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Abstract  
Attention-deficit/hyperactivity disorder (ADHD), autism spectrum disorder (ASD), and 
obsessive-compulsive disorder (OCD) are heritable disorders that frequently co-occur with 
insulin resistance (IR)-related conditions. Traditional genetic case-control comparisons are 
challenged by the extent of heterogeneity and comorbidity within and across these conditions. 
In this study we step away from univariate analyses to let biology guide us to the potential 
genetic links between insulin and psychiatry-related traits. 
We used large-scale population-based genetic studies (N= 17,666-697,734) and applied 
genomic structural equation modeling to identify the factor structure best representing the joint 
genetic architecture of symptom scores of ADHD, ASD, and OCD, and five IR-related traits: 
body mass index (BMI), fasting plasma glucose (FPG), fasting plasma insulin, glycated 
haemoglobin (HbA1c), and homeostatic model assessment for IR. Subsequently we 
performed multivariate genome-wide association analyses on the psychiatry-IR related factors 
to explore genetic associations to unravel its biological basis. Factor analyses indicated that 
a three-IDFWRU�PRGHO�ILWWHG�WKH�GDWD�EHVW��Ȥ��GI �� �������AIC=56.8, CFI=0.99, SRMR=0.068). 
One factor included ADHD traits and three IR-related traits (BMI, FPG, HbA1c), while another 
encompassed OCD traits and HbA1c. The last factor included solely IR-related traits. Gene-
wide analyses revealed 57 genes significantly associated with the ADHD-IR factor (p< 2.961e-
06) and one gene, MTNR1B (p=3.44e-07), with the OCD/OCS-IR factor. Gene-set analyses 
found associations with neurodevelopmental pathways. 
Our findings suggest a shared genetic liability between psychiatric symptoms and IR-related 
traits in the general population, offering new perspectives on the molecular genetics underlying 
the overlap between psychiatric and IR-related somatic conditions as well as biologically 
informed clustering within psychiatry. 
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Introduction 
Attention-deficit/hyperactivity disorder (ADHD), autism spectrum disorder (ASD), and 

obsessive-compulsive disorder (OCD) are common neurodevelopmental disorders that 

frequently co-occur[1,2]. These complex psychiatric disorders are known to be heritable and 

have complex multifactorial etiologies [3,4,5]. Univariate genome-wide association studies 

(GWAS) comparing individuals with ADHD, ASD or OCD to those without these disorders 

have identified the first disorder-associated common genetic variants [6,7,8]. However, 

enormous samples sizes were needed to find single variants with small effect sizes and 

underlying biological mechanisms still remain largely unknown. One challenge in gene finding 

is the observed heterogeneity of clinical manifestations in psychiatric disorders, where 

psychiatric patients with the same diagnostic label can differ substantially from each other. 

Currently, clinical diagnoses for ADHD, ASD, and OCD are dependent on arbitrary threshold 

of symptoms only, without a biological basis [9,10]. Due to the lack of biological understanding, 

ambiguous diagnoses and large amounts of co-morbidity exist in individuals with psychiatric 

disorders, which extends beyond psychiatric phenotypes and also includes insulin resistance 

(IR)-related somatic conditions, like type 2 diabetes mellitus (T2D) and obesity [11,12,13].  

The link between ADHD, ASD, and OCD and IR-related somatic conditions is supported by 

epidemiological data. It has been found that having T2D or other metabolic conditions during 

pregnancy increases the risk of the offspring developing ASD or ADHD [14,15,16]. In addition, 

large-scale registry data convincingly showed that obesity is a relevant risk factor not only for 

developing T2D and metabolic syndrome, but also for receiving mental health diagnoses [17] 

and that bidirectional associations exist between T2D and psychiatric disorders, including 

ADHD, ASD, and OCD [18]. The observed multimorbidity between IR-related conditions and 

psychiatric disorders complicates clinical trajectories [19] and have been linked to more severe 

clinical outcomes [20,21] indicating their potential clinical relevance. 

One connection between psychiatric conditions and IR-related somatic conditions might lie in 

dysregulated insulin. While the role of insulin in glycemic control in our body is well known, it 

is becoming more clear that insulin also has an important function in the brain [22]. In the 

brain, insulin activates insulin receptors expressed on the surface of neuronal and glial cells, 

initiating a cascade of intracellular transduction processes [23]. By mediating cellular 

metabolism, insulin contributes to the development and homeostasis of the central nervous 

system, influencing neurogenesis, neuronal differentiation and promoting neurite growth [24]. 

Additionally, insulin has protective properties in the brain preventing damage from apoptosis 

and oxidative stress [24]. Previous studies show that IR-related conditions and traits 

associated with cognitive performance including IR-related associations with poorer verbal 
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and numerical reasoning ability and slower processing speed [25] and global cognitive function 

[26]. While metabolic disturbances in psychiatry have been perceived as possible 

consequences of unhealthy lifestyles, sedentary habits, or the chronic use of psychotropic 

medication [27], the observation that glycaemic and metabolic imbalances have been found 

in drug-naïve acute psychiatric patients already at disease onset suggest the potential 

involvement of common biological mechanisms [28]. Until now, our understanding of these 

underlying mechanisms linked to the multimorbidity of psychiatric disorders and IR-related 

conditions is limited.  

