate the total EQD2 dose 

112 has been described in-detail in a previous work, and follows the procedure suggested by 

113 ICRU 89 [18-19]. This study was approved by our institutional review board (IRB 

114 22.0117).

115 Statistical Analysis

116 Preliminary dataset exploration was done by comparing between patients that developed 

117 no higher than a grade 2 toxicity and those that developed grade 3 or higher toxicities at 

118 any point in time after EBRT initiation; continuous variables were reported as means and 

119 standard deviations and compared with 2-sample t-tests. Categorical variables were 

120 listed as counts and percentages and compared with the Fisher exact test. Non-normal 

121 continuous variables were reported at median and interquartile range (IQR) and 

122 compared with the non-parametric Mann-Whitney test; a p-value of 0.05 or lower was 

123 considered to be statistically significant. Kaplan-Meier curves for disease free survival 

124 and local control were created to characterize the cohort. 

125 Data Preprocessing
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126 The analysis was done using Python 3 and Jupyter Notebook (IPython kernel). Various 

127 code libraries (collections of pre-written functions and classes), including Scikit-learn 

128 v1.3.2 [20], were used for their efficiency and reproducibility; care was taken to ensure 

129 compatibility and the use of the appropriate library versions. Charlson Comorbidity Index 

130 was categorized into approximate quartiles (“Low” (0-2), “Medium” (3), “High” (4-5), or 

131 “Very High” ( > 5)), and KPS was assigned categories according to clinical interpretation: 

132 “Bad” (50-70), “Normal” (80), or “Good” (90-100). Data pre-processing involved four 

133 steps: A) Encoding, B) Imputation, C) Class Balancing and D) Normalization. 

134 For data encoding, categorical and ordinal variables were assigned to numeric labels. 

135 The data then underwent a stratified split based on the target, resulting in two groups with 

136 an equivalent proportion of toxicity events: 75% for training (n = 174) and 25% for testing 

137 (n = 59).

138 Imputation of missing feature values was done according to the variable type. For 

139 categorical and ordinal variables, a K-nearest neighbors (KNN) imputer was employed 

140 utilizing the single nearest neighbor to guarantee imputation to a single class for that 

141 feature. For the numerical continuous features, the KNN imputer was used with K = 5 

142 neighbors, and the missing features were imputed by the average. This parameter was 

143 chosen after extensive experimentation. These imputers identify their nearest neighbors 

144 by calculating the Euclidean Distance between data points (not including the missing 

145 data). They were fitted using the training data only, and their algorithms applied to both 

146 the training and testing data [21].
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147 The defined positive class of Grade 3 or higher toxicity was observed in a minority of 

148 patients (24%, 56/233), leading to an imbalanced dataset. To address this imbalance, the 

149 class-balancing algorithm SVM-SMOTE [22] was used only during model training. 

150 (Preliminary analyses suggested this algorithm had better performance than alternative 

151 balancing algorithms such as SMOTE [23] and ADASYN [24]). Out of the initial 174 

152 samples from the training data, an additional 90 synthetic positive cases were generated 

153 for a total of 264 samples (132 positive, 132 negative).

154 The final pre-processing step included the normalization/standardization of values. After 

155 experimentation the Standard Scaler was used for continuous numerical variables. For 

156 categorical and ordinal variables, Target Encoding was used. Other 

157 normalization/standardization methods such as MinMax Scaler and the Robust Scaler 

158 were also explored but not reported in this work due to obtaining worse results. The fitted 

159 Scalers and the Target Encoding objects were stored into a Joblib file and then employed 

160 in the testing data.

161 Investigation into collinearity between input features was also performed using Pearson’s 

162 correlation coefficient. The final model eliminated one of the pairs of collinear features 

163 with values greater than 0.80 correlation. Other thresholds such as 0.7 and 0.95 were 

164 also analyzed but yielded worse results. When dose metrics were collinear, D2cc and 

165 D90 were given priority to remain in the final model due to being the most widely used 

166 clinical values [17].

