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Abstract 
Breast cancer is a significant health concern globally, requiring early and accurate detection to 
improve patient outcomes. However, manual detection of breast cancer from medical images 
is time-consuming and inaccurate. Accurate assessment of cancer stages is critical for 
effective treatment and post-diagnosis handling. The goal of this research is to develop a 
specialized meta-learning method for classifying breast cancer images, particularly effective 
when working with limited data. Traditional cancer stage classification methods often struggle 
with insufficient labeled data, but meta-learning addresses this challenge by rapidly adapting 
to new tasks with few examples. The proposed method begins with image segmentation to 
identify regions of interest in the medical images, followed by thorough feature extraction to 
capture essential data representations. The critical meta-training phase involves refining a 
classifier within a metric space, utilizing cosine distance and an adaptable scale parameter. 
During the meta-testing stage, the adapted classifier predicts cancer stages using minimal 
support samples, achieving approximately 96% accuracy. This approach shows significant 
promise for the medical field, providing practical solutions to enhance diagnostic processes 
and improve predictions for breast cancer detection and treatment. 
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Introduction 
 

Breast cancer detection presents a significant challenge due to the scarcity of comprehensive 
and diverse datasets. This scarcity hinders the development of accurate classification models, 
which rely heavily on ample data for effective training. The issue of limited data availability is 
common in medical imaging, stemming from privacy concerns, high costs of data acquisition, 
and the difficulty of obtaining labeled samples. Consequently, medical datasets are often small-
scale, presenting a major hurdle for traditional machine learning and deep learning methods 
[1]. The challenge of few-shot classification, where the goal is to classify with minimal examples, 
becomes particularly pertinent in this context. Medical imaging, and specifically breast cancer 
datasets, often suffer from class imbalances and limited labeled samples, further complicating 
to the development of effective techniques. To address this, 
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convolutional neural networks for image classification, transfer learning to improve detection ac- 
curacy, and support vector machines (SVMs) and random forests for effective classification. Meta- 
learning frameworks and few-shot learning approaches have been utilized to address the chal- 
lenge of narrowed annotated data, while hybrid models and ensemble methods have combined 
multiple techniques to enhance performance. These contributions highlight the continuous im- 
provement and innovation in area of breast cancer detection. 

 
The author [15] employed transfer learning with YOLO models (YOLOv3, YOLOv5, YOLOv5- 

Transformer) to improve breast cancer detection in mammograms, utilizing CBIS-DDSM, INbreast, 
and a proprietary dataset. The small YOLOv5 model achieved the best performance with a mean 
Average Precision (mAP) of 0.621. Eigen-CAM was employed for model introspection, effectively 
reducing false negatives by highlighting suspicious regions, though it increased false positives. 
Despite challenging anomalies, the model demonstrated strong detection capabilities, and its out- 
puts, when combined with Eigen-CAM saliency maps, require clinical evaluation, making it a reli- 
able tool for supporting clinical decisions. The author [16] employed a hybrid approach integrating 
image and numerical data features for breast cancer (BC) detection. This approach utilized the U- 
NET model with transfer learning for precise image segmentation and combined classifiers like 
random forest (RF) and support vector machine (SVM). These methods were evaluated using da- 
tasets such as the Wisconsin Breast Cancer Dataset (WBCD), demonstrating improved detection 
accuracy and highlighting the efficacy of integrating diverse data modalities in BC diagnosis. 

 
In [17], the author introduces a cutting-edge method aimed at enhancing breast cancer (BC) 

detection through automated systems. This method focuses on nuclei detection and tumor clas- 
sification, incorporating contrast enhancement and image segmentation via Linear Scaling cen- 
tered Canny Edge Detection (LS-CED). The process involves a Soft Plus-Max Region-centered Fully 
Convolutional Network (SPM-R-FCN) for precise nuclei identification, followed by tumor cell (TC) 
classification based on size and shape using an adaptive threshold function. The extracted fea- 
tures are then analyzed by the SDM-WHO-RNN classifier, which classifies cancer as benign, malig- 
nant, or normal, achieving a remarkable accuracy of 97.9% in simulations. In [18], another inno- 
vative approach for breast cancer detection is proposed, leveraging multi-wavelength interfer- 
ence (MWI) phase imaging and hyperspectral (HS) imaging. This method analyzes blue (446.6 nm) 
and red (632 nm) interference patterns using Fast Fourier (FF) transform to identify refractive 
index variations between tumor and normal tissue. The classification algorithm demonstrates 94% 
specificity and 90.9% sensitivity with ex-vivo breast samples. This approach, which uses un- 
stained samples, holds potential for precise tumor excision and in-vivo detection using standard 
RGB cameras. 

