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Abstract  
 
Deep brain stimulation (DBS) is an established treatment for Parkinson’s disease. Still, DBS parameter 
programming currently follows a tedious trial-and-error process. DBS-evoked cortical potentials (EP) 
might guide parameter selection but this concept has not yet been tested. Further, mounting wet EEG 
systems is too time-consuming to scale in outpatient clinic settings. Here, we test the utility of a novel 
method that leverages the spatial pattern of EP using a dry EEG setup. We acquired EP in 58 
hemispheres in patients with Parkinson’s disease and compute a model which represents the optimal 

EP response pattern associated with maximal clinical improvements. Once defined, we use this pattern 
to estimate stimulation outcomes in unseen patients. Finally, we utilize it to identify optimal stimulation 
contacts in five unseen hemispheres where it selected the correct contact in all cases. The simple setup 
makes this novel method an attractive option to guide DBS programming in clinical practice. 
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Introduction 
 
Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is an effective therapy for patients with 
Parkinson’s disease1. DBS devices allow distributing electric currents in 1% steps across multiple DBS 
contacts, leading to a large number of ~1010 options for cathodal current distribution on an eight-contact 
directional DBS electrode 2. Even when following heuristic strategies that sample the parameter space 
in a smart fashion, the current process of selecting optimal stimulation contacts requires multiple 
permutations through different stimulation parameters along with clinical testing 3,4. This process is time-

consuming and inconvenient for both patients and healthcare providers. Hence, novel strategies to guide 
DBS programming are needed 5,6. One promising strategy, termed image-guided programming, is to 
localize DBS electrodes and define optimal stimulation targets 7. Based on such electrode 
reconstructions, an algorithm may identify the parameter settings that maximize stimulating the identified 
‘sweet-spot’ 8 or optimal circuit 9. This approach is promising and has been successful in a first 
prospective clinical trial10. However, one potential shortcoming is that the approach does not measure 
or capture target engagement. To address this gap, Boutet et al. proposed to measure optimal DBS 
response profiles using fMRI5. Here, individual patients were scanned under multiple stimulation settings 
to determine an optimal response profile that could be used to optimize their DBS parameters. While 
promising and scientifically interesting, the approach requires MRI scanning time, which involves high 
cost and the need for data processing expertise which may preclude this approach from becoming 
practical in a global clinical setting. 
 
Cortical potentials evoked by STN-DBS (EP) have been investigated in electroencephalography (EEG) 
recordings as early as the first clinical DBS trials 11–14. The concept here is to measure the cortical 
response of individual DBS pulses, i.e., cortical responses are averaged time-locked to independent 
pulses delivered at the electrode level. Recent studies using magnetoencephalography (MEG) and 
EEG, observed that the amplitudes of DBS-EP over the motor cortex and the supplementary motor area 
scale with motor performance and the therapeutic window 6,15,16. With this understanding in mind, EP, 
and especially their amplitudes over the motor cortex, have been proposed as a tool to guide DBS 
programming 15–19. Still, while the concept is a logical next step, none of these published studies have 
yet tested clinical applicability of such an EP-guided programming approach. Partly, this might result 
from the same issues as in the use of fMRI: scarce availability, technical difficulty, and high cost of fMRI 

equally apply to recording MEG during active DBS 5,20,21. Recording DBS-EP with conventional scalp 
EEG may instead be a more practical approach regarding cost and expertise. However, the time-
consuming process of mounting gel electrodes, which often takes up to an hour for a skilled team and 
can be inconvenient for the patient 22, may still render this approach impractical for use at scale in typical 
clinical settings. In contrast, dry electrode EEG systems can be set up in minutes, without the need for 
highly skilled personnel. We explore this option in the present manuscript. 
 
A second limitation of published EP-based frameworks is that these suggested to use EP amplitudes of 
single channels or brain regions to measure the optimality of DBS settings 6,15,16. For instance, the 
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amplitude of the EP over the primary motor cortex would typically correlate with clinical improvements 
6,16, making it a viable candidate for direct use in DBS programming. While promising, EP amplitudes 
and topographies may change considerably over time 6, are dependent on impedance of measurements 
and may hence vary from day to day and may differ across patients. Also, there is no agreement on 
which exact EP-latency or EEG channel should be used to extract EP amplitudes for DBS programming. 
Along the lines of DBS network mapping that used fMRI or diffusion MRI data 23, here, we propose to 
use the global pattern of EP, which aims at characterizing the spatial distribution – or network engaged 

by the stimulation across channels and EP time course. In this approach, amplitudes in neighboring 
channels (and amplitudes as distributed across the entire cortex) would normalize themselves, and it is 
more the pattern or distribution of EPs, rather than the single EP amplitude, that is used to inform 
optimality of DBS settings. 
 