167 Evaluation of Machine Learning Models 
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168 There are multiple performance metrics (PM) that can be used to assess a model 

169 performance on predicting new data. In this study, the Accuracy, Precision, Recall, F1 

170 score, Matthews Correlation Coefficient (MCC), the area under the curve of a receiver 

171 operating characteristic curve (AUC-ROC) and the area under the curve of a precision-

172 recall curve (AUC-PR) were used; the first four metrics are defined using the number of 

173 True Positives (TP), True Negatives (TN), False Positives (FP) and False Negatives (FN) 

174 as follows:

175 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁  (1) 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

176 (2)

177 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 (3) 𝐹1 𝑆𝑐𝑜𝑟𝑒 =
2 ∙ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙  (4)

178 𝑀𝐶𝐶 =
(𝑇𝑃 ∙ 𝑇𝑁) ― (𝐹𝑃 ∙ 𝐹𝑁) 

(𝑇𝑃 + 𝐹𝑃) ∙ (𝑇𝑃 + 𝐹𝑁) ∙ (𝑇𝑁 + 𝐹𝑃) ∙ (𝑇𝑁 + 𝐹𝑁) (5)

179 In this context, Positive/Negative represents whether the ML model predicts a toxicity 

180 event, and True/False represents whether the ML prediction agrees/disagrees with the 

181 patient record. Accuracy as shown in formula (1) is the ratio of correctly predicted 

182 instances over the total number of patients. Precision, which is represented by formula 

183 (2), is the ratio of correctly predicted positive observations to the total number of 

184 observations predicted to be positive. Recall, also known as Sensitivity, is the ratio of 

185 correct predictions among patients with toxicities as shown in formula (3); the F1 score, 

186 as defined in formula (4), is equivalent to the harmonic mean of precision and recall [25]; 

187 MCC, or its normalized version (normMCC) [26], is a balanced measure that considers 

188 all four basic metrics (TP, FP, TN, FN) as shown in formula (5). Additional metrics such 

189 as the AUC-ROC and AUC-PR evaluate the overall performance of the model by 
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190 considering performance across all possible decision thresholds of the model [27]. In this 

191 work, the reported F1, recall, and precision scores are calculated for the positive class 

192 (patients that present a toxicity). For the AUC-ROC curve, the baseline denotes a random 

193 classifier, manifesting as a diagonal line with an AUC-ROC value of 0.5. Conversely, the 

194 PR curve's baseline reflects a situation where all classifications are assumed to be 

195 positive, resulting in a horizontal line on the precision-recall plot; the position of this line 

196 on the Y-axis is contingent upon the characteristics of the data under consideration [28-

197 29]. These prediction metrics are calculated and reported for the training (without the 

198 SVM-SMOTE generated synthetic samples used for data balancing) and withheld test 

199 data (with the missing data-imputed for both). For the purposes of this work the authors 

200 have considered the top ML models as the ones with the highest test data F1 score. 

201 Confidence intervals of 95% were calculated assuming a normal distribution, as justified 

202 by the Central Limit Theorem [30]. 

203 𝑃𝑀 ±  1.96 1
𝑛  ∙ 𝑃𝑀  ∙ (1 ―  𝑃𝑀)

204 Sequential Feature Selection

205 In various domains, including healthcare, datasets may exhibit high dimensionality, 

206 referring to the presence of a large number of variables or features. This characteristic 

207 can adversely affect the development and interpretability of some machine learning 

208 algorithms (Logistic Regression, Support Vector Machines, K Nearest Neighbors, and 

209 Gaussian Naive Bayes) [31-32]. To reduce dimensionality, several approaches exist such 

210 as feature extraction and feature selection [33]. In this work, multiple variations of 

211 sequential feature selection were initially considered, including Sequential Forward 
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212 Selection (SFS), Sequential Backward Selection (SBS), Sequential Forward Floating 

213 Selection (SFFS) and Sequential Backward Floating Selection (SBFS), which used as 

214 their estimator the same model to later be used for training [34-36]; after experimentation, 

215 Sequential Forward Selection was chosen for the full analysis due to faster computation 

216 time and better performance metrics. Note that, regardless of traditional statistical 

217 analysis, both marginally significant variables, and those that were not, are explored when 

218 training the ML algorithms. The forward feature selection process adds one feature into 

219 the model at a time, determining inclusion based on which predictor optimizes the 

220 evaluation criteria, which in our case was the F1 score. As part of model training, a 10-

221 fold Stratified Shuffle Split cross-validator was used over the class-balanced training data 

222 to reduce overfitting and appropriately assess the performance metrics of the sequential 

223 feature selection algorithm [37-38].