The author [19] presents a method for early breast cancer (BC) detection using Transfer 
Learning techniques, VGG, ResNet, MobileNetV2—integrated with LSTM to analyze Ultrasound 
Images (USIs). To balance features, SMOTE was employed. The VGG16 model achieved an F1 score 
of 99.0%, MCC and Kappa Coefficient of 98.9%, and an AUC of 1.0. Cross-validation yielded an 
average F1-score of 96%. Grad-CAM and LIME enhanced visualization and interpretability, while 
confidence intervals confirmed robustness. This approach outperformed six state-of-the-art TL 
models, proving its effectiveness. The author [20] addresses breast cancer detection using mam- 
mogram images analyzed with deep learning models. Utilizing four public databases, each with 
986 mammograms across normal, benign, and malignant categories, the research employs VGG- 
11, Inception v3, and ResNet50. An ensemble method with a modified Gompertz function for fuzzy 
ranking integrates decision scores adaptively. This approach outperformed other methods, with 
the ResNet50 ensemble achieving a classification accuracy of 98.98%. 

 
The author [21] enhances breast cancer detection in mammography images using advanced 

AI techniques, specifically combining YOLOv5 and Mask R-CNN models. YOLOv5 detects and clas- 
sifies masses, while Mask R-CNN identifies tumor borders and sizes, crucial for staging cancer. 
Trained on CBIS-DDSM dataset, BNS datasets In breast dataset, this combined approach reduces 
False Positive Rate (0.049%) and False Negative Rate (0.029%) and achieves a high Matthews cor- 
relation coefficient (92.02%), outperforming the baseline YOLOv5. This approach improves early 
diagnosis accuracy, aiding clinicians in better prognosis and treatment planning. The author [22] 
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presents a deep learning-based ensemble classifier for early and precise breast cancer detection. 
Integrating transfer learning models with advanced techniques like residual learning and skip con- 
nections achieves high accuracy. Results on various datasets show significant performance: 99.17% 
accuracy for abnormality detection and 97.75% for malignancy on mini-DDSM, 96.92% and 94.62% 
on BUSI ultrasound, and 97.50% on BUS2 ultrasound. This approach proves versatile across 
multimodal datasets, promising improved diagnostic capabilities in clinical settings. 

 
The author [23] underscores the importance of early breast cancer detection using AI and 

machine learning advancements. Their study focuses on improving diagnostic accuracy for IDC 
and DCIS subtypes from mammograms, employing the CNN Improvements for Breast Cancer Clas- 
sification (CNNI-BCC) model. This research introduces an efficient deep learning approach vali- 
dated with a dataset of 3002 images, demonstrating high accuracy with reduced computational 
demands across varied mammogram densities. The author [24] employed early detection of 
breast cancer is critical for saving lives, and researchers are exploring new methods like thermal 
imaging for accurate diagnosis. Recent advances in deep learning have led to the development of 
lighter models, such as using SqueezeNet 1.1, fine-tuned on thermal images. These models incor- 
porate transfer learning and feature selection techniques, alongside hybrid optimization strate- 
gies like Genetic Algorithm and Grey Wolf Optimizer. This approach reduces computational com- 
plexity while achieving high accuracy, showing potential for precise identification of malignant 
and healthy breast conditions with minimal computational resources. 

 
The author [25] proposes using Fuzzy C Means segmentation and an IWCA-APSO-based En- 

semble Extreme Learning Machine model for breast cancer detection. Validated on the INbreast 
dataset, the approach achieves high sensitivity (99.67%), specificity (99.71%), and accuracy 
(99.36%), with a computational time of 23.8751 seconds. These results indicate significant im- 
provement over traditional methods in breast cancer classification. The author [26] proposed en- 
semble learning model for breast cancer detection.  Having 317880 samples which split in 80% 
and 20% for the training and validation process respectively. They got 91.33% accuracy for detec- 
tion the breast cancer. Table 1 shows the previous state-of-the-art along with techniques been 
used, dataset and result of study. 

Table 1. Previous study of breast cancer. 
 

