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Abstract 

Polygenic risk scores (PRS) are crucial in genetics for predicting individual susceptibility to complex 
diseases by aggregating the effects of numerous genetic variants. Whole-genome sequencing 
(WGS) has revolutionized our ability to detect rare and even de novo variants, creating an exciting 
opportunity for developing new PRS methods that can effectively leverage rare variants and 
capture the complex relationships among different variants. Furthermore, regulatory mechanisms 
play a crucial role in gene expression and disease manifestation, offering avenues to further 
enhance the performance and interpretation of PRS predictions. Through simulation studies, we 
highlighted aspects where current PRS methods face challenges when applied to WGS data, 
aiming to shed light on potential opportunities for further improvement. To address these 
challenges, we developed Epi-PRS, an approach that leverages the power of genomic large 
language models (LLM) to impute epigenomic signals across diverse cellular contexts, for use as 
intermediate variables between genotype and phenotype. A pretrained LLM is employed to 
transform genotypes into epigenomic signals using personal diploid sequences as inputs, and the 
genetic risk is then estimated based on the imputed personal epigenomic signals. Epi-PRS 
enhances the assessment of personal variant impacts, enabling a comprehensive and holistic 
consideration of genotypic and regulatory information within large genomic regions. Our simulation 
results demonstrated that incorporating the nuanced effects of non-linear models, rare variants, 
and regulatory information can provide more precise PRS prediction and better understanding of 
genetic risk. Applying Epi-PRS to real data from the UK Biobank, our results further showed that 
Epi-PRS significantly outperforms existing PRS methods in two major diseases: breast cancer and 
diabetes. This study suggests that PRS methods can benefit from incorporating non-linear models, 
rare variants, and regulatory information, highlighting the potential for significant advancements in 
disease risk modeling and enhancing the understanding of precision medicine. 

Significance Statement 

Epi-PRS improves polygenic risk scoring by integrating genomic large language models (LLMs) to 
impute epigenomic signals as intermediaries between genotype and phenotype. This approach 
enables a more comprehensive assessment of personal variant impacts by incorporating non-linear 
models, rare variants, and regulatory mechanisms. By leveraging the power of genomic LLM 
trained on massive amount of reference epigenomics data, Epi-PRS has demonstrated superior 
performance over existing PRS methods in predicting genetic risk for breast cancer and diabetes 
in UK Biobank data. These results highlight the potential of Epi-PRS to improve disease risk 
modeling and advance the field of precision medicine. 
 
Main Text 
 
Introduction 
 
Polygenic risk score (PRS) has become pivotal in genetics for assessing an individual's 
susceptibility to complex diseases (1-4). In personalized medicine, PRS enables stratification of 
individuals based on their genetic risk, facilitating targeted interventions and optimizing clinical 
outcomes (5, 6). This predictive capability is crucial for early disease detection and prevention, 
potentially reducing healthcare costs and improving personalized health care (7, 8). Furthermore, 
PRS elucidates the genetic architecture of complex traits, providing insights into the relevant 
biological pathways involved in disease etiology (9, 10), which may potentially guide the 
development of new therapeutic strategies and enhance our ability to identify potential drug targets 
(11, 12).  
Detailed knowledge of how diversity in the human genome sequence affects phenotypic diversity 
relies on a comprehensive characterization of both sequences and phenotypic variations (13). 
Whole genome sequencing (WGS) has advanced this field by enabling the detection of numerous 
rare and even de novo non-coding variants (14). WGS is more comprehensive than genotyping 
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arrays and whole exome sequencing (WES) as it allows for the detection of a broader range of 
variant types and provides more uniform coverage of the entire genome, including regulatory 
regions (15). Recently, very large scale WGS data with associated clinical phenotypes are being 
made available for research. These include WGS data for about 500,000 participants from the UK 
Biobank16 and 150,000 participants from the US Million Veterans Program (16, 17). Clearly, there 
is an urgent need for PRS methods capable of utilizing the full information in WGS data. 
Current methods for PRS prediction, such as LDpred2 (18, 19) and PRS-CS (20), have been 
instrumental in advancing our understanding of genetic risk and have provided invaluable insights 
into disease susceptibility. These methods were designed with the best available data at the time 
of their development, typically from SNP arrays that primarily capture common variants (1). As 
such, they have been highly effective within those contexts. However, with the advent of WGS and 
larger datasets, the landscape has evolved, revealing new opportunities for refinement. Firstly, 
many PRS methods rely on linear models, which were well-suited to the data of earlier studies, 
providing computational efficiency and ease of interpretation. However, linear models assume 
additive effects of genetic variants and may not fully capture the complex interactions between 
variants, even as the larger datasets offer rich opportunities to explore these interactions (21, 22). 
Thus, there is a need to develop non-linear models to account for non-additive effects in larger 
datasets (23). Secondly, given their focus on common variants, traditional PRS methods were not 
designed to incorporate rare and de novo variants. These rare variants, though less frequent, can 
have substantial impacts on disease risk (24), and incorporating them could enhance the predictive 
power of PRS (25, 26). Finally, the role of regulatory mechanisms in gene expression and disease 
manifestation has become increasingly clear (27-30). For example, genetic variants can influence 
disease risk not only through their direct effects on protein function but also by altering the activities 
of regulatory elements such as enhancers, promoters, and transcription factor binding sites (31-
33). Current PRS methods either ignore this regulatory information (19, 20) or incorporate as linear 
model priors and parameters (34, 35). As our understanding of regulatory mechanisms expands, 
there are exciting opportunities to improve PRS models by integrating this critical layer of biological 
information (34, 36, 37). 
To investigate the factors limiting the accuracy of current PRS methods, we conducted 
comprehensive simulation studies. First, we examined the limits imposed by linear models. Our 
simulations revealed that when diseases are influenced by complex interactions between genetic 
variants, non-linear models can significantly outperform traditional linear models by capturing these 
intricate interactions and improving predictive performance. Second, we explored the role of rare 
variants. The simulation showed that current PRS methods are not effective in using the information 
from rare variants. Therefore, they performed poorly in predicting genetic risk for diseases where 
rare variants play a critical role.  
To address these challenges, we developed Epi-PRS, a non-linear method for polygenic prediction 
capable of using information from both common and rare variants. Our approach is to use the 
phased personal sequences to represent all variants in large genome regions, regardless of 
whether the variants are common, rare or de novo. Specifically, for every individual in our study 
cohort, we use a genomic large language model (LLM) to transform the phased DNA sequences 
into a set of context-specific and region-specific epigenomic features. Then, we use these personal 
epigenomic features as explanatory variables to learn a nonlinear polygenic risk prediction model. 
This approach is motivated by the important role of regulatory mechanisms in disease etiology (27-
30). For example, genetic variants can influence disease risk by altering the activities of regulatory 
elements such as enhancers, promoters, and transcription factor binding sites (31-33). With the 
advent of genomic LLMs that are learned from a massive amount of epigenomic data sets across 
diverse cellular contexts, we can now predict many types of epigenomic signals across a genomic 
region based on the DNA sequence of that region. By leveraging these LLMs, our approach offers 
a principled way to incorporate the effects of all variants via their impact on predicted epigenomic 
features. Moreover, the epigenomic features are biologically more meaningful as explanatory 
variables than the genotypes themselves. Thus disease risk models based on predicted 
epigenomic features may offer deeper insight on the molecular basis of diseases. Our simulation 
studies demonstrated that this approach (Epi-PRS) significantly outperforms traditional PRS 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 6, 2024. ; https://doi.org/10.1101/2024.10.04.24314860doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.04.24314860
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