224 Machine Learning Algorithms

225 A total of 6 machine learning models were implemented and compared. The included 

226 models were the following: Logistic Regression (LR), Random Forest (RF), K-Nearest 

227 Neighbors (KNN), Support Vector Machines (SVM), Gaussian Naïve Bayes (GNB), and 

228 Multi-Layer Perceptron Neural Network (MLP). While there are many other ML 

229 classification algorithms in the literature, these six choices represent the most commonly 

230 utilized algorithms in this context. The baseline for the precision – recall curve was 

231 determined to be a horizontal line equal to 0.237 based on a classifier that labels all 

232 predictive instances as positive within the held-out testing data. After selecting the most 

233 relevant features through the Sequential Feature Selection process for the appropriate 
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234 models, the hyperparameters of all 6 models were further fine-tuned by using a Grid 

235 Search over another 10-fold Stratified Shuffle Split cross validator to optimize prediction 

236 under each model choice; the hyperparameter search space used by Grid Search is 

237 detailed in S1 Table. The Python code and a demonstration dataset of 50 randomly 

238 chosen patients have been made available to the reader. To safeguard patient privacy, 

239 utmost care was taken to avoid disclosing any identifiable health information. Moreover, 

240 noise was added to the demonstration dataset as an additional layer of protection. This data 

241 is available at: https://github.com/AndresPB95/ML-Model-Gynecological-HDR-G3Plus-

242 Toxicities. A comprehensive diagram depicting the full machine learning workflow is 

243 provided in Fig 1, and S2 Table presents a summary of all the features explored by the 

244 ML models, along with their types.

245

246 Fig 1. Flowchart outlining the steps used when training and evaluating the different 

247 models. The process is divided in the following steps: (A) Initial Train/Test split: The data is 

248 initially divided into training and testing sets. The training set is used for most of the model 

249 development process, while the testing set is reserved to simulate new, unseen data. (B) Data 

250 preprocessing (Training Set): Preprocessing steps include: (i) A KNN Imputer is fitted and 

251 applied to the training data to fill in missing values, (ii) Collinear features are removed, (iii) SVM 

252 SMOTE is used to oversample the positive class (*Only for training). Note: A separate, 

253 unbalanced copy of the training set was retained for evaluation, (iv) a StandardScaler is fitted and 

254 applied to the training data ensuring they are on a comparable scale. (C) Data preprocessing 

255 (Testing Set): The preprocessing objects fitted to the training set are subsequently applied to the 

256 testing set: (i) The KNN Imputer is used to fill in missing values in the testing data (ii) (ii) Collinear 
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257 features are removed, (iii) the StandardScaler is applied for normalization. Note: SVM SMOTE 

258 was NOT used to oversample the test set. (D) Hyperparameter Tuning: For each model, the 

259 following tuning procedures are conducted using 10-fold cross-validation: (i) Sequential Feature 

260 Selection (if applicable) creates and trains multiple models by adding one feature at a time. Each 

261 model’s F1 score is tested by comparing the predicted values with the known labels, and features 

262 that improve the F1 score are retained, building towards the most effective feature set. (ii) 

263 GridSearch trains multiple models with various hyperparameter combinations. Each 

264 combination's F1 score is tested by comparing the predicted values with the known labels, and 

265 the best-performing combination is selected for the final model. (E) Final Model Generation: 

266 After identifying the optimal hyperparameters and features, a final model is trained using the entire 

267 balanced training set. (F) Evaluation: The model’s performance is evaluated by comparing its 

268 predictions against the known labels  using both the unbalanced training set and the testing set.

269 Results

270 The data included demographic and clinical data for n = 233 patients, of which n = 56 

271 (24%) had a grade 3 or higher toxicity. The demographic, treatment, and tumor-related 

272 data are shown in Table 1. Patients who experienced grade 3 or higher toxicity were found 

273 to have longer follow-up (median 12.4 months versus 3.8 months), more likely to have 

274 low or very high comorbidity scores and had significantly higher HR-CTV values (median 

275 50 cc versus 39 cc, p = 0.041).  

276

277 Table 1. Comparison of patient, treatment, and tumor characteristics between 

278 groups with and without grade 3 or higher toxicities.
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Full Cohort
No Grade 3+ 
Toxicity Grade 3+ Toxicity

   n=233 100%  n=177 76%  n=56 24%  p-value

Length of Follow-Up (mo) 6.1
IQR: [1.4 - 
18.2] 3.8

IQR: [1.2 - 
16.4] 12.4

IQR: [7.1 - 
22.1] < 0.001

Age at Completion 53.6 STD: 14.8 54.4 STD: 14.7 50.8 STD: 14.8 0.107
Non-Caucasian 25 11% 17 10% 8 14% 0.328
BMI 28.0 STD: 8.3 28.0 STD: 8.6 27.9 STD: 7.6 0.969
Charlson Comorbidity Index 0.014