Author Technique Dataset Result 
[15] YoLoV5 307 lesions Map 0.621 
[16] RF+SVM - Accuracy 99.99% 
[17] SDM-WHO-RNN - Accuracy 97.90% 
[18] MWI phase imaging - Sensitivity 90.9% 
[19] Transfer learning + LSTM 780 images F1 score 99.0% 
[20] ResNet50 986 images Accuracy 98.98% 
[21] YOLOv5 2120 images MCC 92.02% 
[22] AlexNet + MobileNet + Res- 

Net 
9684 images Accuracy 97.50% 

[23] CNNI Model 3002 images Accuracy 96.49% 
[25] Ensemble extreme learning 

model 
410 mammograms Accuracy 99.36% 

[26] Ensemble learning model 317880 images Accuracy 91.33% 
Proposed Few-Shot-Meta-Learning Total 200 images, 

with 1-shot and 5- 
                             shot  

Accuracy approx. 96.00% 
for 5-shot 

 
Preliminary Concepts 

Before providing an in-depth analysis of our framework, we will start by outlining key prin- 
ciples of few-shot classification. This foundational step is essential as it may be new to some read- 
ers. 
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𝑖𝑖=1 

Supervised Classification 
In this classification, we work with a dataset “D” that includes both training data Dtrain and 

testing data Dtest. Training dataset, Dtrain is composed of labeled instances  {(𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖)}𝑀𝑀 where 
M is the number of training examples, and yi belongs to the set {1,…,Atotal}. Here, Atotal indicates 
the total number of categories within the training data. Our task is to develop a model fθ(x), with 
θ representing the model parameters, trained on Dtrain. This model should be capable of predicting 
the label 𝑦𝑦𝑦∈ {1,…,A } for unknown sample x in test set D  , which consists of {(𝑥𝑥 )} 𝑝𝑝 . 

total p test 𝑝𝑝 𝑝𝑝=1 

Few-shot Classification 
Instead of using the traditional method, we utilize a meta-dataset composed of three distinct 

subsets: D={Dbase,Dval,Dnovel}. Importantly, the category labels, denoted as CC, are chosen such that 
CCbase, CCval and CCnovel have no overlap in categories. Our ultimate goal is to develop a model, MD, 
using the dataset Dbase. This model needs to be proficient at quickly adapting to new categories 
presented in the Dnovel dataset, even when only a few support samples (typically 1 to 5 examples 
per category) are available. We will use the Dval dataset exclusively for hyperparameter tuning 
and for identifying the best-performing model. 

Following the Few-Shot Learning (FSL) protocol as described in references [27][28], models 
are generally evaluated through a series of Tasks. These Tasks involve the classification of K ex- 
amples among N classes and are known as DT or episodes. Each episode is made up of two sets: a 
support set SSi and query set QSi. The support set SSi has N unique categories, each with P labeled 
samples. Thus, the support set SSi contains a total of N * P labeled samples, which are used for 
training. Query set QSi, however, includes the same N categories but contains Q unlabeled sam- 
ples that need been classified. 

 

Figure 1. Depiction of meta-training and meta-testing sets for 2-way 1-shot classification tasks. 

Episodes are constructed in the same manner for both training and testing phases. To illus- 
trate, consider a 2-way 1-shot classification task during testing. In this case, the training episode 
would consist of N = 2 categories, each with P = 1 labeled sample. Figure 1 visually depicts a 2- 
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way 1-shot episode. It is essential to understand that, within the Few-Shot Learning (FSL) frame- 
work, in this approach, an entire task or episode is considered a single training instance, marking 
a notable departure from traditional machine learning methods. 

Proposed Research Study 

Comprehensive Framework 
This study introduces a tailored meta-learning method designed to diagnose the breast can- 

cer, effectively tackling data scarcity issues. Our methodology is structured around five crucial 
stages: preprocessing, segmentation, feature extraction, meta-training, and meta-testing, as illus- 
trated in Figure 2. Initially, we undertook image preprocessing to improve both the quality and 
clarity of the images. For segmentation, U-Net is being applied. Subsequently, we developed a 
feature extractor using a foundational dataset D𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 to generate a strong representation of mango 
crop images. We utilized a conventional classifier, training it across all categories within the base 
dataset by minimizing the cross-entropy loss. By detach the final fully connected layer, we ob- 
tained 512-dimensional feature representation, referred to as 𝑓𝑓𝜃𝜃. 