4 

 

methods. Importantly, when applied to UK Biobank data on breast cancer and type 2 diabetes, Epi-
PRS showed clear and substantial improvements over state-of-the-art PRS methods, highlighting 
its potential for enhancing disease risk prediction through the integration of advanced 
computational techniques and comprehensive genetic insights. 
In summary, this study not only introduces a method for enhancing polygenic risk prediction but 
also provides new insights into the factors affecting the performance of PRS methods. The 
simulation results suggest that existing PRS methods can be further strengthened by integrating 
non-linear models, rare variants, and regulatory information, paving the way to significant 
advancements in disease risk modeling. Our findings provide useful perspectives on how to use 
WGS data to overcome the limitations of current PRS methods. It is hoped that our results can 
enable more precise genetic risk assessments and deeper understanding of the regulatory 
mechanisms underlying complex diseases.  
 
Results 
 
Overview of the Epi-PRS model 
The Epi-PRS workflow introduces a comprehensive approach to disease risk prediction by 
integrating personal genomic and epigenomic data in novel ways. As shown in Figure 1, Epi-PRS 
models how personal genotypes influence phenotypes through a diverse array of genomic and 
epigenomic profiles, imputed by a genomic large language model (LLM) trained on reference data 
from a diverse range of cellular contexts. A distinguishing feature of Epi-PRS is its ability to handle 
diploid sequences, allowing for a more comprehensive assessment of variant interactions in 
personal DNA sequences, which enhances the accuracy of disease risk predictions. The Epi-PRS 
workflow comprises three major steps: personal genome construction, epigenomic feature 
extraction, and disease risk prediction. Detailed descriptions of the methods are provided in the 
Methods section. 
Epi-PRS offers several unique aspects that extend beyond traditional PRS prediction approaches: 
1) Integration of molecular phenotypes: While conventional methods focus primarily on genotype 
data, Epi-PRS incorporates imputed molecular phenotypes, providing additional context for how 
genetic variants may influence disease risk through regulatory mechanisms. 2) Diploid sequence 
modeling: Epi-PRS captures the combinatorial effects of multiple variants by processing diploid 
sequences, which is important for understanding the complexity of polygenic traits. 3) Inclusion of 
rare and de novo variants: Epi-PRS is able to include rare and de novo variants, expanding the 
scope of genetic information considered in disease risk prediction. These advancements build on 
the strong foundation laid by existing PRS methods and aim to provide additional perspectives for 
improving disease risk prediction. 
PRS prediction on simulation data 
A series of simulation experiments were carefully designed and conducted to evaluate the 
performance of PRS methods. The evaluation focused on three key comparisons: 1) the efficacy 
of linear models versus non-linear models; 2) incorporating regulatory information or not; and 3) 
considering the impact of rare variants or not. These comprehensive comparisons aimed to provide 
a deeper understanding of the factors influencing PRS accuracy and effectiveness. A regulatory-
based phenotype simulation tool was developed to ensure that the simulated phenotypes are 
affected by different components, including 1) epigenetic effects, 2) SNP direct effects, 3) 
environmental effects and 4) SNP-interaction effects as described in the Methods section. To 
evaluate the power gained from inclusion of rare variants, the simulation tool can select the 
proportion of variants to be rare. Phenotypes were simulated based on different linkage 
disequilibrium (LD) blocks, incorporating both common and rare variants. Various genetic 
architectures were considered, with different proportions of rare and common variants and different 
proportions of epigenetic and SNP direct effects to simulate scenarios where regulatory elements 
influence gene expression and subsequently disease risk. Following other PRS methods (20), 
simulation studies used real genetic data from the UK Biobank European ancestry samples 
(N = 20,000) in 2 LD blocks: chr6:192074807-21684054 and chr6:31571218-32682664. 
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Phenotypes were generated as a linear combination of the above four types of effects with added 
noise as explained in Methods section.  
The simulations were used to evaluate Epi-PRS as well as several traditional PRS methods, 
including: 1) LDpred2: A widely used Bayesian approach for PRS estimation. 2) PRS-CS: Another 
linear-model based method that utilizes continuous shrinkage priors to account for LD and effect 
size heterogeneity. 3) Genotype - GBRT: To evaluate if non-linear models can improve prediction, 
we also implemented a Gradient Boosting Regression Trees (GBRT) method to predict disease 
risk from all variants in the genotype. 4) Genotype - PCA - GBRT: Performing Principal Component 
Analysis (PCA) first for all the variants in genotype, then using the PCA output as input for GBRT. 
The PRS-CS and LDpred2 are linear models that rely on GWAS summary statistics, while 
Genotype-GBRT and Genotype-PCA-GBRT are non-linear models based on all genetic markers 
with/without PCA dimension reduction. Since the causal SNPs are located in specific LD blocks, 
LD block-specific prediction was performed and two LD blocks were selected for testing and 
comparison of the methods: chr6:192074807-21684054 and chr6:31571218-32682664. The 
predictive accuracy of the models was assessed using the Area Under the Receiver Operating 
Characteristic Curve (AUC). 
1) The comparison between linear models and non-linear models. To quantify the potential 
increase in power from the inclusion of non-linear models, a series of simulation experiments 
varying the number of individuals in the training dataset were conducted. The training dataset sizes 
were incremented from 1,000 to 2,000, 4,000, 8,000, and 16,000, while the performance was 
consistently evaluated using a fixed test dataset of 4,000 individuals. In this study, Epi-PRS, 
Genotype-GBRT, and Genotype-PCA-GBRT were categorized as non-linear models, whereas 
PRS-CS and LDPred2 were categorized as linear models. In the simulations, the phenotypes will 
be affected by the SNPs direct effect and SNP-interaction effects while the proportion of epigenetic 
effects and environmental effects are set to zero. The proportion of rare variants is set to zero, 
which are the standard simulation setting in previous PRS methods. 
Compared with the traditional linear model, we observed a notable gain in power using the non-
linear framework, with comparable improvements across larger sample sizes (Figure 2 and 
Supplementary Table 1, 2). However, when the training dataset is small, non-linear models tend to 
overfit, resulting in lower performance compared to linear models. This is likely due to the 
complexity and flexibility of non-linear models, which can capture intricate SNP-interaction effects 
but may overfit when there are insufficient training instances. As the number of training instances 
increased, the performance of both linear and non-linear models improved. However, the 
improvement for non-linear models was more significant compared to linear models. In particular, 
when the training dataset exceeded 2,000 instances, non-linear models began to outperform linear 
models significantly. These results indicate that for larger cohorts, non-linear models are more 
effective and can achieve superior predictive performance. Conversely, in scenarios with limited 
training data, linear models exhibit better generalization and are less prone to overfitting. Therefore, 
the choice between linear and non-linear models should be guided by the size of the available 
training dataset. For extensive datasets, non-linear models are preferable, whereas for smaller 
datasets, linear models offer better generalizability and reliability. 
2) The comparison between whether regulatory information is considered or not. To quantify 
the potential power gain from considering the effect of regulatory mechanisms, a series of 