Low [0-2] 87 37% 60 34% 27 48%
Medium [3] 43 18% 33 19% 10 18%
High [4-5] 60 26% 54 31% 6 11%
Very High [>5] 43 18% 30 17% 13 23%

KPS 0.369
Good [90-
100] 147 63% 115 65% 32 57%
Normal [80] 62 27% 43 24% 19 34%
Bad [50-70] 23 10% 18 10% 5 9%

Treatment Days 60
IQR: [52 - 
71] 60

IQR: [52 - 
69] 61

IQR: [52 - 
74] 0.504

Applicator: T&O 80 34% 63 36% 17 30% 0.521
Concurrent Chemo 201 86% 153 86% 48 86% 1.000
Type of Boost 0.681

None 139 60% 108 61% 31 55%
Sequential 54 23% 39 22% 15 27%
SIB 40 17% 30 17% 10 18%

Tumor Size (cm) 5.4 STD: 2.1 5.4 STD: 2.0 5.6 STD: 2.5 0.622

HR-CTV (cc) 43
IQR: [27 - 
74] 39

IQR: [25 - 
71] 50

IQR: [34 - 
77] 0.041

Tumor Site 0.864
Cervix 194 83% 147 83% 47 84%
Endometrium 16 7% 13 7% 3 5%
Other 23 10% 17 10% 6 11%

Cancer Stage 0.163
Stage 1 45 19% 37 21% 8 14%
Stage 2 57 25% 41 23% 16 29%

Stage 3 107 46% 84 48% 23 41%
Stage 4 22 10% 13 7% 9 16%

Histology: SCC 180 77% 136 77% 44 79% 0.857
MRI Fused 105 45% 84 47% 21 38% 0.219

279

280 Table 2 compares median dose coverage to the tumor (V100%, D50%, D90%, and 

281 D98%) and the dose to the organs at risk (OARs) by toxicity status. Patients with toxicities 
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282 had significantly higher D2cc doses to the rectum (p = 0.043), but no other doses were 

283 statistically significantly different. The HR-CTV V100, D1cc - Rectum, and doses to the 

284 sigmoid colon were slightly higher for the group with grade 3 or higher toxicities but not 

285 statistically significant.

286 Table 2. HR-CTV and OAR dosimetric values between groups with and without 

287 grade 3 or higher toxicities.

Full Cohort No Grade 3+ Toxicity Grade 3+ Toxicity
N=233 (100%) N=177 (76%) N=56 (23%)
Median IQR Media

n
IQR Median IQR p-

value
HR-CTV V100 
(cc)

80.1 [54.3 - 129.3] 74.5 [50.8 - 123.3] 88.3 [60.3 - 132.7] 0.104

HR-CTV D50 (Gy) 110.0 [101.2 - 
119.1]

110.8 [101.4 - 
119.1]

109.8 [100.3 - 
118.9]

0.628

HR-CTV D90 (Gy) 83.1 [79.9 - 87.7] 83.1 [80.0 - 87.7] 83.1 [79.2 - 86.7] 0.967

HR-CTV D98 (Gy) 75.3 [70.9 - 79.9] 75.1 [70.9 - 79.8] 75.7 [69.7 – 80.0] 0.837

D0.1cc - Bladder 
(Gy)

97.5 [83.4 - 114.5] 97.0 [83.3 - 112.9] 98.6 [85.2 - 120.8] 0.455

D1cc - Bladder 
(Gy)

84.9 [74.9 - 95.4] 84.6 [75.2 - 94.7] 85.5 [74.6 - 98.1] 0.570

D2cc - Bladder 
(Gy)

79.7 [71.3 - 89.2] 79.2 [71.8 - 88.5] 81.9 [70.5 - 91.1] 0.569

D0.1cc - Small 
Bowel (Gy)

67.2 [52.8 - 83.8] 68.0 [52.7 - 84.5] 65.2 [53.9 - 78.2] 0.838

D1cc - Small 
Bowel (Gy)

60.9 [51.5 - 73.5] 61.1 [51.2 - 73.7] 59.6 [52.4 - 70.1] 0.852

D2cc - Small 
Bowel (Gy)

59.3 [50.7 - 69.6] 59.4 [50.6 – 70.0] 57.8 [51.0 - 66.4] 0.898

D0.1cc - Sigmoid 
Colon (Gy)