Since IR-related somatic diseases are complex heritable diseases as well [29], like ADHD, 

ASD, and OCD, one way to learn more about potential shared etiologies could lie in genetic 

analyses. It was already noted in GWAS investigating OCD that genes regulating insulin 

signaling were enriched in the top results [30] and that insulin-related traits, including levels of 

fasting insulin and two hour glucose measures, showed significant genetic correlations with 

OCD [31]. Genetic sharing between IR-related conditions [32] and psychiatric disorders [33] 

have also been well reported. A recent study investigated the genetic cross-links between nine 

neuropsychiatric disorders and three IR-related somatic diseases using publicly available 

GWAS data [34]. They were able to show two distinct clusters, in which the genetics of IR-

related conditions may exert divergent pleiotropic effects: one including OCD as well as 

anorexia nervosa and schizophrenia, which showed negative genetic overlap with somatic IR-

related conditions, and the other one including ADHD and major depressive disorder showing 

positive genetic overlap with IR-related conditions [34]. In addition, a recent family-based study 

was able to show that relatives of individuals with a psychiatric disorder had an increased risk 

for T2D and, within a subpart of their study, they were able to show that genetic risk for T2D 

was associated with an increased risk for several psychiatric disorders, including ASD and 

ADHD [35]. These studies highlight the evidence for multiple genetic links between IR-related 

somatic diseases and ADHD, ASD, and OCD. 

Another challenge in gene finding in psychiatry, apart from the phenotypic heterogeneity, lies 

in genetic heterogeneity. Genetic evidence shows that psychiatric disorders share genetic risk 

factors [36], and cross-disorder studies have identified pleiotropic genetic risk factors involved 

in several psychiatric disorders [37]. These results indicate that the clinical diagnoses do not 

follow the biology well, and first studies now indicate that substructures might exist in the 

genetic contributions to psychiatric categories [38,39]. With examples like T2D being prevalent 

in 5-22% of individuals with psychiatric disorders [40] and the other way around, with one-third 

to almost two-thirds of somatic patients having mental disorders [41], IR could be an 

interesting starting point to explore the underlying biology of heterogeneous psychiatric 

phenotypes. Moreover, the extensive genetic links between IR-related conditions and 
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psychiatric conditions also support this interest.   Furthermore, somatic IR-related traits can 

be objectively measured, potentially allowing for the stratification of individuals based on 

objectively measurable features, something we currently still lack in clinical psychiatry.  

With classical genetic case-control comparisons being challenged by the extend of 

heterogeneity and comorbidity within and across psychiatric conditions, researchers have 

explored alternative ways to study psychiatric genetics. One of these approaches is to explore 

continuous phenotypes [42,43]. Many symptoms/characteristics of psychiatric disorders are 

also observed in healthy individuals. Such disorder-like traits tend to show a nearly normal 

distribution in the general population, with psychiatric cases clustering at the extreme end [44]. 

It was shown that this trait-disorder continuum also holds at the genetic level, demonstrated 

by genetic overlap between obsessive-compulsive traits (µJXLOW\�WDERR�WKRXJKWV¶��DQG�2&'�>����

46], autistic-like traits (including social withdrawal) and ASD [47,48] and attention-

deficit/hyperactivity symptoms and ADHD [49]. Additionally, some traits span multiple 

diagnoses, indicating trans-diagnostic characteristics that align with the genetic correlations 

found in cross-disorder studies [33]. Investigating these continuous traits can help elucidate 

the observed heterogeneity in clinical phenotypes. 

While bi-variate genetic analyses have been instrumental for showing shared genetic 

etiologies between psychiatric traits and IR-related traits, new statistical tools make it possible 

to identify genetic relationships associated with multiple traits. Genomic Structural Equation 

Modelling (Genomic SEM) is a multivariate method that can analyze the joint genetic 

architecture of complex traits [50]. First results indicate patterns of substructures in the genetic 

correlations between major psychiatric disorders and show that multivariate genetic analyses 

are able to find additional genetic risk variants that were not found in univariate analyses 

[51,52]. This study aims to explore the existence of latent genetic factors based on the genetics 

of ADHD, ASD, and OCD symptomatology, as well as IR-related continuous measures 

observed in population-based genetic studies to examine its joint genetic architecture. We 

leveraged trait-based GWAS focusing on the continuum of symptoms related to ADHD, ASD, 

and OCD rather than the differences between cases and controls. We applied multivariate 

genomic SEM to parse heterogeneity and genetic overlap between these psychiatric 

phenotypes and IR-related traits. Subsequently, we performed multivariate GWASs on the 

modeled genetic factors to uncover genetic and biological underpinnings of the latent genetic 

factors representing shared genetics between psychiatric and IR-related traits. 