simulation experiments with various proportion of epigenetic effects and fixed proportion of SNP 
interaction effects were conducted. The proportions of epigenetic effects were varied from 0%, 
25%, 50%, 75%, and 100% while the proportion of environmental effects and rare variants were 
set to 0%. Epi-PRS effectively captured the influence of regulatory mechanisms on gene 
expression and demonstrated better predictive accuracy by achieving a significantly higher AUC 
compared to LDpred2 and PRS-CS across all simulation scenarios for the two LD blocks (Figure 3 
and Supplementary Table 3, 4). When the epigenetic effect was set to 0% and the SNP direct effect 
was set to 100%, Epi-PRS, Genotype-GBRT, and Genotype-PCA-GBRT achieve similar AUCs and 
clearly outperformed traditional PRS methods. On the other hand, there was a clear improvement 
in the performance of Epi-PRS as the proportion of the epigenetic effect increased, while such 
improvement was not seen in all the other methods. This suggests that the biggest power gain 
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within the case of the SNPs affecting phenotypes is from epigenetic effect and Epi-PRS can 
effectively extracting useful regulatory features. When the epigenetic effects were simulated based 
on regulatory elements in blood cell types, Epi-PRS using blood features (i.e., using only the 
Enformer predictions for epigenomic data tracks in blood cell types in the training data) further 
improved the performance compared to Epi-PRS using all features, implying that reducing feature 
dimension with tissue-specific features is crucial when the disease-related cell types or tissues are 
known. In contrast, using PCA to reduce the dimension of genotype did not significantly impact the 
final prediction. These simulation results show that when a disease is affected by epigenetic 
regulation, Epi-PRS achieves much better performance than existing PRS methods. Furthermore, 
Epi-PRS power gains are expected to be more dramatic when a better understanding of the disease 
mechanisms is known and related epigenomic features can be selected. 
3) Comparison results under increasing level of contribution by rare variants. Next, the PRS 
prediction performance was investigated by varying the proportion of rare variants while setting the 
proportion of epigenetic effects to zero. Epi-PRS again demonstrated better performance by 
achieving a 12% higher AUC compared to traditional PRS methods across all simulation scenarios 
(Figure 4 and Supplementary Table 5, 6). In this setting, the inter-SNP interaction effect was added 
to simulate the phenotype, a non-linear effect that cannot be captured by linear models. When the 
proportion of rare variants was set to 0%, Epi-PRS outperformed traditional methods by capturing 
non-linear effects, leading to an increase in AUC by approximately 11-12%. However, since the 
simulation was not related to regulatory information, Epi-PRS performed very similarly to Genotype-
GBRT and Genotype-PCA-GBRT. As the proportion of rare variants increased, the performance of 
Epi-PRS improved, while traditional PRS methods (PRS-CS and LDpred2) decreased, and the 
Genotype-GBRT and Genotype-PCA-GBRT maintained a similar performance level. In scenarios 
with 75% rare variants, Epi-PRS showed a remarkable improvement in predictive accuracy, with 
AUC values increased by up to 20% compared to traditional methods, highlighting its ability to 
leverage rare variant information effectively. As the proportion of rare variants increased to 100%, 
the traditional methods failed to predict disease risk, while Epi-PRS consistently performed well. 
In above evaluations, performance was assessed by varying one condition at a time. To further 
compare the three nonlinear methods, Epi-PRS, Genotype-GBRT, and Genotype-PCA-GBRT were 
evaluated under combined conditions (50% rare variants and 50% epigenetic effect). The results 
showed that Epi-PRS achieved an average area under the receiver operating characteristic curve 
(auROC) of 0.7492, outperforming Genotype-GBRT and Genotype-PCA-GBRT, which had 
auROCs of 0.6993 and 0.7015, respectively. These comprehensive simulation studies highlight the 
potential of advanced PRS methods like GBRT and Epi-PRS to significantly advance polygenic risk 
prediction.  In particular, Epi-PRS is anticipated to excel in situations where a significant portion of 
heritability is primarily driven by rare variants through regulatory effects. 
PRS prediction on the UK Biobank  
The Epi-PRS method was applied to the prediction of breast cancer and type 2 diabetes (T2D) 
using data from the UK Biobank. The performance of a predictor was measured by its relative 
proportional gain in auROC over random guessing, defined as λ=(A-0.5)/0.5, where A is the auROC 
of the predictor in the test data. This performance index varies between 0 (for a random guess 
predictor) and 1 (for a perfect predictor). 
1) Breast Cancer. Data were collected from 10,547 breast cancer female subjects (cases) and 
10,547 female subjects (controls). Five LD blocks were selected based on a significance threshold 
applied to variants with a stringent p-value. Since WGS data is not yet available for all subjects, 
phased SNP genotype data were used to construct the input genomic sequences for epigenomic 
feature prediction.  
Initially, the phenotype prediction performance was tested using a single LD block. The dataset 
was randomly split into an 80% training set and a 20% testing set. The performance of Epi-PRS 
was compared to three state-of-the-art baseline methods: 1) Genotype-GBRT, 2) LDpred2 (a 
Bayesian logistic regression method based on SNP genotypes), and 3) PRS-CS (another Bayesian 
logistic regression method based on SNP genotypes that also utilized external data, such as 
summary statistics from external GWAS studies using approximately 200,000 samples). As shown 
in Table 1, Epi-PRS achieved the best performance in each of the five LD blocks, with an auROC 
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ranging from 0.5379 to 0.5917. The improvement was particularly substantial in the fourth LD block. 
Next, the information from the five LD blocks was combined by concatenating their epigenomic 
features. The resulting method, “Epi-PRS-concat,” was compared to four baseline methods: 1) 
LDpred2-WG (applied to the whole genome), 2) PRS-CS-WG (applied to the whole genome), 3) 
PRS-CS-WG-IN (based on SNPs from the whole genome without using external GWAS summary 
statistics), and 4) a new combined model. Epi-PRS based on SNPs in the five LD blocks achieved 
a λ of 0.3994, while the other baseline methods using SNPs from the whole genome achieved λ 
values between 0.093 and 0.2798 (Figure 5A). The gap between PRS-CS-WG and PRS-CS-WG-
IN suggests that the relatively strong performance of PRS-CS-WG is probably due to the extra 
information provided by external GWAS data. 
2) T2D. Data were collected from 20,000 case subjects and an equal number of randomly selected 
control subjects without T2D. Eleven LD blocks were chosen based on a stringent p-value cutoff. 
Epi-PRS with a single LD block (chr16:53382572-55903774) achieved nearly the best performance 
compared to four baseline methods that utilized information from all variants across the genome 
(Table 2). Combining information from multiple LD blocks further improved the prediction 
performance of Epi-PRS, achieving a λ of 0.515, outperforming the other four baseline methods 
with λ values ranging from 0.077 to 0.3236 (Figure 5B). This non-linear approach to risk prediction 
based on epigenomic features significantly improved performance over the baseline methods. 
These results demonstrate that incorporating haploid sequence context around each variant and 
considering the effect of personal variants in different cellular contexts is a powerful approach to 
improving PRS prediction performance. Epi-PRS showed superior performance for both breast 
cancer and T2D, where regulatory mechanisms play a significant role. The incorporation of 
epigenomic features from diverse cellular contexts provide a comprehensive assessment of genetic 
risk, outperforming traditional PRS methods. This highlights the potential of Epi-PRS to advance 
polygenic prediction and deepen our understanding of the genetic basis of complex diseases. 
 