74.3 [62.0 – 86.0] 73.9 [59.9 - 86.3] 76.6 [65.2 - 85.4] 0.277

D1cc - Sigmoid 
Colon (Gy)

67.0 [57.2 - 75.4] 66.5 [56.1 – 75.0] 69.1 [60.3 - 76.3] 0.182

D2cc - Sigmoid 
Colon (Gy)

64.2 [55.3 - 71.6] 63.8 [54.3 - 71.2] 65.6 [58.0 - 72.2] 0.172

D0.1cc - Rectum 
(Gy)

80.8 [74.3 - 87.6] 80.7 [74.0 - 87.6] 82.3 [76.8 - 86.9] 0.361

D1cc - Rectum 
(Gy)

71.4 [66.2 - 78.4] 71.1 [65.7 - 76.6] 73.7 [68.5 - 79.9] 0.066

D2cc - Rectum 
(Gy)

67.6 [62.5 - 74.4] 67.3 [62.2 - 72.6] 71.1 [65.3 - 75.9] 0.043

288
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289 The six machine learning models were then fitted using all variables included in Table 1 

290 and Table 2 as described in the Methods section. The performance of these models on 

291 the withheld test data are depicted visually in Figs 2 and 3. Numeric comparisons based 

292 on both the (class-imbalanced) training data and withheld test data are shown in Table 3. 

293 The top three models for predicting grade 3 or higher toxicities are found to be Support 

294 Vector Machines (SVM), Random Forests (RF), and Logistic Regression (LR) with F1 

295 testing scores of 0.63, 0.57 and 0.52, normMCC testing scores of 0.75, 0.77 and 0.71, 

296 and Accuracy testing scores of 0.80, 0.85 and 0.81, respectively. All values shown in 

297 Table 3 assume a classification threshold value of 0.5 for toxicity prediction. Note that this 

298 table also includes the metrics from the training data, which for some models (MLP and 

299 KNN) disagree strongly with the test data performance measures, indicating severe 

300 overfitting in the training data. Table 4 exhibits the most relevant features and the values 

301 of the hyperparameters selected by the GridSearchCV optimization algorithm over the 

302 training data. The top features repeated among these three models are Chemotherapy, 

303 Charlson Comorbidity Index, KPS, D2cc - Small Bowel, Stage, Histology, and Follow-Up 

304 Time. 

305

306 Fig 2. Precision-Recall curves comparing 6 machine learning models and a 

307 baseline value. PR curves are computed using the withheld test data. SVM is the model 

308 with the highest area under the curve.

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 6, 2024. ; https://doi.org/10.1101/2024.10.04.24314917doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.04.24314917
http://creativecommons.org/licenses/by/4.0/


17

309 Fig 3. Receiver Operating Characteristics curves for 6 machine learning models 

310 and a baseline value. ROC curves are computed using the withheld test data. SVM is 

311 the model with the highest area under the curve.

312 Table 3. Training and testing performance metrics for the considered machine 

313 learning models.

