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Abstract 15 

Loss-of-function variants in MDA5, a key sensor of double-stranded RNA from viruses and 16 

retroelements, have been associated with protection from type 1 diabetes (T1D) in genome-17 

wide association studies (GWAS). MDA5 loss-of-function variants have also been reported to 18 

increase the risk of inflammatory bowel disease (IBD). Whether these associations are linked or 19 

extend to other diseases remains unclear. Here, fine-mapping analysis of four large GWAS 20 

datasets shows that T1D-protective loss-of-function MDA5 variants also protect against 21 

psoriasis and hypothyroidism, while increasing the risk of IBD. The degree of autoimmune 22 

protection and IBD risk were linearly proportional. The magnitudes of the odds ratios for 23 

autoimmune protection and IBD risk were larger for rare MDA5 variants than for common 24 

variants, which were differentially expressed in different geographic populations. Our analysis 25 

suggests MDA5 genetic variants offer a direct fitness trade-off between viral clearance and 26 

autoimmune tissue damage. 27 

 28 

Introduction  29 

Innate immune responses must be sensitive enough to detect infection yet specific enough to 30 

avoid activation by cellular components. A key innate immune receptor for cytosolic double-31 

stranded RNA (dsRNA), a potent signature of viral infection, is MDA51-5. Recognition of dsRNA 32 

by MDA5 induces a potent IFN-b response2,3. The ATPase activity and dsRNA binding 33 

cooperativity of MDA5 confer the necessary sensitivity and specificity of MDA5-dsRNA 34 

recognition4-6. Mutations in the gene encoding MDA5, IFIH1, can perturb the balance between 35 

sensitive and specific dsRNA recognition. IFIH1 is a hotspot for natural variants with clinical 36 

associations. Approximately 40 gain-of-function missense variants have been associated with 37 

interferonopathies7-9. These variants promote formation of MDA5 signaling complexes, including 38 

on endogenous dsRNAs, by either increasing the RNA binding affinity of MDA5 or inhibiting its 39 
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ATP-dependent proofreading activity 5,9,10. Loss-of-function MDA5 variants cause recurrent 40 

infections11, and have been reported to contribute to inflammatory bowel disease (IBD), 41 

including ulcerative colitis and Crohn’s disease12,13. GWAS data have also associated loss-of-42 

function MDA5 variants with reduced risk of developing certain autoimmune diseases, most 43 

notably T1D14-19. Specifically, variants E627* (rs35744605), R843H (rs3747517), I923V 44 

(rs35667974), and T946A (rs1990760) have been identified as T1D-protective14-18,20,21. The 45 

E627* and I923V variants are rare, with allele frequencies of 1-2%, while R843H and T946A are 46 

common. These common variants are differentially expressed in different geographic 47 

populations. The T946A variant is present in 70-80% of Africans and Asians but only 30-50% of 48 

Caucasians15-18,20. Similarly, the R843H variant is found in 70% of Asians but only 30-40% of 49 

Caucasians and Africans15-18,20. Most human IFIH1 reference sequences contain the alleles that 50 

are most common in Asians (Ala946/His843). These coding variants inhibit the formation of 51 

MDA5-dsRNA signaling complexes18,22 by reducing the RNA binding affinity of MDA5 or 52 

hyperactivating its ATPase activity23. Other loss-of-function variants are splice donor variants 53 

that reduce splicing efficiency and hence mRNA levels19. 54 

A robust clinical link has emerged between T1D onset and recent infection with RNA 55 

viruses, in particular coxsackieviruses and other enteroviruses24. T1D patients have more 56 

frequent and persistent enterovirus infections, which precede the appearance of prediabetic 57 

markers, including autoantibodies25. MDA5 recognizes RNA from Picornaviridae, including 58 

enteroviruses1,26, which have evolved mechanisms  to suppress IFN-b transcription27,28. MDA5-59 

induced inflammation in the pancreas following rotavirus infection contributes to autoimmune 60 

destruction of pancreatic b-cells29. Therefore, a plausible hypothesis is that MDA5-dependent 61 

inflammation following viral infection can trigger autoimmune b-cell killing. 62 
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Gastrointestinal viral infection has also been linked to IBD onset30. Intestinal cells from 63 