During the meta-training stage, the meta-learning classifier M was trained across multiple ep- 
isodes without freezing the feature extractor 𝑓𝑓𝜃𝜃. Instead, we optimized the feature extractor di- 
rectly to reduce generalization errors across episodes. This approach enabled effective classifica- 
tion of breast cancer stages using few-shot learning techniques. In each episode, we compared 
the features of query images with the mean features of support images using a scaled cosine 
distance metric. Goal of meta-training was to minimizing the N-way classification loss on the query 
set. During meta-testing stage, we assessed the performance of the meta-learning classifier M by 
using episodes sampled from a new dataset D𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛. This phase evaluated the classifier's ability to 
adapt to new and unseen categories of breast cancer, analogous to the meta-test set. 

 

Figure 2. Proposed Breast Cancer Detection Framework. 
 

 
Proposed Few-shot meta learning approach 
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Meta-learning represents a cutting-edge machine-learning technique that allows models to 
learn the process of learning, making it particularly advantageous for scenarios with limited or 
noisy data akin to the complexities found in breast cancer detection. In our research, we have 
developed a new meta-learning strategy specifically designed to detect breast cancer. We as- 
sessed the performance of this approach using a diverse dataset that includes ultrasound images 
representing different stages of breast tissue characteristics and abnormalities. 

 
Dataset and Pre-processing 

In this research dataset, a collection of 100 images depicting detection of breast cancer was 
compiled from sources such as medical databases [29]. These images were classified into two 
distinct categories: those showing malignant and benign tumors. All images were standardized to 
a resolution of 256*256 pixels. To guarantee the robustness of our model, we meticulously fol- 
lowed industry best practices during the preprocessing phase. We ensured that our dataset was 
diverse, maintained high resolution, and adhered to appropriate resizing and formatting stand- 
ards. This careful preparation aimed to improve the overall quality and representativeness of the 
data, crucial for effective model training. 

 
The preprocessing steps were designed to enhance data quality, reduce noise, and stream- 

line analysis. For this study, we applied several key preprocessing techniques to mammogram 
images. Notably, we used histogram equalization to enhance image contrast, making potential 
breast cancer markers more visible. This step was essential to improve feature detection and en- 
sure the reliability of our model's predictions. 

To improve the contrast and clarity of mammogram images for breast cancer detection, we 
used histogram equalization as a preprocessing technique. This method enhances the visibility of 
important features by redistributing the pixel intensity values, which broadens the dynamic range 
of the images. Consequently, critical details that may indicate the presence of breast cancer be- 
come more discernible. This enhancement of image quality is a crucial step in ensuring the accu- 
rate identification of potential breast cancer markers. 

 
U-Net 

Biomedical images, such as those used for detecting breast cancer, often display intricate 
patterns and variable edges that can complicate segmentation. To tackle this issue, the author 
[30] proposed an architecture for skin segmentation that combines high-level features from a 
deep decoding layer with low-level features from a shallow encoding layer, achieving detailed 
segmentations. This method has demonstrated efficacy not only in natural images but also in bi- 
omedical applications [31]. Expanding upon this idea, the author [32] introduced the U-Net archi- 
tecture, which utilizes skip connections to improve cell tracking in biomedical imaging. 

Our network architecture for breast cancer detection, inspired by U-Net, consists of a dual- 
path structure: an encoding path for down sampling and a decoding path for upsampling, as 
shown in Figure 3. The encoding path includes five convolutional blocks, each comprising two 3*3 
convolutional layers with a stride of 1 and rectifier activation functions. These blocks progressively 
increase the number of feature maps from 1 to 1024. Spatial dimensions are reduced using 2*2 
max pooling at the end of each block, except the last one, thereby decreasing the feature map 
sizes from 240*240 to 15*15. 

 
In decoding, each block begins with deconvolutional layer featuring 3*3 filter size and a 

stride of 2*2. This operation doubles the spatial dimensions of the feature maps while halving the 
number of feature maps, effectively increasing their size from 15*15 to 240*240. This approach 
allows our network to efficiently reconstruct high-resolution images from the compressed fea- 
tures, facilitating precise breast cancer detection. 

In our design, each up-sampling block incorporates two convolutional layers to decrease the 
number of feature maps. These layers operate on the combined output of the deconvolutional 
feature maps and the feature maps from the corresponding encoding block. To diverge from the 
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original U-Net structure, employ zero padding in all convolutional layers within both the 
downsampling and up-sampling paths, ensuring the output dimensions remain unchanged. 