F1 Accuracy normMCC Precision Recall AUC-ROC AUC-PR
Dataset Model

Mean 95% 
CI Mean 95% 

CI Mean 95% 
CI Mean 95% 

CI Mean 95% 
CI Mean 95% 

CI Mean 95% 
CI

SVM 0.61
0.54 

- 
0.68

0.82
0.76 

- 
0.87

0.75
0.68 

- 
0.81

0.63
0.55 

- 
0.70

0.60
0.52 

- 
0.67

0.87
0.82 

- 
0.92

0.60
0.52 

- 
0.67

RF 0.82
0.76 

- 
0.88

0.92
0.88 

- 
0.96

0.89
0.84 

- 
0.93

0.89
0.84 

- 
0.94

0.76
0.70 

- 
0.83

0.97
0.95 

- 
1.00

0.93
0.89 

- 
0.96

LR 0.45
0.38 

- 
0.52

0.75
0.68 

- 
0.81

0.64
0.57 

- 
0.71

0.47
0.40 

- 
0.55

0.43
0.36 

- 
0.50

0.72
0.65 

- 
0.79

0.43
0.36 

- 
0.51

MLP 1.00
1.00 

- 
1.00

1.00
1.00 

- 
1.00

1.00
1.00 

- 
1.00

1.00
1.00 

- 
1.00

1.00
1.00 

- 
1.00

1.00
1.00 

- 
1.00

1.00
1.00 

- 
1.00

KNN 0.72
0.65 

- 
0.79

0.86 0.8 - 
0.91 0.81

0.75 
- 

0.87
0.68

0.61 
- 

0.75
0.76

0.70 
- 

0.83
0.91

0.87 
- 

0.95
0.78

0.72 
- 

0.84

Training

GNB 0.33
0.26 

- 
0.40

0.79
0.73 

- 
0.85

0.66
0.59 

- 
0.73

0.75
0.69 

- 
0.81

0.21
0.15 

- 
0.28

0.67
0.60 

- 
0.74

0.40
0.33 

- 
0.47

SVM 0.63
0.50 

- 
0.75

0.80
0.69 

- 
0.90

0.75
0.64 

- 
0.89

0.56
0.43 

- 
0.68

0.71
0.60 

- 
0.83

0.78
0.67 

- 
0.88

0.65
0.53 

- 
0.77

RF 0.57
0.45 

- 
0.70

0.85
0.76 

- 
0.94

0.77
0.66 

- 
0.88

0.86
0.77 

- 
0.95

0.43
0.30 

- 
0.55

0.76
0.65 

- 
0.87

0.52
0.39 

- 
0.65

LR 0.52
0.39 

- 
0.65

0.81
0.71 

- 
0.91

0.71
0.60 

- 
0.83

0.67
0.55 

- 
0.79

0.43
0.30 

- 
0.55

0.68
0.56 

- 
0.80

0.47
0.34 

- 
0.60

MLP 0.39
0.26 

- 
0.51

0.63
0.50 

- 
0.75

0.57
0.45 

- 
0.70

0.32
0.20 

- 
0.44

0.50
0.37 

- 
0.63

0.66
0.54 

- 
0.78

0.44
0.31 

- 
0.56

KNN 0.32
0.20 

- 
0.44

0.64
0.52 

- 
0.77

0.54
0.42 

- 
0.67

0.29
0.18 

- 
0.41

0.36
0.23 

- 
0.48

0.62
0.50 

- 
0.74

0.46
0.33 

- 
0.58

Testing

GNB 0.24
0.13 

- 
0.34

0.78
0.67 

- 
0.89

0.62
0.49 

- 
0.74

0.67
0.55 

- 
0.79

0.14
0.05 

- 
0.23

0.57
0.44 

- 
0.69

0.34
0.22 

- 
0.46

314

315 Table 4. Most important features as selected by the Sequential Feature Selection 

316 algorithm (where appropriate) and found optimal hyperparameters for the top 3 

317 scoring models.
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318 Discussion

319 This study aimed to investigate the utility of using machine learning models to predict 

320 grade 3 or higher toxicities in gynecologic cancer patients treated with EBRT and 

321 interstitial or T&O brachytherapy. The database was analyzed using traditional statistics 

322 which compared groups with and without grade 3+ toxicities; disease free survival and 

323 local control were also reported (S1 Fig). To design the toxicity prediction models, data 

SVM                   RF LR

Features Hyperparameters  Features Hyperparameters  Features Hyperparameters

Chemotherapy C: 1 All n_estimators: 15 Chemotherapy C: 1

Charlson kernel: rbf max_features: log2 Charlson penalty: 50

KPS gamma: scale min_samples_leaf: 5 KPS solver: lbfgs

MRI min_samples_split: 
5

Ethnicity

D2cc Small 
Bowel

Type of Boost

D2cc Sigmoid Applicator

Stage D2cc Small 
Bowel

Histology D2cc Rectum

HR-CTV Tumor Site

Follow-Up 
Time Stage

Histology

Follow-Up 
Time
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324 were encoded and pre-processed. Next, a sequential feature selector method was used 

325 when appropriate, and hyperparameter tuning was performed.

326 A comparison of the patients with and without grade 3 toxicities, using basic marginal 

327 statistical analysis, suggested few differences between the groups including HR-CTV, 

328 Charlson Comorbidity Index, Length of Follow Up, and D2cc - Rectum. Some of these 

329 variables such as the HR-CTV and D2cc - Rectum have been previously shown to be 

330 predictors of grade 3 or higher toxicities for HDR brachytherapy. Lee et al. observed that 

331 patients with grade 3-4 toxicities had a significantly higher median HR-CTV of 111 cc 

332 compared to 43 cc for those patients with grade 0-2 toxicities [39]. Mesko et al. found a 

333 statistically significant difference between patients with and without a grade 3 toxicity, with 

334 a median of 93.8 cc and 51 cc, respectively [40]. Mazeron et al. found that rectal D2cc 