 
Discussion  
With the increasing availability of WGS data, significant challenges and opportunities arise in the 
field of genetics for improving disease risk prediction. To address these challenges, this study 
introduces Epi-PRS, an approach that explores several potential improvements to existing PRS 
methods. These improvements include 1) the adoption of non-linear models: non-linear models 
have the potential to capture complex interactions between genetic variants that linear models may 
not detect. By leveraging these non-linear models, the accuracy and predictive power of PRS can 
potentially be enhanced. Simulation studies in this research demonstrated that non-linear models, 
such as Epi-PRS, outperform linear models when the training dataset is sufficiently large. This 
finding suggests that non-linear models are more effective in capturing intricate genetic interactions 
and can provide superior predictive performance for large cohorts; 2) the consideration of rare 
variants: rare genetic variants, despite their low frequency, can have substantial impacts on disease 
risk. Incorporating these variants into PRS calculations can provide a more comprehensive and 
accurate assessment of genetic risk. Epi-PRS achieves this by doing risk modeling based 
epigenomic features predicted by a genomic LLM that can integrate information from all the 
variants, including rare or de novo variants, on the two sequence alleles of a genetic loci. The 
simulation studies indicated that Epi-PRS may significantly benefit from including rare variants, 
particularly in scenarios where rare variants play a critical role in disease etiology. In contrast, 
genotype-based PRS methods, even those using advanced nonlinear predictions, may miss the 
contributions of rare variants, leading to suboptimal predictions and 3) the integration of regulatory 
information: regulatory elements play a critical role in gene expression and disease manifestation. 
By integrating regulatory information into PRS models, deeper insights into the genetic architecture 
of diseases can be gained, potentially improving the precision of risk predictions. The simulation 
studies confirmed the importance of considering regulatory mechanisms. This result underscores 
the value of integrating epigenomic features to enhance the predictive accuracy of PRS models. 
The comprehensive simulation studies conducted in this research systematically evaluated the 
impact of non-linear models, rare variants, and regulatory information on PRS prediction. These 
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evaluations provide valuable insights into how each aspect contributes to the performance of PRS 
methods. By addressing the limitations of existing PRS methodologies, the findings suggest that 
significant advancements in disease risk modeling can be achieved, ultimately enhancing the 
understanding of precision medicine. To test Epi-PRS in real data, we apply it to breast cancer and 
type 2 diabetes data from UK Biobank. The results, based on personal genome sequences imputed 
from genotyping array data, showed that Epi-PRS outperformed existing PRS methods, confirming 
the potential for improved disease risk prediction through the integration of non-linear models, rare 
variants, and regulatory information. This study indicates that incorporating these elements into 
PRS models can lead to more accurate and comprehensive assessments of genetic risk. Although 
we were forced to imputed phased genomic sequences because WGS data were not available at 
the time of this research, the improvement by Epi-PRS over the competing methods should be real. 
In fact, the improvement would have been even larger if Epi-PRS were based on the real WGS 
data for the subjects. 
While the results of this study are promising, further validation across different diseases is essential 
to ensure the broad applicability and effectiveness of Epi-PRS. It is possible that the best 
performance may result from using genotype-only, epigenomic features-only, or a combination of 
both, depending on the disease of interest. Future research should focus on validating the 
usefulness of predicted epigenomic features for polygenic prediction in various diseases. 
Additionally, the integration of other LLMs in place of Enformer could offer further improvements. 
Future models might provide faster inference, enabling more efficient data processing (38, 39). For 
example, QUICK can be adopted as they use a group of novel optimized CUDA kernels for the 
efficient inference of quantized LLMs (40). Another improvement is the high-resolution predictions 
of epigenomic and genomic profile. By accurately predicting the impact of genetic variants on 
transcription factor binding at a single base-pair resolution, BPNet enhances the precision of 
transcription factor binding prediction (41). This model can identify how individual variants alter the 
binding affinity of transcription factors, offering detailed insights into gene regulation mechanisms. 
Furthermore, developing models that incorporate cellular context specificity will allow for more 
accurate modeling of disease-specific regulatory mechanisms. For instance, models like EpiGePT 
have been designed to predict various types of epigenomic signals given a specific cellular context 
(42). By integrating such models, we can better understand how genetic variants influence disease 
risk in a context-dependent manner. This is crucial for diseases that manifest differently across 
various cell types and tissues, such as cancers and autoimmune disorders.  
In summary, this research underscores the importance of integrating advanced computational 
models, rare variant analysis, and regulatory information to improve PRS methods. These 
innovations have the potential to elevate the precision of genetic risk predictions and facilitate a 
deeper understanding of the regulatory mechanisms underlying complex diseases. As a result, the 
goal of personalized medicine, where treatments and preventive strategies are tailored to the 
unique genetic makeup of each individual, becomes more attainable.  
. 
 