 

Materials and Methods 
Data source 
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We utilized publicly available summary statistics [53] from large-scale population-based 

GWASs that included symptoms related to ADHD, ASD, OCD or IR-related measures 

(N=17,666 ± 697,734). The inclusion criteria for GWASs consisted of a minimum sample size 

of 10 000 and having significant SNP-based heritability (p<0.05; Z>2). To ensure the inclusion 

of the largest possible GWAS datasets available, we utilized the online database GWAS 

Catalog [53] for the final selection. An overview of GWAS datasets used is provided in Table 

1.  

 

Table 1. Overview of included GWAS datasets. 

Phenotype N Cases Controls Neff Study PMID 

ADHD 225,534 38,691 186,843 103,135.5 Demontis et al. 
2023 

36702997 

ASD 46,350 18,381 27,969  Grove et al. 2019 30804558 

OCD 9,725 2,688 7,037 7,281.307 IOCDF-
GC/OCGAS 
2018 

28761083 

ADHD total 
symptom 
score 

17,666    Middeldorp et al. 
2016 

27663945 

OCS + 
OCD 

17,992    Smit et al. 2019 31891238 

Sociability 342,461    Bralten et al. 
2021 

34054130 

2hGlu 63,396    Chen et al. 2021 34059833 

BMI 697,734    Pulit et al. 2019 30239722 

FPG 140,595    Lagou et al. 2021 33402679 

FPI 98,210    Lagou et al. 2021 33402679 

Hb1ac 123,665    Wheeler et al. 
2017 

28898252 

HOMA-IR 37,037    Dupuis et al. 
2010 

20081858 

HOMA-B 36,466    Dupuis et al. 
2010 

20081858 

 All included GWAS datasets were of European ancestry. Abbreviations: ADHD= attention-
deficit/hyperactivity disorder; ASD= autism spectrum disorder; OCD= obsessive-compulsive 
disorder; OCS=obsessive-compulsive symptoms; 2hGlu= glucose levels two hours after an 
oral glucose challenge; BMI=body mass index; FPI=fasting insulin; FPG=fasting glucose; 
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Hb1ac=glycated haemoglobin; HOMA-% KRPHRVWDWLF�PRGHO�DVVHVVPHQW�RI�ȕ-cell function; 
HOMA-IR=homeostatic model assessment for insulin resistance. Neff= effective sample size. 
 

 

GWASs of population-based psychiatric traits 

To include a population-based trait for ADHD, we considered the GWAS meta-analysis of a 

total score of attention and hyperactivity symptoms in children [49]. This meta-analysis 

includes 17,666 children from nine population-based cohorts of the EArly Genetics and Life 

course Epidemiology (EAGLE) consortium. Data were based on scaled questionnaires, 

including the Attention Problems scale of the Child Behavior Checklist (CBCL) and the 

Hyperactivity scale of the Strengths and Difficulties Questionnaire (SDQ), consisting of parent- 

and teacher-rated scales [49]. 

 

For OCD traits, previous GWASs of obsessive-compulsive symptoms did not reach the sample 

size requirements for Genomic SEM. Therefore, we used a GWAS that meta-analyzed 

obsessive-compulsive symptoms (OCS) in combination with OCD case-control status [54]. 

The OCS score in this meta-analysis used subscales that measured obsessions (rumination 

and impulsions) and compulsions (checking, washing, and ordering/precision), based on the 

Padua Inventory scale [54]. The continuous OCS scores were measured in a population with 

DQ�DJH�UDQJH�EHWZHHQ����DQG���ௗ\HDUV�� LQFOXGLQJ��,267 individuals based on self-reported 

items. The OCD case-control subsample included 2,688 individuals with OCD and 7,037 

controls from the Psychiatric Genomics Consortium OCD GWAS [8]. 

  

For ASD-related traits, we used a GWAS on sociability [48] since social difficulties are at the 

core of the autistic phenotype and there is evidence of genetic overlap between sociability and 

ASD genetics [48]. The sociability GWAS was performed on an aggregated score based on 

four questions related to social behavior in a total of 342,461 adults (mean age 56.61). Further 

information regarding the sociability measure items and genotyping has been reported [48]. In 

our analysis, the direction of beta association values of SNPs from the sociability GWAS 

summary statistics was reversed to indicate reduced sociability, reflecting social withdrawal. 

  

 

GWASs of population-based IR-related traits 
GWAS data on IR-related traits were preselected based on the aforementioned inclusion 

criteria, as well as the existence of significant genetic correlations with either ADHD, ASD, or 

OCD, aligning with Genomic SEM requirements. IR-related traits considered were: glucose 
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levels two hours after an oral glucose challenge (2hGlu), body mass index (BMI), fasting 

glucose (FPG), fasting insulin (FPI), glycated haemoglobin (HbA1c), homeostatic model 

assessment for insulin resistance (HOMA-IR), and homeostatic model assessment of ȕ-cell 

function (HOMA-B) [55,56,57,58,59]. We performed genetic correlation analyses with linkage 

disequilibrium score (LDSC) regression between the IR-related traits with psychiatric disorders 

(ADHD, ASD, OCD) as described in Supplementary Materials in Supplementary Figure S1 

and Table S1.  