335 values equal to or greater than 75 Gy EQD2 are associated with higher grade and more 

336 frequent toxicities in MRI-guided adaptive brachytherapy for locally advanced cervical 

337 cancer [41]. When compared with traditional statistics, machine learning models consider 

338 nonlinear interactions between variables [42], resulting in our top scoring model selecting 

339 a total of 10 features. One should keep in mind that the practical importance of each 

340 feature within an ML algorithm may vary and their relevance to the outcome should not 

341 be inferred solely based on their inclusion in the model. Additionally, the features chosen 

342 by SFS may exclude variables that are easily manipulable when creating a treatment 

343 plan, particularly dosimetric variables. This issue could be explained twofold: 1) certain 

344 combinations of hyperparameters could limit the ability of SFS to find the correct 

345 interactions between features in the final selection; or 2) certain combinations of features 

346 could be more relevant and produce better predictions than when using actual dosimetric 
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347 data. A model without any dosimetric features would still be useful for predicting toxicity 

348 risk, but would not provide the clinician the option of adjusting the treatment plan to reduce 

349 the risk of toxicity. 

350 Supervised machine learning has been utilized to perform classification tasks in various 

351 areas of healthcare such as for predicting diagnosis and prognosis of COVID-19 patients, 

352 prediction of hospitalization due to heart disease, and outcome prediction of infectious 

353 diseases [43-45]. To the authors’ knowledge, this is the first analysis using and comparing 

354 multiple models for predicting grade 3 or higher toxicities in gynecologic cancer patients 

355 treated with external beam radiation and HDR interstitial or T&O brachytherapy. Through 

356 March 2020, there were only 53 published studies on the use of machine learning to 

357 predict radiation-induced toxicities [46], and through September 2023, only 14 studies 

358 had been published on deep learning models to predict toxicities from radiation treatment 

359 [47].

360 Regarding ML in brachytherapy toxicity prediction, Tian et al. developed a model for 

361 predicting fistula formation, reporting a recall of 97.1% and AUC of 0.904 utilizing the 

362 SMOTE algorithm and a SVM model with a radial basis kernel function on a database 

363 that included 35 patients with 7 positive cases; the limitation of this study lies in the small 

364 dataset, no withheld test dataset, high risk of model overfitting, and only using one model 

365 in their study [48]. For prediction of rectal toxicities, Chen et al. and Zhen et al. predicted 

366 grade 2 or higher rectal toxicity by using SVM and convolutional neural networks, 

367 respectively, with scores of (cross-validation estimated) recall and AUC of 0.85 and 0.91 

368 for the former and 0.75 and 0.89 for the latter. Their work includes the addition of dose 

369 map features for the training of the model; both of these works were done with a database 
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370 of 42 patients with 12 positive cases of patients that developed toxicities [49-50]. 

371 Additionally, there has been work by Lucia et al. who developed Normal Tissue 

372 Complication Probability (NTCP) models for acute and late gastrointestinal, genitourinary, 

373 and vaginal toxicities using a database of 102 patients that included radiomic features, 

374 but only for a logistic regression model, which obtained balanced accuracy scores 

375 between 63.99 and 78.41 [51]. Cheon et al. considered deep learning models for 

376 predicting late bladder toxicities which outperformed its multivariable logistic regression 

377 counterpart [52], with data of 281 patients which achieved an F1 score of 0.76. In contrast 

378 to the preceding studies, our study presents the largest patient dataset used for predicting 

379 grade 3 or higher toxicities. Similar to these studies, we employ data-balancing algorithms 

380 to promote stability in the model training stage. Our methodology incorporates feature 

381 selection for all models except for MLP and RF. Specifically, we leverage the Sequential 

382 Feature Selection Algorithm to promote parsimony within the model fit. This aligns with 

383 the methodologies employed in previous reports.

384 Overfitting occurs when a model becomes overly complex, capturing noise in the training 

385 data instead of learning the underlying patterns, leading to poor predictions when applied 

386 to new data [53]. To mitigate this phenomenon, the use of a withheld testing data set is 

387 required to assess the degree of overfitting and the performance of the model [54]. A 

388 clear illustration of overfitting can be appreciated in Table 3 for the MLP and KNN models, 

389 where they achieved impressive training F1 scores of 1.00 and 0.72 respectively; 

390 contrasting sharply with their testing scores of 0.39 and 0.32. These scores show that 

391 these 2 models are not generalizable for predicting new similar data points. Further model 

392 exploration with an expansion of the hyperparameter search space and pre-processing 
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393 algorithms is needed and will be taken into account in future projects. The authors suggest 

394 that the training and withheld data testing scores are always reported for a comprehensive 

395 understanding of a model’s performance.