 
In the final stage of the network architecture, a crucial step involves the application of a 1*1 

convolutional layer. This layer plays a pivotal role by effectively reducing the dimensionality of the 
feature maps to just two channels. These channels specifically cater to delineating between fore- 
ground and background segments within the image. Notably, the design circumvents the use of 
fully connected layers, adhering to a streamlined and efficient computational approach. 

 

 
Figure 3. U-Net Architecture [33] 

 
Extraction of features 

In our study focused on breast cancer detection, we devised a feature extractor labeled 𝑓𝑓𝜃𝜃, 
which operates with adjustable parameters denoted as 'θ'. This extractor is designed to transform 
input data originating from our primary dataset, referred to as D𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏, into a streamlined 512-di- 
mensional feature vector optimized for comprehensive comparisons. Our approach leveraged the 
robust architecture of DenseNet-121 as the foundational framework for training a classifier across 
all relevant categories. A key innovation of our methodology involves customizing this network 
architecture into a feature extractor by excluding its final dense (fully connected) layer. This stra- 
tegic modification enhances our ability to discern nuanced features crucial for accurate breast can- 
cer detection. Throughout our research, we also explored alternative backbone architectures, en- 
suring a meticulous evaluation of the most effective model configurations for our specific applica- 
tion. 

To ensure uniform processing of images from our dataset D𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 in our breast cancer detection 
study, we implemented a preprocessing step where all images were resized to a standardized di- 
mension of 80*80 pixels. This preprocessing step was crucial for maintaining consistency in input 
dimensions across our entire dataset. 

Our chosen model architecture, DenseNet-121, depicted in Figure 4, features a series of 
dense blocks interspersed with transition layers. Each dense block comprises consecutive 3*3 ker- 
nel convolutional layers, bolstered by Batch Normalization (BN) and Rectified Linear Unit (ReLU) 
activation functions. Configuration of these convolutional layer varies across the dense blocks, 
characterized by channel configurations {C1, 𝐶𝐶2, 𝐶𝐶3, ..., 𝐶𝐶𝑛𝑛}, where n denotes total number of dense 
block in our model. Specifically, in our DenseNet-121 setup, these values are tailored to 64, 128, 
256, and 512 channels for the respective dense blocks. 
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This architecture design not only ensures efficient feature extraction from input images but 

also optimizes the model's ability to discern intricate patterns relevant to breast cancer detection. 
By leveraging these structured layers and channel configurations, our approach aims to enhance 
both the accuracy and reliability of our diagnostic outcomes. 

After each dense block, our architecture incorporates a transition layer comprising a 1*1 con- 
volutional operation, Batch Normalization, ReLU activation, and 2*2 average pooling. These layers 
effectively reduce spatial dimensions and filter complexity while preserving essential feature in- 
formation for subsequent processing stages in our breast cancer detection model. At the culmina- 
tion of feature extraction, a 5*5 global average pooling layer condensed DenseNet's feature maps 
into a compact 512-dimensional representation, pivotal for subsequent tasks in our breast cancer 
detection approach. 

 

 
Figure 4. Architecture of DenseNet-121 

 
Meta-Training Stage 

Meta-learning objectives improve breast cancer diagnosis efficiency by leveraging insights 
from various diagnostic tasks (episodes). In an N-way K-shot setup, we train a meta-learning model 
F(· | S) to minimize prediction error using episodes drawn from the training data, each with K sam- 
ples per category. This results in N * P samples for training and N * Q samples for testing. Despite 
limited support samples, the M classifier's parameters are shared across episodes, reducing the 
need for extensive training examples. An additional meta-validation set fine-tunes the model's hy- 
perparameters. Figure 5 illustrates our meta-learning workflow. 

Within an episode where we have a support-set S, Sc represents a subset of S that includes all 
samples belonging to category c. The prototype 𝜔𝜔𝑐𝑐 is derived as the average vector of embeddings 
of Sc. These embeddings are obtained using a pre-trained feature extractor denoted as 𝑓𝑓𝑓𝑓, which 
involves learnable parameters θ in detailed in section 4.2. 