 

Genomic Structural Equation Modeling 
Genomic SEM was applied to investigate latent genetic factors underlying the three 

population-based symptom GWASs (attention-deficit/hyperactivity symptom scores, 

OCD+OCS symptoms, social withdrawal) and the five IR-related trait GWASs (BMI, FPG, FPI, 

HbA1c, HOMA-IR) that were significantly genetically correlated to at least one among ADHD, 

ASD, and OCD. Genomic SEM is a data-driven, multivariate genetic analysis approach used 

to identify latent factors underlying different variables [50]. The analysis involves exploratory 

and confirmatory factor analyses (EFA and CFA, respectively) to determine the model based 

on loading thresholds above 0.25 and thereafter examine model fit. Factor analyses were 

performed separately for the odd and even chromosomes to avoid overfitting. In the first step 

of Genomic SEM, the genetic covariance matrix and sampling covariance matrix were 

estimated using precomputed linkage disequilibrium (LD) scores obtained from the 1000 

Genomes Project [60]. During the second step, the model fit was estimated using standardized 

root mean VTXDUH�UHVLGXDO� �6505���PRGHO� Ȥ���$NDLNH� ,QIRUPDWLRQ�&ULWHULRQ��$,&���DQG� WKH�

Comparative Fit Index (CFI). The model fit statistic CFI tests to what degree the proposed 

model better fits compared to a model in which all traits are heritable but not correlated 

genetically (>.95 is considered good fit), and AIC is a relative fit statistic to compare models, 

with lower values being a better fit [50]. The analysis followed procedures described on the 

Genomic SEM GitHub, using default parameters (see 

https://github.com/GenomicSEM/GenomicSEM).   

 

Multivariate GWAS  

We performed multivariate GWASs within the Genomic SEM framework on the factors that 

loaded both psychiatric and IR-related traits to estimate individual SNP effects on the latent 

factors. Multivariate GWAS was run on SNPs filtered on default SNP filtering on minor allele 

frequency (MAF) (MAF>0.01) and quality info score (INFO>0.6) when such information was 
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available [51]. In addition, we removed any variants that presented additional warnings during 

the analysis, such as NA values. SNPs were considered significant if they reached the 

genome-wide significance threshold of p <5e-08. A SNP-level heterogeneity test (QSNP) was 

then performed to test the null hypothesis that a SNP acts on the latent factor instead of acting 

on individual or subset of traits/observed variables. Therefore, we calculated the heterogeneity 

(Q) index  [50, 51] by using independent pathway models in which the effects of the SNPs on 

the traits and the residual variances are freely estimated. The common and independent 

SDWKZD\�PRGHOV�DUH�WKHQ�XVHG�WR�HVWLPDWH�D�Ȥ��GLVWULEXWHG�4613�WHVW�VWDWLVWLF�ZLWK�GHJUHHV�

of IUHHGRP��GI��HTXDO�WR�Ní���ZKHUH�N�UHIOHFWV�WKH�QXPEHU�RI�LQFOXGHG�SKHQRW\SHV��:H�WKHQ�

removed significant QSNPs (p< 5e -08) for subsequent analyses as these SNPs do not 

represent direct effects on latent factors. 

The effective sample size (Neff) for each psychiatric-IR factor was calculated [50, 61] and in 

this calculation the summary statistics are restricted to MAF limits of 10% and 40% to produce 

stable estimates, as described on the Genomic SEM Github 

(https://github.com/GenomicSEM/GenomicSEM/wiki/5.-User-Specified-Models-with-SNP-

Effects). 

 

 

FUMA 

The online tool for functional mapping and annotation of GWASs (FUMA v1.5.4) [62] was 

utilized to interpret the multivariate GWAS outcomes of each psychiatric-IR related latent 

factor. The SNP2GENE module within FUMA was used to perform gene mapping (i.e., 

positional mapping, eQTL mapping), as well as gene-based, gene-property, and gene set 

analyses in Multi-marker Analysis of GenoMic Annotation (MAGMA). The gene-wide genome-

wide significance threshold was set at p=0.05/16 888=2.961e-06 accounting for the 16,888 

tested protein coding genes. The gene set analysis was performed on 5,917 Gene Ontology 

(GO) terms and 4,761 curated gene sets obtained from MsigDB v6.2. Gene set analysis 

results were considered significant at p<0.05/10 678=4.68e-06. For the gene-property 

analyses we selected 30 GTEx/v8, 53 GTEx/v8 and BrainSpan gene expression datasets to 

examine gene expression in brain-related regions in adults and during brain development. As 

input for the sample size parameter (N) in FUMA we used the Neff due to inputting multivariate 

GWAS outcomes in FUMA analysis.  
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Results 

Identification of psychiatric-IR latent genetic factors  

Based on our input data of eight variables: three psychiatric traits  (ADHD total symptom score, 

OCS and OCD case-control score, and social withdrawal) and five IR-related continuous traits 

(BMI, FPI, FPG, Hb1ac, HOMA-IR) the EFA analysis within Genomic SEM on odd 

chromosomes provided four potential models. The subsequent CFA analysis on these models 

on even chromosomes confirmed the best model fit for a three-factor model �Ȥ��GI �� �������

AIC=60.8, CFI=0.97, SRMR=0.093), see Figure 1. This model also fits well for all 

chromosomes �Ȥ��GI �� �������$,& ������&), ������6505 ������� 

 

The first factor was loaded solely by IR-related traits (BMI, FPI, and HOMA-IR). The second 

factor included ADHD total symptom scores together with BMI, FPG, and HbA1c and was 

named ADHD-IR factor. The third factor included OCD+OCS symptoms together with HbA1c 

and was named OCD/OCS-IR factor. Social withdrawal did not load in any of the three factors. 