 
Materials and Methods 
 
Workflow of the Epi-PRS  
 
This workflow is comprised of three major steps: 1) personal genome construction, 2) epigenomic 
feature extraction, and 3) risk prediction, which are detailed as follows. 
Personal Genome Construction. The first step in the Epi-PRS workflow involves constructing the 
maternal and paternal genomes from personal WGS data, which serve as the input for Epi-PRS. 
This process is detailed in the following steps: A) Variant Filtering: The current version of Epi-PRS 
focuses exclusively on SNVs. We start by processing the variant call format (VCF) file containing 
the genetic profiles of all individuals. Using vcftools (43), we filter out all insertions and deletions 
(INDELs), retaining only the SNPs. B) Genotype Phasing: Next, we phase the genotypes using the 
reference-free Beagle (44) software. Phasing is essential for distinguishing between the maternal 
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and paternal alleles, which is critical for subsequent steps. C) Personal Genome Construction: 
Finally, we employ the vcf2diploid (45) tool to reconstruct the maternal and paternal personal 
genomes for each individual. This step produces two separate haploid genome sequences for each 
person, representing the maternal and paternal contributions. 
Epigenomic Feature Extraction. In the second step, we extract epigenomic features using a 
pretrained genomic LLM, such as Enformer. This process involves several sub-steps: A) Feature 
Extraction: The genomic LLM (e.g., Enformer) is applied to each haploid genome to predict 
genomic and epigenomic features, including gene expression, chromatin accessibility, ChIP-seq 
signals, and histone modification signals across a diverse set of cell lines and tissues. Taking 
Enformer as the feature extractor, for each input DNA sequence of 196,608 bp, the Enformer model 
generates an 𝑑 = 5,313-dimensional feature vector for each of the central non-overlapping 𝑘 = 896 
bins, each with a bin size of 128 bp. B) Sliding Window Approach: Given that a single linkage 
disequilibrium (LD) block is typically larger than the input length for Enformer, we utilize a sliding 
window approach within each LD block to capture features from multiple input regions. If an LD 
block contains 𝑙 input regions, the extracted features for this block will have dimensions of (𝑙, 𝑘, 𝑑). 
We denote these features as {𝑥!", 𝑥!