Here, we developed a strategy that leverages both the use of dry-EEG, which has the key strength in 
its ease-of-use, and the application of a global response pattern model, which may have the strength of 
robustness and transferability across patients. We call this approach DBS-Programming Using 
Lightweight Setup EEG (DBS-PULSE). To test it, we recorded potentials evoked by STN stimulation in 
58 hemispheres of patients with PD (discovery cohort) using a 32-channel dry-electrode setup. The 
approach correlated each element of the EP-map with clinical improvements across the patient cohort. 
A resulting correlation matrix then serves as a model of the optimal response and can be used to 
estimate motor improvements in unseen data points / novel patients. Indeed, following similar 
approaches we introduced in the field of connectomic DBS 23, this pattern aims at approximating the 
optimal EP distribution across space and time. We first subjected the pattern to cross-validation within 
the discovery cohort to test its potential generalizability and estimate degree of over-fitting to the training 
sample. Then, we used the pattern in an independent dataset. Namely, an independent prospective test 
cohort was acquired, recording dry-EEG EPs from a total of 20 DBS contacts in five additional 
hemispheres. In each patient, we applied the pattern to select the best contact that was predicted to 
yield best clinical improvements. 
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Results 
 
Patient demographics and clinical results 
We recruited a total of 32 patients (11 females; mean age: 60.4 ± 6.8 years) with Parkinson’s disease. 
All patients had received bilateral STN-DBS implantation (see Supplementary Table 1 for electrode 
models and stimulation settings) and there was a significant overall response to stimulation in the upper 
limb unified Parkinson’s disease rating scale part III items (UPDRS-III; items 3.3-3.6; 3.15-3.17; 
stimulation OFF: 18.9 ± 4.3 vs. stimulation ON: 10.2 ± 4.7; t (29) = 9.51, p = 0.001). We focused on the 

upper limb scores, given that in many centers upper limb symptoms are exactly what is being measured 
during monopolar review testing. During clinical testing and dry EEG recordings all patients were in their 
best medication on-state (mean levodopa equivalent daily dose, LEDD: 606 ± 276 mg). This was a 
purposeful and deliberate choice, since, if successful, the model would render more practical to 
implement in clinical routine. Indeed, patients typically visit an outpatient department in the medication 
on state, so we aimed at creating a system that would be suitable for this condition. The discovery cohort 
for primary analysis consisted of the first 29 patients (58 hemispheres) recruited for this study. Another 
three patients (data collected from five hemispheres, one hemisphere excluded due to fatigue, see 
Methods), that were not included in the discovery cohort, were recruited upon completing the primary 
analysis for prospective validation (test cohort) and underwent more extensive recordings (see below). 
A comprehensive summary of clinical characteristics, medication and demographics is provided in 
supplementary table 1. DBS electrode localization confirmed accurate placement of leads in the 
subthalamic nucleus for all patients included in the study (see supplementary figure S1). Figure 1 
summarizes the methodological workflow. 
 

 
Figure 1. DBS-Evoked Potential Mapping. A: Stimulation pulses were applied with a frequency of 2 Hz. The data was divided 

into epochs (i.e. time segments) time-locked to the stimulation pulses. These epochs were averaged to obtain Evoked Potentials 

(EP) across channels. The EP amplitudes were then concatenated into a 32 channel × time matrix (EP-map). B: EP-maps resulting 
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from stimulation in 58 hemispheres were used to apply an element-wise correlation between amplitude values of the EP-maps 

across hemispheres and contralateral Unified Parkinson’s disease Rating Scale part III (UPDRS-III) upper limb hemibody 

improvements. The resulting correlation matrix (R-matrix) may embody an optimal EP pattern. To test the validity of this pattern, 

it was used to estimate individual improvements in unseen patients (multiple cross-validation designs). To do so, (unseen) EP-

maps were correlated (element-wise) with the R-Matrix, which led to a correlation coefficient that expresses agreement between 

the EP-map and the R-Matrix. This coefficient was correlated with clinical improvements. C: Application of the DBS-PULSE 

approach: In a prospective cohort, the same procedure was carried out for EP-maps after stimulating different contacts in the 

same patient. The resulting correlation coefficients (i.e. similarities to the R-matrix) were then used to identify the optimal deep 

brain stimulation (DBS) contact in these independent patients.  