IBD patients harboring loss-of-function MDA5 variants had elevated viral loads and were 64 

compromised in their ability to maintain epithelial barrier integrity upon further exposure to the 65 

enteric virome13. Hence, the frequency and clinical phenotypes of MDA5 loss-of-function 66 

variants in IBD patients suggest that MDA5 deficiency contributes to the induction of IBD12,13, 67 

due in part to increased exposure and susceptibility to viral infection11,13. 68 

Results and Discussion 69 

Loss-of-function MDA5 variants have been associated with recurrent infection11, T1D 70 

protection14-19, and IBD risk12,13. However, whether these associations are linked, or whether 71 

they apply to autoimmune disease more broadly, has not been explored. We addressed these 72 

questions by utilizing larger, more recent GWAS studies to conduct a broader, more sensitive 73 

survey of immune-mediated disease associations involving MDA5 variants. For our analysis, we 74 

selected GWAS datasets to maximize the likelihood of accurate fine mapping – balancing the 75 

need for large sample size, minimizing the use of imputed genotypes, and using ancestries that 76 

best matched the reference panel used to derive linkage disequilibrium (LD) estimates31-34 (see 77 

Methods). By reviewing associations with a reported lead T1D-associated variant, I923V 78 

(rs35667974)15 we identified psoriasis, hypothyroidism, Crohn’s disease, and ulcerative colitis 79 

as additional associated diseases. Fine-mapping analysis using GWAS summary data for these 80 

five diseases identified four variants likely to be causally associated with a subset of the 81 

diseases, with considerable overlap of variants between diseases (Fig. 1, Table 1). Two of 82 

these variants were coding variants, I923V and T946A, and two were splice donor variants, 83 

rs35337543 and rs35732034. All four variants were previously associated with T1D protection14-84 

19.  85 
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Given the overlaps between diseases, and the small P values observed for fine-mapped 86 

variants in one disease when considering another, we called associated variants by considering 87 

marginal association at any of these variants or other known loss-of-function variants not in LD 88 

with any of the index variants using a stringent Bonferroni correction. This identified 89 

associations of a fifth variant, E627* (rs35744605), with psoriasis, and hypothyroidism (Fig. 1). 90 

While T946A is common, the other variants are rare (allele frequency below 3%). Fine-mapping 91 

analysis did not find evidence for causality for variants E627* and R843H (Table 1). However, 92 

for E627* the lack of evidence of causality is likely due to its low allele frequency (0.7%), which 93 

limits power in genetics studies. In contrast, association of R843H with T1D protection is likely 94 

attributable to LD with the co-occurring causal T946A allele (r2 = 0.60), as previously 95 

reported15,16,18. Supporting these conclusions, our accompanying biochemical and structural 96 

study of T1D-protective MDA5 variants shows that the E627* variant lacks signaling activity due 97 

to a loss of RNA binding affinity, whereas the R843H substitution had no effect on the structural, 98 

biochemical or signaling activities of MDA523.  99 

Comparing associations across diseases, we found that all five associated variants 100 

offered protection against T1D, psoriasis and hypothyroidism, but increased the risk of 101 

ulcerative colitis and Crohn’s disease (Fig. 2a). Remarkably, a strict correlation was observed 102 

between protection and risk (Fig. 2b). A statistical test of proportionality (see Methods) 103 

concluded that changes in risk were linearly proportional across variants (Fig. 2c). Additionally, 104 

the magnitudes of the odds ratios were larger for the rare variants than for the common variants. 105 

Thus, the rarest variant, I923V, conferred the greatest degree of T1D protection and the 106 

greatest risk of IBD, whereas the most common variant, T946A, was associated with the least 107 

T1D protection and IBD risk (Fig. 2a-b). Notably, the T946A variant, while common in all 108 

populations, is the major allele in Asian and African populations but the minor allele in 109 

Caucasians. 110 
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Our GWAS meta-analysis uncovers a direct correlation between protection from 111 

autoimmune-related diseases (T1D, psoriasis and hypothyroidism) and increased risk of IBD. 112 

The implication is that calibration of MDA5-dependent antiviral signaling offers a fundamental 113 

fitness trade-off. Loss-of-function MDA5 variants protect from autoimmune tissue damage, 114 

including to pancreatic b-cells leading to T1D, but increase the risk of inflammatory tissue 115 

damage from persistent infection, including by enteric viruses in intestinal epithelia leading to 116 

IBD. This model predicts that gain-of-function MDA5 variants protect from chronic inflammation 117 

and IBD by ensuring infections are cleared but do so at the cost of increasing the risk of T1D 118 

and other autoimmune diseases. 119 

Methods 120 

GWAS meta-analysis 121 

GWAS summary data for a reported lead T1D-associated variant, I923V (rs35667974) were 122 

downloaded for the following diseases: T1D (16,000 T1D cases, 25,000 controls)31; IBD (5,956 123 