 

 

 

 

 

 
Figure 1. Three-factor model path diagram. The structural equation model path diagram of 

the identified three-model as the best model fit to the data based on the exploratory factor 

analysis in Genomic SEM. Abbreviations: adhd_total_symp= ADHD total symptom score; 

ocs_ocd= obsessive-compulsive and OCD case-control score; BMI=body mass index; 

FPI=fasting insulin; FPG=fasting glucose; Hb1ac=glycated haemoglobin; HOMA-
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IR=homeostatic model assessment for insulin resistance. Created with 

https://semdiag.psychstat.org/. 

SNP associations 

Multivariate GWAS were performed on the ADHD-IR and the OCD/OCS-IR factors. 

Multivariate genome-wide associations on the ADHD-IR factor identified two genome-wide 

significant SNPs, rs780093 (p=1.56e-08) and rs551754 (p=1.63e-08) (See Supplementary 

Figure S2). Heterogeneity tests indicated a total of 1,304 heterogeneous QSNPs, and both 

genome-wide significant associations were QSNPs and therefore removed for subsequent 

analyses (See Supplementary Figure S3). The analysis identified no genome-wide significant 

associations for the OCD/OCS-IR latent factor (See Supplementary Figures S4 and S5) and 

813 heterogeneous QSNPs, which were removed for subsequent analyses. The most 

significant SNPs for the ADHD-IR factor and OCD/OCS-IR factors provided by FUMA can be 

found in Supplementary Tables S2 and S4. Additional quality control statistics (quantile-

quantile plots) are available in Supplementary Figures S6 and S7.  

 

Gene-level associations  

Using the FUMA SNP2GENES module, SNPs from the multivariate GWAS outputs of the 

ADHD-IR and OCD/OCS-IR latent factors were annotated to 16,888 protein coding genes. 

The built-in MAGMA gene-based analysis identified 57 genes reaching genome-wide 

significance for the association with the ADHD-IR factor (Figure 2 and Supplementary Table 

S3), and one gene, MTNR1B gene (p=3.4364e-07), for the OCD/OCS-IR factor (Figure 3).  
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Figure 2. Manhattan plot of gene-based analysis of ADHD-IR latent factor. Gene-based 

Manhattan plot based on the input GWAS summary statistics of the multivariate GWAS of the 

ADHD-IR factor. The input SNPs of the GWAS summary statistics were mapped to a total of 

16888 protein coding genes. The x-axis displays the positional location on the different 

chromosomes, and the y-D[LV�GLVSOD\V�WKH�íORJ�S-value of the gene-wide associations. The 

genome wide significance threshold (red dashed line in the plot) was set at 

p=0.05/16888=2.961e-6 accounting for the number of genes tested. The plot shows the 57 

significant top genes. 

 

 

 

 

 
 

 

Figure 3. Manhattan plot of gene-based analysis of OCD/OCS-IR latent factor. Gene-

based Manhattan plot based on the input GWAS summary statistics of the multivariate GWAS 

of the OCD/OCS-IR latent factor. The input SNPs of the GWAS summary statistics were 

mapped to a total of 16884 protein coding genes. The x-axis displays the positional location 

on the different chromosomes, and the y-D[LV� GLVSOD\V� WKH�íORJ� S-value of the gene-wide 

associations. The genome wide significance threshold (red dashed line in the plot) was set at 

p=0.05/16884=2.961e-6. accounting for the number of genes tested. 

 

Gene set enrichment and tissue specificity 

Subsequently, MAGMA gene-set analysis allowed to explore factor-associated gene sets. 

This analytical step yielded significant results for 12 gene sets associated with the ADHD-IR 
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factor and five gene ontology terms associated with the OCD/OCS-IR factor (Table 2 and 3, 

respectively), including neuron differentiation, neuron development and neurogenesis. 

 

Table 2. Results of the MAGMA gene set based analysis of ADHD-IR latent factor. The 
table shows   the top significant identified gene sets based on Bonferroni corrected p-values 
accounting for 5917 Gene Ontology (GO) terms and 4761 curated gene sets. N genes= 
number of genes; Beta=beta value; Beta STD=beta value standard deviation; SE=standard 
error; P=p-value ; Pbon=p-value after Bonferroni correction. 