1 
𝜔𝜔𝑐𝑐 = |𝑆𝑆 | ∑ 𝑓𝑓𝜃𝜃 (𝑥𝑥𝑖𝑖) 

𝑐𝑐 ((𝑥𝑥𝑖𝑖)∈𝑆𝑆𝑐𝑐 

To determine the probability that q query sample x belongs to category c, we assess the simi- 
larity between its feature embedding 𝑓𝑓𝜃𝜃 (x) and the centroid 𝜔𝜔𝑐𝑐 of that category. By employing 
cosine similarity as a distance metric, the prediction is formulated as below: 

 

𝑝𝑝(𝑦𝑦 = 𝑐𝑐|𝑥𝑥) = 
  exp(cos(𝑓𝑓𝜃𝜃(𝑥𝑥), 𝜔𝜔𝑐𝑐))  
∑𝑐𝑐′ exp(cos(𝑓𝑓𝜃𝜃 (𝑥𝑥), 𝜔𝜔𝑐𝑐′)) 

 
Here, cos(𝑓𝑓𝜃𝜃(𝑥𝑥), 𝜔𝜔𝑐𝑐) denotes the cosine similarity between the feature embedding 𝑓𝑓𝜃𝜃 (x) 

and the centroid 𝜔𝜔𝑐𝑐. It measures the directional alignment between these two vectors as an 

indicator of their similarity. 
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Figure 5. Developing meta-training for addressing 2-way 1-shot classification 

 
Drawing from insights in [34], trainable scalar-parameter α to adjust the initial range of cosine 

similarity been introduced, which conventionally spans from -1 to 1. In our experiments, we ini- 

tialize α to 10. This scaling of the similarity metric enhances its suitability for integration into the 

subsequent softmax layer. As a result, the formulation of the predictive probability is as follows: 

 

𝑝𝑝(𝑦𝑦 = 𝑐𝑐|𝑥𝑥) = 
  exp(𝛼𝛼. cos(𝑓𝑓𝜃𝜃(𝑥𝑥), 𝜔𝜔𝑐𝑐))  
∑𝑐𝑐′ exp(𝛼𝛼. cos(𝑓𝑓𝜃𝜃 (𝑥𝑥), 𝜔𝜔𝑐𝑐′)) 

 
Meta-Testing Stage 

We train the neta-learning model F(· | 𝑆𝑆𝑆𝑆𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 ) on the base dataset SSbase, and then evaluate 

its generalization capability using a separate dataset, Dnovel. It is important to note that the 

categories in Dnovel are completely new and were not encountered in course of meta-training 

phase. 

In meta-testing step, new episodes frawn from Dnovel, commonly referred to as the meta-test 
and denoted as 𝐷𝐷𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = {(𝑆𝑆𝑆𝑆 , 𝑄𝑄𝑄𝑄 )(𝑗𝑗)}𝐽𝐽  . The trained model then adapts to these 

𝑡𝑡 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑗𝑗=1 

unseen categories by utilizing the new support set SSnovel to make predictions. 
 

Results 
This section This section presents a detailed overview of our implementation and a 

description of the dataset utilized in our study. 
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Dataset Description 

In the existing dataset, there were a total of 10,239 images. However, the approach we are 

applying, few-shot meta-learning, is designed to work effectively with a smaller number of 

samples. Therefore, we have selected 100 samples for each class. The details are presented in 

the table 2 below. 

 
Table 2. Dataset Overview 

Category Images Base(%) Validation(%) Novel(%) 
Benign 100 50(50%) 25(25%) 25(25%) 

Malignant 100 50(50%) 25(25%) 25(25%) 

 
Detailed implementation overview 

Inspired by Vinyals et al. [35], we implemented an experimental framework for N-way 

classification with K shot, where N = 2 and K = 1. During meta-training, we generated few-shot 

training batches using episodes. Each episode randomly selected 2 categories from the database 

Dbase. Our setup included 4 episodes per batch, with batch sizes adjusted to fit GPU memory. 

In each training episode, the support set matched the requirements for meta-testing. For 

instance, for a 2-way 1-shot classification in testing, training episodes were set with N = 2 and K 

= 1. 

 
During meta-training, each category had K query samples, while in meta-testing, there were 

15 query samples per category. In the realm of few-shot learning, we vary our training approach 

by randomly selecting episodes. Despite each episode containing a small subset of training 

samples, employing a large number of episodes—such as the 1000 utilized per epoch—ensures 

thorough coverage of the dataset throughout training. 

 
We utilized DenseNet-121 as our core architecture, modifying it by excluding the fully 

connected layer to yield 512-dimensional feature vectors per input. The training process was 

managed using Stochastic Gradient Descent (SGD) with a momentum parameter set to 0.9. The 

initial learning rate was 0.1, which decayed by a factor of 0.1 over time. The feature extractor 

was trained for 100 epochs with a batch size of 128, distributed across 4 GPUs. Additionally, we 

applied a weight decay of 0.0005 to refine the DenseNet-121 model. Computational tasks were 

executed within a Jupyter Notebook environment, leveraging the computational power of an 

NVIDIA GeForce GTX Titan X GPU (RTX 2080 Ti). 