 
DBS-EP reveal fronto-central topography  
In the discovery cohort we applied a total of 57,503 unilateral subthalamic low-frequency (2 Hz) 
stimulation pulses (Fig. 2 C). The stimulation was applied at the chronic DBS contact using a monopolar 
stimulation montage in 58 hemispheres during dry EEG recordings (see supplementary table 1 for 
chronic stimulation settings). When using monopolar DBS during electrophysiological recordings, there 
is a characteristic decay artifact after the DBS pulse that may obscure short latency EP 6,20. To assess 
the amount of time after stimulation that was obscured by the DBS pulse artifact in our recordings, we 
developed a novel DBS-EEG phantom (supplementary figure S2). Based on the shape and length of 
the stimulation decay artifact in the phantom data, the earliest EP that could be distinguished from the 
artifact had a peak latency of around 20 ms (supplementary figure S2D). We therefore focused our 
analysis on long-latency EP (> 20 ms) that were unaffected by the stimulation artifact 6,14. 
The dry EEG data was epoched time-locked to the stimulation pulses, averaged across epochs and 
concatenated into EP-maps (Fig. 1A). Across hemispheres, stimulation evoked four distinct potentials 
at 20, 60, 100 and 140 ms after stimulation (referred to as N20, P60, N100 and P140 in the following, 
see Fig. 2 A). The N20 was characterized by a bipolar pattern with a frontal vs. parieto-central gradient 
and a left preponderance, while the bipolar parieto-frontal topographies of P60 and P140 were less 
lateralized. The N100 topography and amplitudes appeared least consistent across recordings (Fig. 2).  
Next, we aimed to compute a model that represents the optimal EP pattern an effective electrode should 
ideally elicit to induce maximal symptom relief. Hence, for each element of the EP-map, amplitudes were 
correlated with contralateral upper limb percentage UPDRS-III improvements obtained for the same 
contact under high-frequency DBS across 58 hemispheres, leading to a matrix of correlation coefficients 
(R-matrix) (Fig. 1 B). The topography of the resulting R-matrix showed three main clusters of clinically 
relevant responses (Fig. 3). First, the N20 pattern formed a positively correlated band across central 

EEG channels. Second, for P60 there was a bipolar pattern with parieto-occipital channel amplitudes 
negatively and frontal channels positively correlated with motor improvements. Third, the amplitude  
of parietal and central channels around 100 ms was positively correlated with clinical improvements  
(Fig. 3). Importantly, the 100 ms response only became prominent after correlation with clinical 
improvements and was less saliently observed in the grand average (Fig. 2B and 3A). Last, the 
amplitudes of median central and frontal channels around the P140 peak negatively correlated with 
improvements, while left-lateralized central channel amplitudes (FC5 and C3) showed a positive 
correlation. 
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Figure 2. DBS-EP. A: Grand average deep brain stimulation-evoked potential (DBS-EP) time series of all 32 channels and 

standard error of the mean (shaded areas) across 58 hemispheres. In panels A and B channels are ordered along a fronto-

occipital gradient. Potentials are labeled in reference to the central channels dominating polarity (N20 for the first negative peak 

in central channels at 20 ms, N100 for the negative peak in central channels at 100 ms, P60 and P140 for the positive peaks at 

60 and 140 ms). B: Grand average EP map (channel x time) and topography plots averaged across the respective time windows 

of N20, P60, N100 and P140. C: Schematic visualization of DBS-EP generated with 2 Hz stimulation of the subthalamic nucleus 

(STN, shown in orange) across ipsilateral central and frontal cortical areas. The Big Brain template and DISTAL atlases were 

used as a backdrop image and for STN rendering respectively 24,25. The EP overlayed on top of a transparent volumetric rendering 

of a standardized cortical surface template in ICBM 2009b Nonlinear Asymmetric MNI space and the stimulation pulses next to 

the STN are schematic drawings.  

 
DBS-evoked potential topography explains variance in stimulation outcomes 
When correlating each EP-map with the R-matrix, the model explained ∼52% (R = 0.74; p = 7.9e-11) of 
variance within the whole sample. This analysis was circular and expresses the degree-of fit between 
data and model, reflecting the ceiling of how much variance the R-matrix could potentially explain. When 
subjecting the process to K-fold cross-validations (see Methods), the relationship remained significant 
(leave-one-hemisphere out design: R = 0.46, p = 3.3e- 4; leave-one-patient out design: R = 0.41, 
p = 1.1e- 4; 10-fold cross-validation: R = 0.49, p = 9.8e- 5; 5-fold cross-validation: R = 0.49, p = 9.4e- 5; 
see supplementary figure S3). This main analysis only considered ipsilateral and midline channels since 
the stimulation is known to produce EPs lateralized to the same hemisphere as the stimulated DBS 
electrode 26,27. However, when repeating the analysis including all 32 channels, cross-validations 
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remained significant with slightly worse correlation coefficients (leave-one-hemisphere out design: 
R = 0.36 at p = 0.006; leave-one-patient out design: R = 0.30, p = 0.023; 10-fold cross-validation: 
R = 0.35, p = 0.007; 5-fold cross-validation: R = 0.37, p = 0.004; see supplementary figure S4).  