Gene set N 
genes 

Beta Beta 
STD 

SE P Pbon 

GO_bp:go_neuron_differ
entiation 

1162 0.168
23 

0.042594 0.029012 3.4126e-
09 

5.28202
228e-05 

GO_bp:go_neuron_deve
lopment 

956 0.169
21
  

0.039113 0.031859 5.5211e-
08 

0.00085
450064
7 

GO_bp:go_neurogenesi
s 

1383 0.141
99 

0.038943 0.02681 5.9978e-
08 

0.00092
821952
8 

GO_bp:go_positive_regu
lation_of_biosynthetic_pr
ocess 

1692 0.120
6 

0.036219 0.02396 2.4373e-
07 

0.00377
172175 

GO_bp:go_negative_reg
ulation_of_signaling 

1159 0.136
15 

0.034429 0.028454
  

8.6411e-
07  

0.01337
123814 

GO_bp:go_positive_regu
lation_of_gene_expressi
on 

1669 0.114
99 

0.034324 0.024369 1.1983e-
06 

0.01854
12959 

GO_mf:go_dna_binding
_transcription_factor_act
ivity 

1443 0.132
57 

0.037068 0.028133 1.2356e-
06 

0.01911
72032 

GO_bp:go_negative_reg
ulation_of_biosynthetic_
process 

1272 0.127
36 

0.03362 0.027117 1.3335e-
06 

0.02063
05785 

GO_bp:go_cellular_resp
onse_to_endogenous_st
imulus 

1183 0.132
86 

0.033918 0.028819 2.0294e-
06  

0.03139
4818 

GO_bp:go_regulation_of
_nervous_system_devel
opment 

790 0.163
66 

0.034567 0.035686 2.2771e-
06 

0.03522
44599 

GO_bp:go_signal_releas
e 

408 0.223
39 

0.034309 0.048843 2.4156e-
06 

0.03736
45008 

GO_bp:go_positive_regu
lation_of_rna_biosyntheti

1378 0.120
58 

0.033017 0.026425 2.5407e-
06 

0.03929
70069 
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c_process 

 
Table 3. Results of the MAGMA gene set based analysis of OCD/OCS-IR latent factor. 
The table shows the top significant identified gene sets based on Bonferroni corrected p-
values accounting for 5917 Gene Ontology (GO) terms and 4761 curated gene sets. N genes= 
number of genes; Beta=beta value; Beta STD=beta value standard deviation; SE=standard 
error; P=p-value ; Pbon=p-value after Bonferroni correction. 

Gene set N 
genes 

Beta Beta 
STD 

SE P Pbon 

GO_bp:go_positive_regu
lation_of_rna_biosyntheti
c_process 

1378 0.0971
51 

0.02659
9 

0.019947 5.6251e-
07 

0.00870
652978 

GO_mf:go_dna_binding
_transcription_factor_act
ivity 

1444 0.1001
3 

0.02800
3 

0.021234 1.2167e-
06 

0.01883
08659 

GO_bp:go_neuron_differ
entiation 

1162 0.1013
9 

0.02566
9 

0.021905 1.8554e-
06 

0.02871
41704 

GO_cc:go_nucleoplasm
_part 

957 0.1035
5 

0.02394
4 

0.022468 2.0439e-
06 

0.03162
93525 

GO_bp:go_positive_regu
lation_of_gene_expressi
on 

1669 0.0846
32  

0.02526 0.018406
  

2.1496e-
06 

0.03326
29104 

 
 
 
Gene-property analyses indicated significant enrichments in the brain and pituitary for genes 
related to the ADHD-IR factor across 30 general tissue types. Moreover, it indicated significant 
enrichments in all brain regions, including cerebellum, except the substantia nigra for genes 
related to the ADHD-IR factor across 53 tissue types. Additionally, significant enrichments 
were found between early and late mid-prenatal developmental stages of the brain for genes 
related to the ADHD-IR factor (Supplementary Figure S8). For the OCD/OCS-IR factor, we 
observed significant enrichments in the brain, pituitary and uterus across 30 general tissue 
types and seven out of the 13 brain regions across 53 specific tissue types. In addition, 
significant enrichments were observed from early prenatal to late mid-prenatal  developmental 
stages of the brain for genes related to the OCD/OCS-IR factor (Supplementary Figure S9). 
 

 

Discussion 
Psychiatric phenotypes and IR-related conditions co-occur and are genetically correlated, yet 

the molecular genetic underpinnings of this overlap remain poorly understood. This study 

employed multivariate genomic analyses of population-based traits to demonstrate the 
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existence of genetic factors that include ADHD symptoms and IR-related measures, and 

obsessive-compulsive symptoms and cases, and IR-related measures. Follow-up 

bioinformatic analyses suggest the potential involvement of IR-related genes as well as genes 

involved in neuron differentiation, neuron development, and neurogenesis. Identifying these 

psychiatric-IR genetic factors may be a step towards biologically informed subgroups within 

psychiatry in the future. Our work shows the existence of a latent genetic factor loaded by 

ADHD total symptom scores and three IR-related traits (BMI, FPG, and HbA1c). These IR-

related traits have previously shown positive genetic correlations with ADHD [34] and results 

are in line with phenotypic observations of elevated HbA1c levels in children with ADHD 

compared to children without ADHD [63]. Poor glycaemic control within diabetic patients has 

been linked to increased risk of ADHD [64], suggesting the potential of a distinct biological 

profile for a subgroup of individuals with ADHD. In addition, our results are in line with a 

previous study describing individuals diagnosed with T2D being susceptible to presenting 

ADHD-related symptoms [65]. Previous work also indicates a link between insulin and 

dopamine signaling in the midbrain making a connection to altered reward behavior [66]. 