396 Regarding the scoring metrics, our study showed that the support vector machine was 

397 the best model for predicting grade 3 toxicities, obtaining a training F1 score of 0.61, 

398 accuracy of 0.82, normMCC of 0.75, precision of 0.63, recall of 0.6, AUC-ROC of 0.87, 

399 and AUC-PR of 0.6; whereas for that same model, the test data obtained an F1 score of 

400 0.63, accuracy of 0.80, normMCC of 0.75, precision of 0.56, recall of 0.71, AUC-ROC of 

401 0.78, and AUC-PR of 0.65. In the withheld test data, out of all the patients that had a 

402 toxicity (n = 14), 71% were correctly predicted by the model (TP = 10); and out of all the 

403 predicted cases, 56% represented a true toxicity event and were not false positives (FP 

404 = 8). Given the high level of uncertainty in whether patients will develop toxicities, this 

405 may be viewed as an adequate performance. An important detail that must be considered 

406 is that the precision value is as important as the recall, since during normal clinical 

407 practice it is equally as important to avoid false positives as it is to detect true positive 

408 cases. In particular, a toxicity prediction model may suggest that the physician consider 

409 lowering the dose to certain OARs to prevent these high-grade radiation-related side 

410 effects; an algorithm with good recall but prone to predicting false positives may lead to 

411 reducing the dose for a patient not susceptible to developing toxicities. This reduction, in 

412 turn, may involve sacrificing a portion of tumor coverage, potentially decreasing tumor 

413 control. For this reason, the F1 score emerges as the optimal metric for evaluating the 

414 model's performance. In future investigations within this area, prioritizing either the recall 

415 or the precision score, which is not replaceable by specificity, could be explored. Notably, 
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416 specificity becomes less valuable in situations marked by an imbalance with a majority of 

417 true negatives [55] as the model's ability to predict negative outcomes can render overly 

418 optimistic scores in such scenarios. Once a best performing model has been identified, 

419 multi-institutional clinical trials will be needed to assess their performance on routine 

420 clinical practice. 

421 The strength of this work lies in several key aspects. First, the study analyzes multiple 

422 machine learning models to find the best fit across a variety of common prediction 

423 algorithms. Additionally, we divide the data into training and testing sets before employing 

424 cross-validation for the model’s training, enhancing generalizability of the final models 

425 and providing more trustworthy measures of out-of-sample performance, despite 

426 potential reductions in the values of these metrics. The use of a Stratified Shuffle Split 

427 approach guarantees that there will be a positive class on the testing set of the cross 

428 validation, ensuring meaningful performance in every split. Furthermore, the focus on the 

429 F1 score and reporting precision as the performance metrics is of practical relevance for 

430 assessing the clinical performance of the model, especially when predicting toxicities. 

431 The limitations are that, as in any machine learning study, having a larger dataset would 

432 likely help achieve better predictive accuracy, obtain a more generalizable model, and 

433 prevent overfitting. Additionally, only the dosimetric, treatment, and tumor variables were 

434 considered in this study, but not any additional features such as dose maps with spatial 

435 information. Regarding data balancing through Synthetic Oversampling, alternative 

436 techniques like threshold tuning could be investigated. Furthermore, developing methods 

437 to address overfitting and exploring a greater hyperparameter search space could be 

438 beneficial. Finally, an in-detail analysis of the importance of each hyperparameter could 
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439 be done in the future, using packages such as the Optuna library [56]; and additional 

440 ensemble models such as XGBoost could be trained and assessed. The authors 

441 acknowledge this and plan to address it in future studies.

442 Conclusion

443 Multiple machine learning models were trained and assessed to predict grade 3 or higher 

444 toxicity development in patients with gynecologic malignancies who received EBRT and 

445 interstitial or T&O brachytherapy treatment yielding satisfactory results for the top 

446 performing model. This novel approach of toxicity prediction holds the potential to set a 

447 new paradigm in standard clinical care and contribute towards personalized care in 

448 radiation therapy. New techniques to improve model training need to be explored, and 

449 overcoming machine learning limitations like small datasets requires collaborative efforts 

450 among peers. In the future, further investigations are needed to prospectively validate 

451 these models in other healthcare settings.

452
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