Crohn’s disease cases, 6,968 ulcerative colitis cases, 21,770 controls)32; psoriasis (19,032 124 

cases, 286,769 controls)33; and hypothyroidism (20,563 cases, 399,910 controls)34. Data were 125 

downloaded from the GWAS catalog from the following repositories: ulcerative colitis, 126 

https://ftp.ebi.ac.uk/pub/databases/gwas/summary_statistics/GCST003001-127 

GCST004000/GCST003045/harmonised/26192919-GCST003045-EFO_0000729.h.tsv.gz 128 

(ImmunoChip); Crohn’s disease, 129 

https://ftp.ebi.ac.uk/pub/databases/gwas/summary_statistics/GCST003001-130 

GCST004000/GCST003044/harmonised/26192919-GCST003044-EFO_0000384.h.tsv.gz 131 

(ImmunoChip); T1D, 132 

https://ftp.ebi.ac.uk/pub/databases/gwas/summary_statistics/GCST90013001-133 

GCST90014000/GCST90013445/GCST90013445_buildGRCh38.tsv (ImmunoChip); Psoriasis: 134 

http://ftp.ebi.ac.uk/pub/databases/gwas/summary_statistics/GCST005001-135 
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GCST006000/GCST005527/harmonised/23143594-GCST005527-EFO_0000676.h.tsv.gz   136 

(Meta analysis); Hypothyroidism: https://pan-ukb-us-east-137 

1.s3.amazonaws.com/sumstats_flat_files/categorical-20002-both_sexes-1453.tsv.bgz  (genome 138 

wide SNP chip). These studies were selected to balance the need for large studies and those 139 

most likely to give accurate results in fine mapping – i.e. those which minimized imputation and 140 

most closely matched the ancestry of our reference LD panel. 141 

Alleles were aligned to the UK Biobank as a common reference. Reference LD matrices 142 

were estimated from 40,000 European subjects from UK Biobank. Fine mapping was performed 143 

with a variant of the Sum of Single Effects (SuSiE)35 model, as implemented in susieR36. 144 

rs72871627 was selected as a tag (r2 = 0.99) of the splice donor variant rs35337543 145 

because rs72871627 was available in all GWAS datasets whereas rs35337543 was only 146 

available in the T1D GWAS dataset. 147 

Tests of proportional effects between pairs of diseases were performed across all variants in 148 

Table X using colocPropTest [https://cran.r-project.org/package=colocPropTest] which 149 

implements the test of proportionality as previously described37.  150 

Data Availability 151 

This study is a meta-analysis of previously published data. All code to reproduce this analysis is 152 

available at Zenodo.org [https://doi.org/10.5281/zenodo.12771481]. 153 
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258 

Fig. 1. Manhattan plots of fine-mapped variants for five diseases. Colored circles indicate 259 

the fine mapping sets identified, and colored text labels the most likely causal SNP in each set, 260 

selected due its known function on MDA5. Known loss-of-function SNPs that were not in any 261 

fine mapping set are marked with “x” and a black label. Lower right, minor allele frequency 262 

(MAF) and function of fine-mapped SNPs.  263 

162000000 162200000 162400000 162600000

0
2

4
6

8
10

Ulcerative colitis

Position

−l
og

10
(p

)

ors72871627
oI923V

ooT946Ax

x

x

x

rs35732034

R843H

162000000 162200000 162400000 162600000

0
1

2
3

4

Crohn's disease

Position

−l
og

10
(p

)

x

x

x

x

T946A

rs35732034

R843H

I923V

162000000 162200000 162400000 162600000

0
5

10
15

20
25

Type 1 diabetes

Position

−l
og

10
(p

)

oT946A

ooors35732034
oors35337543

ooI923V

x

x

xx

x

R843H

162000000 162200000 162400000 162600000

0
2

4
6

8

Psoriasis

Position

−l
og

10
(p

)

ooT946Ax

x

x

x

x

x
rs35732034

I923V

R843H

E627*

N160D

162000000 162500000 163000000

0
2

4
6

8
10

12
Hypothyroidism

Position

−l
og

10
(p

)

oors35337543

o
oT946A

oo
I923V

x

x

x

x

x

x

x

rs35732034

R843H

E627*

N160D

SNP
T946A

MAF

I923V

description

rs35732034
rs35337543
rs72871627

0.3892
0.0216
0.0097
0.0153
0.0147

loss of function
loss of function

splice donor
splice donor

r2=0.99 with rs35337543

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 4, 2024. ; https://doi.org/10.1101/2024.10.04.24314884doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.04.24314884
http://creativecommons.org/licenses/by/4.0/