Altered reward sensitivity is known in ADHD [67] and dopamine and ADHD have been linked 

through different routes, including genetics [68], brain imaging [69], as well as the 

pharmacodynamics of symptom reducing medications [70]. 

We also identified a latent genetic factor loading OCD/OCS and HbA1c. An IR-related 

OCD/OCS factor is in line with studies linking insulin to OCD. Among these, Hou and 

colleagues found that individuals diagnosed with OCD present increased glucose metabolism 

in the orbitofrontal cortex compared to healthy controls [71], aligning with rodent models of 

T2D that presented compulsivity-related behavior, and increased glucose levels in the 

dorsomedial striatum [72]. Also genetic work has linked insulin genes to both OCD [30] and 

OCS [31]. For HbA1c no genetic sharing with OCD measures was observed previously  [31]. 

Nonetheless, HbA1c levels have been shown to be positively correlated to OCD 

symptomatology [73,74]. Prior work did report genetic sharing between OCD and FPI levels 

and the 2hGlu measure [31], while negative genetic correlations of BMI and obesity have been 

described with OCD diagnosis [34]. Strom and colleagues defined OCD subgroups based on 

comorbid diagnoses and genetic relations between psychiatric disorders with somatic and 

mental measures. Their study showed that polygenic risk score for BMI was more negatively 

associated with the OCD group without comorbidities compared to OCD subgroups having a 

comorbid condition, such as ADHD [75]. This observation may highlight the specific negative 

genetic relationship between OCD and the IR-related trait BMI. The disparate genetic 

relationships of OCD versus ADHD to different traits, specifically IR-related traits, denotes 

potential different underlying mechanisms. Again, this is in line with the defined clusters related 

to IR-related multimorbidity observed, placing ADHD and OCD in different clusters [34]. 
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The results of our multivariate genetic analyses highlighted 57 genes significantly associated 

with the ADHD-IR factor, including CPNE4, encoding copine 4. Copines are a family of 

calcium-dependent membrane binding proteins enriched in neurons [76] and involved in 

insulin secretion and glucose uptake regulation [77]. Another top gene was CADM2, encoding 

cell adhesion molecule 2. CADM2 has been linked to core ADHD features like impulsivity and 

risk-taking behavior [78]. Conditional genetic analyses showed that variants within CADM2 

influence both psychiatric and metabolic traits, including BMI, and are expressed in adult brain 

and adipose tissue [79], suggesting common biological mechanisms. Interventions on 

expression of CADM2 in animal models resulted in changes in adiposity, systemic glucose 

levels and insulin sensitivity [80], linking this gene to glycemic regulation. This insulin-

psychiatric link is also apparent in other top genes, including NRXN1, implicated in insulin 

vesicle granule docking [81] and neurodevelopmental disorders, including ASD and 

depression [82,83,84]. Hughes and colleagues investigated an ASD mouse model with 

UHGXFHG�1U[Q�Į�H[SUHVVLRQ��WKDW�VKRZHG�LQFUHDVHG�JOXFRVH�PHWDEROLVP�LQ�WKH�GRUVDO�UDSKH�
nucleus, and decreased insulin receptor signaling in the prefrontal cortex, a top identified brain 

region in our gene property analysis for the ADHD-IR factor associated genes [84]. We also 

find RPTOR as a top associated gene to the ADHD-IR genetic factor. This gene encodes the 

regulatory-associated protein of mTOR, or raptor, implicated in the mTOR pathway and 

regulating cell growth and survival [85]. The genetic variants within the mTOR pathway has 

been described as a link between brain volume and ASD in earlier analyses [86]. This 

regulatory protein is sensitive to insulin levels, and also regulates glucose metabolism and 

synaptic plasticity via the mTOR cascade [87]. Moreover, upregulation of mTOR-related genes 

has not only been observed in ASD, but also in ADHD [87].   

Next to single genes we also observed top significant associated gene sets with the ADHD-IR 

factor that included neuron differentiation, neuron development, and neurogenesis in 

accordance with ADHD being a neurodevelopmental disorder [88]. Based on accumulating 

evidence for the actions of insulin in the brain [24,89], we could speculate that the role of 

insulin in neurodevelopment could be important in relation to our identified factor. In tissue 

expression analyses of the genes associated to the ADHD-IR latent factor, we observed 

significant enrichments in all tested brain regions except the pituitary and the substantia nigra. 

The positive association between gene expression in the cerebellum and genetic associations 

of the ADHD-IR factor link to the finding of a previous study reporting an association between 

smaller volume of the vermis of the cerebellum and the amount of ADHD symptoms [90]. 

ADHD symptoms scores on an attention scale also associated to smaller surface areas, 

including frontal gyrus and total surface area, in a pediatric population cohort [91]. Our findings 

linking gene expression in the frontal cortex BA9 region and brain cortex are in line with 
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previous work suggesting aberrated maturation of frontal lobes may result in ADHD symptoms 

in a subgroup of children with ADHD [92].  