#, 𝑖 = 1,…896}, where the superscript indicates the parent of 
origin (𝑚  for maternal and 𝑝  for paternal). C) Dimension Reduction: To manage the high 
dimensionality of the extracted features, we apply local Principal Component Analysis (PCA) to 
each bin across individuals. This dimension reduction step reduces the features to a more 
manageable size, denoted as 𝑑$ where 𝑑$ ≪ 𝑑. 
Risk Prediction. The final step involves building predictive models for disease risk based on the 
reduced-dimension features and the phenotypic data: A) Model Construction: For binary 
classification tasks, such as disease presence or absence, we construct a GBRT classification 
model. For continuous traits, we use GBRT regression model. These models are trained on the 
individual features obtained from the feature extraction step. B) Training and Testing: We randomly 
select 80% of both case and control subjects as the training set, leaving the remaining 20% as the 
testing set. The performance of the models is evaluated using prediction results on the testing set. 
C) Performance Evaluation: The predictive accuracy of the models is assessed using metrics such 
as the AUC for classification tasks and the coefficient of determination (R²) for regression tasks. 
These metrics provide insight into the effectiveness of Epi-PRS in predicting disease risk based on 
integrated genomic and epigenomic data. 
Genomic LLM 
Different from previous convolutional and recurrent neural network models, recent developments 
in LLMs typically rely on the transformer architecture, which was introduced by Vaswani et al. (46) 
as a revolutionized deep learning method, offering more efficient training and better handling of 
long-range dependencies in sequential data. The vanilla transformer model is divided into two main 
components: the encoder and the decoder, both of which share a similar basic architecture 
composed of a stack of identical blocks (47). Each block in the transformer model consists of two 
key sub-layers: 1) Multi-Head Attention Sub-Layer: This sub-layer allows the model to attend to 
different positions of the input sequence simultaneously, capturing various aspects of the data. It 
computes attention scores in multiple parallel heads, providing diverse perspectives on the input 
data. These scores are then aggregated to form a comprehensive understanding of the sequence. 
2) Feed-Forward Sub-Layer: This sub-layer consists of fully connected feed-forward networks 
applied independently to each position in the sequence. It includes a non-linear activation function, 
typically ReLU, which helps in capturing complex patterns and interactions within the data. Both 
sub-layers are followed by layer normalization, which standardizes the inputs to each layer, 
improving the stability and performance of the model. Additionally, a residual connection (48) 
around every sub-layer is applied in each block to help mitigate the vanishing gradient problem. 
These residual connections add the input of the sub-layer to its output, ensuring that the gradients 
can flow through the network more effectively during backpropagation. 
Our previous review (49) describes each module and layer that constitutes the transformer model 
in detail, exploring their mechanisms and potential applications in bioinformatics. In this paper, we 
adopt Enformer (50), one of the most advanced genomic LLM models, as our default choice of 
LLM. Enformer innovatively integrates the transformer encoder structure to predict 5,313 
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epigenomic signals in humans, significantly enhancing its capabilities over previous CNN-based 
models. Enformer brings several improvements that make it particularly well-suited for genomic 
data: 1) Extended Receptive Field: The transformer encoder structure in Enformer greatly 
increases the receptive field of the network to 196,608 bp. This extensive receptive field allows the 
model to capture long-range interactions and dependencies within the genomic sequence, which 
are crucial for understanding complex regulatory mechanisms and gene expression patterns. 2) 
Improved Predictive Performance: By leveraging the transformer architecture, Enformer achieves 
superior predictive performance in estimating a wide array of epigenomic signals, including 
chromatin accessibility, transcription factor binding, and histone modifications. These 
improvements make Enformer highly effective in modeling the intricate relationships between 
genetic variants and molecular phenotypes. 
Overall, the adoption of Enformer in our study exemplifies the significant advancements in genomic 
LLMs, enabling more accurate and comprehensive predictions of epigenomic features from 
genomic sequences. This innovation is a key component of the Epi-PRS framework, which 
leverages these detailed molecular phenotype predictions to enhance disease risk prediction and 
improve our understanding of the genetic architecture of complex traits.  
Dimension reduction of genomic LLM features 
For each 196,608 bp input region, the Enformer-based method generates a substantial number of 
predicted features—approximately 9.5 million (896 bins × 5,313 features per bin × 2 haploid 
genomes). This high dimensionality presents a significant challenge for risk modeling, as traditional 
statistical methods struggle to handle such a vast number of predictor variables effectively. To 
address this issue, we implement local PCA strategies for dimension reduction, which is 
demonstrated in the four steps below. 

1. Feature Vector Formation: For the 𝑖%&  bin, we construct a set of feature vectors 
{𝑥!"(𝑗), 𝑥!

#(𝑗), 𝑗 = 1,… ,𝑁} where 𝑗 indexes all cases or controls in the study, and 𝑥!"(𝑗) and 
𝑥!
#(𝑗)  represent the maternal and paternal feature vectors, respectively. Each feature 

vector contains 5,313 dimensions, corresponding to the genomic and epigenomic signals 
predicted by Enformer. 

2. Principal Component Analysis (PCA): PCA is performed on this set of feature vectors to 
reduce the dimensionality from 5,313 to a much smaller value. This reduction is crucial for 
making the subsequent risk modeling computationally feasible and statistically robust. For 
example, we reduce the dimension to 5 principal components, which capture the majority 
of the variance in the original high-dimensional feature vectors. 

3. Reduced-Dimension Feature Vectors: After PCA, we obtain a sequence of reduced-
dimension feature vectors {𝑟!", 𝑟!

#, 𝑖 = 1,…896}  for each individual in the study. These 
vectors characterize the epigenomic states of the input region while retaining the most 
informative aspects of the original data. Here, 𝑟!" and 𝑟!

#are the reduced-dimension feature 
vectors for the maternal and paternal sequences, respectively, for the 𝑖%&bin. 

4. Combining Features Across Bins: The reduced-dimension feature vectors from all 896 
bins are then concatenated to form a comprehensive feature set for each individual. This 
results in a significantly reduced yet highly informative feature matrix, which captures the 
essential epigenomic signals across the entire 196,608 bp input region. 

By adopting local PCA for dimension reduction, we can manage the high dimensionality of the 
Enformer-predicted features, ensuring that our risk models are both computationally efficient and 
statistically robust. This approach allows us to harness the rich epigenomic information provided 
by Enformer, ultimately leading to more accurate and comprehensive disease risk predictions. 
Selection of informative LD block and application in UKBB 
In principle, we could include the reduced-dimension features from each approximately 200 kb 
region tiling the genome as predictor variables in the risk model. However, given that there are 
about 15,000 such regions across the genome, each contributing 4,480 features (896 bins × 5 
principal components), the number of predictor variables could still be prohibitively large. To 
address this issue, we propose a further dimension reduction strategy by focusing on regions pre-
selected based on the enrichment of GWAS signals for the phenotype of interest. We regard the 
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presence of SNPs with highly significant 𝑝-values for association with the disease as an indication 
that the corresponding LD block contains genetic variations useful for risk modeling. 
We can summarize the main steps of our method as follows: 

1. Joint Variant Calling and Phasing: 
a) Perform joint variant calling for the individuals in the study based on their WGS data. 
b) Phase the detected SNVs to obtain haploid genome sequences for each individual, 

distinguishing maternal and paternal genomes. 
2. GWAS-Based SNP Selection: 

a) Utilize prior GWAS studies or perform GWAS analysis using the current dataset to 
identify a set of SNPs associated with the disease of interest. These SNPs should 
have p-values smaller than a predefined threshold (denoted as 𝑝'). 

b) Select all LD blocks that contain SNPs with p-values less than 𝑝'. This ensures that 
we focus on genomic regions that are most likely to contribute to the disease risk. 