 13 

 264 
Figure 2. GWAS meta-analysis of loss-of-function MDA5 variants. (a) Effect sizes expressed in terms 265 
of the odd ratio for selected MDA5 loss-of-function variants. ‡Because rs35337543 was only available in 266 
two GWAS datasets, rs72871627 (r2 = 0.973) was used as a tag for rs35337543. EAF, effect allele 267 
frequency. Error bars, SEM. ns, P > 0.05; *, P < 0.05; **, P < 0.01; ***, P < 0.001; ****, P < 5´10-8 268 
(genome-wide significance), where P is the Bonferroni-adjusted P value from marginal association 269 
analysis. CV, likely causal variant present in a credible set in fine-mapping analysis. R843H was included 270 
in fine-mapping analysis but excluded from marginal association analysis. See Table 1. (b) Odds ratio 271 
plot for variants and diseases in (a). (c) Estimated effect sizes in hypothyroidism compared to the other 272 
diseases. Hypothyroidism was selected because it was the largest dataset for which all SNPs were 273 
available. Dashed lines, identity and negative identity lines. 274 
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Table 1. Marginal association and fine-mapping analysis results. 276 
Variant SNP Location Allele EAF Disease lnOR ± std. err. OR P PBonferroni Causal‡ 

I923V rs35667974 2:162268127 T>C 0.022 T1D -0.493 ± 0.062 0.611 1.21´10-15 2.91´10-14 T 

     Psoriasis -0.440 ± 0.129 0.644 6.68´10-4 0.0160 F 

     Hypothyr. -0.254 ± 0.038 0.776 2.98´10-11 7.16´10-10 T 

     Crohn’s 0.121 ± 0.046 1.129 8.08´10-3 0.1938 F 

     UC 0.276 ± 0.046 1.318 1.94´10-9 4.64´10-8 T 

Splice1 rs35732034 2:162268086 C>T 0.010 Psoriasis -0.693 ± 0.253 0.500 6.25´10-3 0.1500 F 

     T1D -0.464 ± 0.083 0.629 2.29´10-8 5.50´10-7 T 

     Hypothyr. -0.230 ± 0.056 0.794 4.47´10-5 1.07´10-3 F 

     UC 0.180 ± 0.067 1.197 7.70´10-3 0.1848 F 

     Crohn’s 0.226 ± 0.064 1.253 4.15´10-4 9.96´10-3 F 

Splice2* rs72871627 2:162280432 A>G 0.015 Psoriasis -0.541 ± 0.200 0.582 6.81´10-3 0.1634 F 

     T1D -0.458 ± 0.073 0.633 4.19´10-10 1.00´10-8 T 

     Hypothyr. -0.253 ± 0.046 0.777 2.94´10-8 7.05´10-7 T 

     Crohn’s 0.072 ± 0.056 1.074 0.1990 1 F 

     UC 0.308 ± 0.054 1.360 1.19´10-8 2.85´10-7 T 

Splice2 rs35337543 2:162279995 C>G 0.015 T1D -0.458 ± 0.073 0.633 4.19´10-10 ND T 

     Hypothyr. -0.236 ± 0.045 0.790 1.51´10-7 ND T 

E627* rs35744605 2:162277580 C>A 0.007 Hypothyr. -0.273 ± 0.068 0.761 5.63´10-5 1.35´10-3 F 

     Psoriasis -0.210 ± 0.372 0.810 0.5717 1 F 

T946A rs1990760 2:162267541 T>C 0.389 Psoriasis -0.192 ± 0.034 0.825 1.95´10-8 4.68´10-7 T 

     T1D -0.132 ± 0.013 0.876 5.57´10-24 1.34´10-22 T 

     Hypothyr. -0.080 ± 0.011 0.923 5.61´10-13 1.35´10-11 T 

     Crohn’s 0.053 ± 0.013 1.055 3.36´10-5 8.07´10-4 F 

     UC 0.086 ± 0.013 1.089 1.78´10-10 4.27´10-9 T 

R843H rs3747517 2:162272314 C>T 0.276 T1D -0.111 ± 0.014 0.895 2.94´10-15 ND F 

     Psoriasis -0.103 ± 0.035 0.903 3.72´10-3 ND F 

     Hypothyr. -0.068 ± 0.012 0.934 1.85´10-8 ND F 

     Crohn’s 0.030 ± 0.014 1.031 0.0301 ND F 

     UC 0.051 ± 0.014 1.053 3.85´10-4 ND F 

N160D rs74162075 2-162310909 T>C 0.001 Psoriasis -2.057 ± 0.811 0.128 0.0111 0.2674 F 

     Hypothyr. -0.270 ± 0.133 0.763 0.0427 1 F 

EAF, effect allele frequency; OR, odds ratio. 277 
*rs72871627 was used as a tag of rs35337543 because the latter was not available in all GWAS 278 

datasets.  279 
‡Causality was inferred from presence of the SNP in a credible set in fine mapping analysis. 280 
Dashed lines indicate that the SNPs above and below the line are in LD with each other. 281 
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