 
Outcomes and Analysis 

To evaluate our method's effectiveness, we conducted experiments using the standard few- 

shot classification setups: 2-way 1-shot and 2-way 5-shot. In the 2-way 1-shot setup, one support 

sample per category is used for testing, while in the 5-shot setup, five support samples per 

category are used. Each episode was assessed with 15 query images per category, and we 

calculated the mean accuracy over 2000 random episodes from the novel set. Employing a more 

advanced model such as DenseNet-121, rather than the initial Conv-4 used in Model-Agnostic 

Meta-Learning (MAML), has the potential to enhance performance. Additionally, we explored 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 6, 2024. ; https://doi.org/10.1101/2024.10.04.24314684doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.04.24314684
http://creativecommons.org/licenses/by/4.0/


 

the efficacy of the traditional classification algorithm, D-CNN, in contexts with limited data 

availability. 

 
Deep Convolutional Neural Network is model after the biological architecture of the animal 

visual system, especially the visual cortex. This approach mimics the behavior of specialized cells 

in the cortex that respond to particular areas, or receptive fields, of the visual field. In traditional 

fully connected neural networks, each neuron is linked to every neuron in the preceding layer, 

a D-CNN neuron is connected only to a specific receptive field in the layer before it. 

 
A typical D-CNN includes three essential layers: the Convolutional Layer, the Pooling Layer, 

and the Fully Connected Layer [36][37]. Model-Agnostic Meta-Learning (MAML) is a few-shot 

learning method that prepares a model to adapt rapidly to new tasks with minimal data. During 

meta-training, MAML initializes the model on a source task and then trains it across a variety of 

tasks, allowing the model to efficiently adjust its parameters. This results in strong performance 

on novel, unseen tasks with limited examples. MAML is especially valuable when collecting 

extensive labeled data for each task is impractical, making it a powerful tool for scenarios with 

scarce data [38]. 

 
Both 1-shot and 5-shot settings, the proposed approach outperforms MAML with 

DenseNet-121 across both datasets. Conversely, D-CNN shows poor performance in these 

scenarios because it is not designed for few-shot classification. Traditional CNNs tend to overfit 

when trained on very limited data, whereas meta-learning methods yield better results. Table 3 

provides a comparison of the results for MAML, D-CNN, and the proposed method using the 

DenseNet-121 backbone. 

 
Table 3. Analysis of Few-Shot Classification Dataset 
  Method  Backbone  1-shot  5-shot  

MAML DenseNet-121 61.43 ± 0.85 75.93 ± 0.68 
D-CNN DenseNet-121 45.00 ± 5.32 62.71 ± 4.30 

 Ours  DenseNet-121  71.10 ± 0.21  96.10 ± 0.13  

 
The comparison of MAML, D-CNN, and our DenseNet-121-based method across our datasets 

is depicted in Figure 6, where patterned bars represent results with 95% confidence intervals. 

Our method consistently outperforms both MAML and D-CNN, demonstrating superior 

performance across all evaluations. 
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(a) (b) 
 
 

Figure 6. Illustrates few-shot classification results on our dataset using DenseNet-121, with 95% 

confidence intervals shown for both 1-shot (a) and 5-shot (b) scenarios. 

 
Utilizing a more efficient variant of first-order MAML, known to approach the performance 

of the full version, we enhance classification accuracy through class center calculations and a 

cosine distance metric with adjustable scaling. In Section 5.4 of our study, an ablation experiment 

examines the impact of metric selection on outcomes. Drawing from insights in [39], which 

highlight the importance of task-specific feature extraction, we introduce a dynamic feature 

extractor optimized with a designated support set labeled 'SS'. To streamline complexity, an 

additional logit head facilitates auxiliary co-training. In contrast, our approach focuses on training 

a standard M-way classifier on established categories, omitting extra parameters. Instead, the 

encoder 𝑓𝑓𝜃𝜃 benefits from refinement by removing the final FC layer, leveraging its weights for 

enhanced meta-training. 

 
Throughout the analysis depicted in Figure 7, an intriguing pattern emerges: our model 

initially demonstrates improved generalization across base categories within the first 90 epochs. 