3. Tiling LD Blocks and Feature Extraction: 
a) For each selected LD block, tile the block with overlapping 196,608 bp input regions, 

focusing on the central 114,668 bp region to ensure comprehensive coverage. 
b) Apply the Enformer model to the maternal and paternal input sequences for these 

regions to obtain the epigenomic feature vectors { {𝑥!", 𝑥!
#, 𝑖 = 1,…𝑀} , where 𝑀 

indicates the total number of 128 bp bins required to cover the LD block. 
4. Dimension Reduction of Epigenomic Features: 

a) Perform PCA on the feature vectors 𝑥!", 𝑥!
# for each bin to reduce the dimensionality 

from 5,313 to a smaller value (e.g., 5 principal components). 
b) Concatenate the reduced-dimension feature vectors 𝑟!", 𝑟!

#  across all bins within 
each LD block to form a comprehensive feature vector for the entire LD block. 

5. Risk Prediction Modeling: 
a) Construct a feature vector 𝑥( for each selected LD block. 
b) Concatenate the PCA-projected feature vectors 𝑥:( from all selected LD blocks to form 

a global feature vector 𝑥:)*+),%. 
c) Apply GBRT or other binary prediction methods to learn a risk predictor based on 

𝑥:)*+),%. Alternatively, fit LD block-specific risk prediction models based on 𝑥:( for each 
LD block and then learn an optimally weighted combination of these models as the 
final risk prediction model. 

6. Application to UK Biobank Data: 
a) Obtain GWAS summary statistics data from the UKBB, excluding the testing 

individuals for each disease, to identify the most significant variants for breast cancer 
and diabetes. 

b) Apply a stringent p-value cutoff of 5𝑒 − 17 for breast cancer, identifying 89 significant 
variants, and a cutoff of 5𝑒 − 20 for diabetes, identifying 3,015 significant variants. 

c) Intersect these significant variants with 1,702 LD blocks and identify 5 LD blocks for 
breast cancer and 11 LD blocks for diabetes that contain significant variants. 

By integrating GWAS-enriched regions and performing local PCA for dimension reduction, our 
approach effectively narrows down the predictor variables to the most relevant genomic features. 
This enables more efficient and accurate risk modeling, leveraging both genotypic and epigenomic 
information to provide a comprehensive understanding of disease susceptibility. 
Phenotype simulation 
To systematically evaluate the performance, we aim to simulate phenotypes using real genotype 
data from the UK BioBank. Since Epi-PRS integrates regulatory information, which is cell-type 
specific, we develop a regulatory-based phenotype simulation tool that can sample both rare and 
common variants. This allows us to control the fraction of rare variants contributing to the disease 
phenotype, providing a comprehensive evaluation of Epi-PRS across different genetic 
architectures. 
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For 𝑛 individuals, let 𝑦! 	denote a binary trait (1 indicating a case and 0 indicating a control) following 
the Bernoulli distribution with mean 𝜇! , 𝑖 = 1,… , 𝑛. We consider the following generalized linear 
model: 

𝑔(𝜇!) = 𝛼' + 𝑦!
-#! + 𝑦!.!/-)% + 𝑦!-+0 + 𝑦!!+%-/ , 

where 𝑔 is the logit function, 𝑦!
-#! , 𝑦!.!/-)%, 𝑦!-+0	and 𝑦!!+%-/ 	denote the epigenetic effect, SNP direct 

effect, environmental effect and SNP interaction effect, respectively. 𝛼' is determined such that the 
expected number of cases equals 𝑛𝜆 where 𝜆 is the pre-specified sample prevalence rate and is 
set to 0.5. 
Epigenetic Effect: We assume 𝑦!

-#! = ∑ ∑ ∑ 𝑋!1𝐵%1𝑒2%11∈4!%∈52∈6 . Here, 𝐺  is the set of causal 
genes and we randomly selected one causal gene per LD block. 𝑇  is the set of expressed 
transcription factors (TFs) with median reads > 10 in blood tissue from GTEx. 𝑆2 is the set of causal 
variants in neighboring regulatory elements (REs) for gene 𝑔 (distance to the gene body < 1MB). 
REs are defined as candidate cis-regulatory elements (cCREs) in blood tissue from ENCODE, and 
we consider 100 causal variants per causal gene throughout the simulations. 𝑋!1  denotes the 
normalized genotype for variant 𝑘 in individual 𝑖 . 𝐵%1  is a binary variable representing whether 
variant 𝑘 overlaps with binding site of TF 𝑡 where 1 indicates overlap and 0 indicates no overlap. 
TF binding sites are derived using the motif scanning tool HOMER to scan along the reference 
genome and match the motifs of each TF. We further assume the random effect term 𝑒2%1~𝑁(0, 𝜎%7), 
where 𝜎%7  follows an inverse gamma distribution 𝐼𝐺(3, 	1) . The epigenetic effect 𝑦!