Children with ADHD have increased waist circumference and BMI compared to children 

without ADHD, and these measures are linked to the severity of the condition [93]. Children 

with ADHD also show unhealthy dietary behavior, consuming less vitamins and simple sugars 

in contrast to undiagnosed children [93]. Such observations, along with our results, may direct 

to new avenues to identify subgroups of individuals with attention-deficit/hyperactivity 

symptoms who may benefit from receiving personalized lifestyle-based interventions. 

We identified MTNR1B as a genome-wide significant gene associated to the OCD/OCS-IR 

factor. This gene encodes the melatonin receptor 1B, a high affinity membrane receptor for 

the melatonin hormone [94]. MTNR1B is implicated in glucose homeostasis due to melatonin 

functioning, as elevated melatonin levels may impair glucose tolerance and modulate fasting 

glucose levels [95], linking this gene to glycemic regulation. Altered levels of melatonin have 

been associated to the risk for type 2 diabetes as well as disturbed circadian rhythm [94,96]. 

Lane and colleagues investigated circadian rhythm based on sleep measures via self-reports 

and physiological measurements with polysomnography. Here, they reported that circadian 

disruption may mediate risk for type 2 diabetes via MTNR1B [94]. Sleep disturbances are also 

described in OCD, linking the severity of obsessive-compulsive symptom severity to sleep 

quality [97]. Finding neuron differentiation in our gene set analysis links neuronal development 

to the genetic architecture of the OCD/OCS-IR factor, in line with the known 

neurodevelopmental trajectory of OCD [8]. 

The OCD/OCS-IR factor related genes were associated with gene expression across a total 

of 7 brain regions, including the brain cerebellar hemisphere and brain cerebellum. Links 

between OCD and the brain have been reported before. Zhang and colleagues reported an 

association between functional connectivity between posterior cerebellum and right striatum, 

and OCD symptom severity in individuals diagnosed with OCD [98]. We reported positive 

associations between the mid-prenatal and prenatal developmental stages of the brain and 

the genetic associations of the OCD- IR-related factor, linking the OCD/OCS-IR genetic factor 

to fetal brain development. A similar conclusion was reached regarding OCD and fetal origin 

based on BrainSpan transcriptome profiles in a supervised learning approach study [99], also 

supporting the link of prenatal developmental trajectory to our genetic factor.  

We hypothesized a role of insulin signaling in ASD but did not identify a genetic factor including 

our ASD-related trait social withdrawal and the IR-related traits. While previous work also did 

find neither global nor local genetic correlations between IR-related measures and ASD 

[34,100], stratified analyses did indicate a significant covariance for genes within the insulin 

signaling pathway between ASD and metabolic syndrome [34]. It must be noted that an ASD 

diagnosis consists of more than social withdrawal-related symptoms, however in the current 
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analyses we restricted to social withdrawal because of its adequate sample size as there was 

no total autism spectrum-like symptom GWAS available with a sufficient sample size. 

Therefore, we cannot conclude the absence of the existence of a potential ASD-related IR 

genetic factor, but we can only report not finding one with social withdrawal. 

This study has several strengths and limitations. By moving beyond a traditional case-control 

approach to the study of population-based psychiatric and IR-related traits, we yielded novel 

insights into the biological basis of symptom dimensions in psychiatry, while gaining more 

statistical power through the use of large input GWAS datasets in our analyses. Genetically-

based factors, as demonstrated by the identified ADHD-IR and OCD/OCS-IR genetic clusters, 

can delineate biologically informed grouping. Moreover, our study highlights the utility of 

integrating psychiatric and somatic traits to better understand the complex interplay between 

these factors. However, our study also has some limitations. The reliance on publicly available 

population-based GWAS data introduces dependence on current data availability. The limited 

sample size of some studies may impede the discovery of genetic variants due to insufficient 

statistical power. Additionally, the use of European cohorts hinders the generalizability of our 

findings to other ethnicities. Future research should examine if our findings can be validated 

in clinical settings and explore if the biological clustering can be observed in diverse 

populations. 

In conclusion, this study identified latent genetic factors characterized by shared liabilities 

underlying ADHD symptoms with IR-related measures and obsessive-compulsive symptoms 

and OCD cases with IR-related measure. The ADHD-IR factor included ADHD total symptom 

scores with BMI, FPG, and HbA1c, while the OCD/OCS-IR factor comprised OCS and OCD 

traits with HbA1c. These factors could potentially aid in pointing towards subgrouping within 

psychiatric disorders like ADHD and OCD, characterized by specific IR-related profiles. To our 

knowledge, this is the first study reporting on the multivariate genetic clustering of dimensional 

psychiatric symptoms with somatic IR-related traits in population-based datasets. Our work 

highlights the shared genetic architecture of psychiatric and IR-related traits, and provides a 

starting point for the potential of clustering individuals based on objectively measurable IR-

related traits and multimorbidity prevention strategies. These insights may pave the way for 

more targeted and effective treatments, ultimately enhancing patient outcomes. 
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