However, this trend contrasts sharply with its ability to generalize to novel categories, which 

shows a decline. This decrease in test performance is attributed to potential overfitting, likely 

stemming from limited supervised data availability. Further investigation into this phenomenon 

is detailed in Section 5.4. 

 
Analytical Findings 

Dataset Size implications 

To evaluate the influence of dataset size, we created a reduced version of our complete 

dataset, which originally contains 100 images per category. This smaller version, termed the 

"mini dataset," includes only 50 images per category. Table 4 presents the 2-way 1-shot and 2- 

way 5-shot accuracies for both the original and mini datasets. By dividing the dataset in this 

manner, The study focused on examining how different dataset sizes influence the model's 
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performance and evaluating the robustness of the approach. The findings show that the larger 

dataset consistently outperforms the smaller one, achieving 6.86% and 5.78% higher accuracy 

in the 2-way 1-shot and 2-way 5-shot scenarios, respectively. 

 
Table 4. Performance comparison: Mini vs. Full Dataset 

 
 Dataset  1-shot  5-shot  

Mini dataset 59.35 ± 0.25 77.55 ± 0.21 
  Complete dataset  71.10 ± 0.21  96.10 ± 0.13  

 
Section 5.3 highlights a consistent observation from our experiments, depicted in Figure 8. 

Initially, our model achieves peak accuracy within the first 40 epochs. To delve deeper into the 

issue of generalization, we examined generalization curves for different shot counts on the 

dataset. These curves, shown in Figure 8, distinguish between novel generalization (orange) and 

base generalization (blue). Intriguingly, we observed a similar trend: while the model performs 

well on unseen data from the base set, its performance on novel tasks declines. This suggests 

that simply increasing the number of labeled support instances does not solely account for the 

decrease in test performance; instead, the discrepancy likely arises from differing objectives 

between the novel and base sets. During meta-training, our model may become overly 

specialized to the base set, adversely affecting its performance on novel tasks. Addressing this 

generalization gap in few-shot learning presents a significant challenge. Future investigations 

focusing on regularization techniques could potentially mitigate this gap. 

 
 

 

 

 

(a) (b) 

Figure 7: Generalization differences during the meta-learning stage, with base generalization 
shown in blue and novel generalization in orange. 
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(c) (d) 

Figure 8. Illustrates the performance variability, accompanied by 95% confidence intervals, for 

5-way classification using the DenseNet-121 backbone. The analysis considers different 

numbers of shots applied to the dataset for 10-shot, 20-shot,30-shot and 40-shot in 

(a),(b),(c),and (d) respectively. 

 
Table 5 summarizes the performance of several techniques for the task at hand. Ali et al.[42] 

utilized a CNN with impressive results, achieving 90.00% accuracy, demonstrating the strength 

of convolutional neural networks in this context. Wu et al. [40] applied SVM, also achieving 90.00% 

accuracy, showcasing the effectiveness of support vector machines. G Isik et al. [41] explored 

few-shot learning, achieving 83.1% accuracy, highlighting its potential in scenarios with limited 

labeled data. Our approach, leveraging meta-learning with a DenseNet-121 backbone, achieved 

competitive performance with an accuracy of 96.10% ± 0.13. This comparison underscores the 

versatility of different methodologies and their ability to address challenges in machine learning 

tasks effectively. 

 
Table 5. Comparison of proposed study with previous state-of-the-art. 
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Approach Technique Accuracy 
[42] CNN 90.00% 
[41] SVM 90.00% 
[40] Few-shot 83.10% 
Ours Meta-learning with DenseNet-121 backbone 96.10 ± 0.13 

 

 
Conclusions 

The recent surge in few-shot learning has piqued our interest in exploring its application to 

breast cancer detection. We demonstrate the efficacy of few-shot learning in the context of 

classifying breast cancer subtypes, revealing valuable insights from limited examples. Our meta- 

learning framework, utilizing DenseNet-121, effectively generalizes to new cancer subtypes with 

minimal samples. Through optimizing the classifier with cosine distance and a scalable 

parameter during meta-training, we achieved promising results: approximately 71% 

classification accuracy for new cancer subtypes with a single sample, and about 96% accuracy 

with five support samples. Furthermore, our exploration of dataset sizes, various metrics, and 

the number of support shots uncovers potential challenges in generalization within the meta- 

learning framework. Continued research in this domain holds promise for improving future 

diagnostic accuracy and treatment strategies in breast cancer. 
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