-#!  is then 
normalized to have mean 0 and variance ℎ-#!7  across 𝑛  individuals. Cases and controls are 
simulated by thresholding in these 𝑛 individuals. 
SNP Direct Effect: We assume 𝑦!.!/-)% = ∑ 𝑋!1𝛽11∉⋃ 4!!∈# , where 𝛽1~𝑁(0,1). The SNP direct effect 
is summed over SNPs that do not overlap any REs of causal genes. Here, we assume that the 
epigenetic effect is independent of the SNP direct effect, which is convenient for evaluation. The 
SNP direct effect is further normalized to have mean 0 and variance ℎ.!/-)%7  across 𝑛 individuals. 
Environment Effect: We assume 𝑦!-+0~	𝑁(0,1 − ℎ-#!7 − ℎ.!/-)%7 − ℎ!+%-/7 ). 
SNP Interactions Effect: We assume a fraction of the causal SNPs have multiplicative interaction 
effect (where one SNP increases or decreases the effect of the other). 
By combining these effects, we can simulate phenotypes that reflect the complex interplay among 
three components: 1) genetic variants, 2) regulatory elements, 3) environmental factors and 4) SNP 
interactions. Additionally, we can adjust the proportion of rare variants contributing to the disease 
by selectively sampling these variants during the simulation process. This flexible simulation 
approach allows us to comprehensively assess the robustness and accuracy of Epi-PRS in various 
genetic contexts, providing valuable insights into its performance across different scenarios. Note 
that the Epi-PRS method implicitly assumes a model in which genetic variants affect the phenotype 
through their effects on epigenomic features. Instead of simulating phenotype based on such a 
model, we opt to use the above random effect model in order to avoid biasing the comparison in 
favor of our method. For each setting considered, the simulation was repeated 20 times. 
. 
Data availability 
Raw data (genotype and phenotype) from the UKBB participants can be requested from the 
UKBB Access Management System (https://bbams.ndph.ox.ac.uk). 
 
Code availability 
Code is publicly available online at https://github.com/SUwonglab/Epi-PRS. 
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Figures and Tables 

 
Figure 1. A simplified diagram that shows the understanding of how A) personal genotypes affect 
B) personal phenotypes, which requires C) the modeling of the relationship between different 
layers of omics based on non-personal context-specific reference data using large-scale deep 
learning models. D) Assuming WGS and phenotype data are available from the cohort, the main 
steps of Epi-PRS. 1) Personal genome construction: maternal and paternal genome will be 
constructed from personal WGS as the input for Epi-PRS. 2) Epigenomic features extraction: 
genomic LLM (e.g., Enformer) will be applied to haploid genome to obtain the personal 
epigenomic features. 3) Risk prediction: build model for disease risk as a function of the 
epigenomic features. 
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Figure 2. AUC scores for different methods in two LD regions with varying numbers of training 
data. The violin plot in different color represents the AUC score distribution of a specific method 
based on the 20 independent simulations. It is seen that the performance of different methods 
increases when the size of training data also increases. No-linear methods (Epi-PRS, Genotype-
PCA-GBRT, and Genotype-GBRT) offers significant advantage over linear methods (LDPred2 
and PRS-CS) in large sample size settings. 
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Figure 3. AUC scores for different methods in two LD regions with varying percentages of 
epigenetic effects. The violin plot in different color represents the AUC score distribution of a 
specific method based on the 20 independent simulations. Epi-PRS offers significant 
improvement over other methods especially when the epigenetic effects are large. Reducing 
dimension of the imputed epigenomic features by only selecting the tissue-specific features leads 
to notable performance improvement when the disease-related cell types or tissues are known. 
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Figure 4. AUC scores for different methods in two LD regions with varying percentages of rare 
variants. The violin plot in different color represents the AUC score distribution of a specific 
method based on the 20 independent simulations. Performance of linear methods (LDPred2 and 
PRS-CS) significantly decrease as the percentage of rare variants increase. 
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Figure 5. ROC curves of different methods using A) breast cancer and B) type 2 diabetes data 
from UKBB. Epi-PRS-concat (combining information from multiple LD blocks) outperforms 
existing methods that utilize whole genome-wide information and external GWAS summary 
statistics data. 
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Table 1. The performance of Epi-PRS and baseline methods on polygenic prediction of breast 
cancer based on single LD block. The AUC of different methods using five different LD blocks on 
breast cancer. Epi-PRS based on only SNPs in the 5 LD blocks achieves a 𝜆 of 0.3994 while the 
other 4 baseline methods using SNPs in whole genome only achieve λ of 0.093-0.2798. 𝜆 =
(𝐴 − 0.5) 0.5⁄ , where 𝐴 is the auROC of the predictor in the test data. 

LD block PRS-CS LDPred2 Genotype-
GBRT 

Epi-PRS 

chr5:55417349-56621102 0.5306 0.5194 0.5239 0.5412 

chr10:123231465-123900545 0.5445 0.5479 0.5496 0.5554 

chr11:68005825-69516130 0.5157 0.5129 0.5168 0.5392 

chr16:52035823-5338257 0.5387 0.5341 0.5316 0.5917 

chr22:27834752-29651799 0.5049 0.5082 0.5204 0.5497 

 

  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 6, 2024. ; https://doi.org/10.1101/2024.10.04.24314860doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.04.24314860
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

21 

 

Table 2. The performance of Epi-PRS and baseline methods on polygenic prediction of T2D 
based on single LD block. The AUC of different methods using eleven different LD blocks. Epi-
PRS achieves a 𝜆 of 0.515 while other 4 baseline methods only achieve 𝜆 of 0.077-0.3236. 𝜆 =
(𝐴 − 0.5) 0.5⁄ , where 𝐴 is the auROC of the predictor in the test data. 

LD block PRS-CS LDPred2 Genotype-
GBRT 

Epi-PRS 

chr3:185068255-186890344  0.5416 0.5235 0.5333 0.5467 

chr4:5502388-6773043  0.5387 0.5239 0.5315 0.5548 

chr6:19207487-21684065  0.5247 0.5175 0.5386 0.5721 

chr6:31571218-32682664  0.5187 0.5129 0.5474 0.6083 

chr6:32682664-33236497  0.5257 0.5166 0.5447 0.5574 

chr8:116096495-119685457  0.5253 0.5012 0.5287 0.6072 

chr9:20463534-22206559  0.5327 0.5281 0.5354 0.5894 

chr10:93335047-95396368  0.505 0.5052 0.5218 0.5530 

chr10:112561493-115328432  0.5604 0.5189 0.5537 0.6229 

chr12:3677037-4417679 0.5235 0.5191 0.5343 0.5432 

chr16:53382572-55903774 0.5045 0.5067 0.5322 0.6543 
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