 
Figure 3. R-matrix and cross-validations. A Scalp topography of the correlation matrix (R-matrix) quantifying the relationships 

between evoked potentials (EP) and clinical improvements (N = 58 stimulated hemispheres) and averaged across the same time 

windows as previously defined. This topography approximates an ‘optimal’ stimulation response associated with maximal clinical 

improvements. B The same R-matrix across channels and time and respective 2D channel topographies. C Similarity estimates 

between each EP-map and the R-Matrix significantly correlated with empirical upper limb UPDRS-III improvement across the 

cohort in circular analysis and when subjected to various cross-validation designs. Grey shaded areas along the regression line 

represent the 95% confidence interval. 

 
Segregated DBS-evoked potential topography for symptom-specific outcomes 
In an exploratory analysis, we aimed at testing whether the topography of EPs could also shed light on 
symptom-specific outcomes. To do so, we repeated the main analysis substituting global motor 
improvements with improvements in three symptom domains; namely upper limb bradykinesia, tremor, 
and rigidity. This revealed three distinct R-matrices with differing topographies (Fig. 4). The rigidity  
R-matrix showed dominance in positively correlated frontal channels, while the one for tremor displayed 
a positive correlation of parieto-central channels. The bradykinesia R-matrix revealed a similar pattern 
to the rigidity R-matrix, while several more central channels with positive correlation coefficients 
emerged. Overall, unsurprisingly, the bradykinesia R-matrix resembled the one for global UPDRS-III 
improvements most. The general gradient observed across the three symptom domains, which orders 
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symptoms as tremor → bradykinesia → rigidity from caudal to frontal, aligns well with symptom- 

specific results published in multiple literature findings9,28,29 (an example from a recent study that  
used tractography 9 is shown on the left for direct comparison in figure 4). Each symptom-specific  
model accounted for variance in symptom sub-score improvements (Rigidity: 83%; Bradykinesia: 49%; 
Tremor: 76%), however, these results are circular. When subjecting models to cross-validations, only 
the results for rigidity and bradykinesia remained significant, and much less so than for the global motor 
improvement model (supplementary figure S5). When each of the symptom-specific R-matrices was 

used to estimate the respective other two symptom improvements, the models failed to do so, except 
for the bradykinesia R-matrix estimating rigidity outcomes (supplementary figure S6). 
 

 
 

Figure 4. Symptom-specific correlation matrices (R-matrices) for the (dominant) N20 time point. The right side of the channel 

topography plot is blurred out (potentials are evoked by stimulation in the ipsilateral hemisphere, so all right-sided evoked potential 

recordings were flipped to the left before correlation, see Methods). The R-matrices show positive correlations only. The tremor 

R-matrix reveals positive correlations across parieto-central channels, while bradykinesia and rigidity display positive correlations 

at central and frontal channels. This topographical gradient aligns with the literature 9,28,29. An example of a recently published 

large-scale study that used tractography is shown in matching colors on the left 9. This study weighted fiber tracts from a normative 

structural connectome by symptom improvement. The horizontal dashed colored lines show the approximate weighted fiber peak 

for each of the three symptoms in relation to the R-matrix topography plots.  

 
DBS-evoked potential topography model outperforms imaging-based methods 
Given the R-matrix method was able to explain variance in clinical outcomes robustly, we intended to 
compare it with other methods that have been used to estimate DBS outcomes, such as DBS electrode 
reconstruction models 30. To do so, DBS electrodes were localized (supplementary Fig. S1), and electric 
stimulation fields (e-fields) were estimated for all patients included within the discovery cohort  
based on clinically applied stimulation parameters using the default pipeline of Lead-DBS v3.0 30  
(see supplementary table 1 for stimulation settings). We then applied two methods to set models in 
relationship with clinical outcomes. First, Euclidean proximity between clinical stimulation contacts and 
the coordinate of a published motor improvement sweet spot within the STN were calculated 31. 
Additionally, weighted volume overlaps between e-fields with the STN were computed. These two 
metrics had shown correlations with clinical improvements in the past 7,32. As in these earlier reports, 
here, the two measures significantly correlated with clinical improvements (proximity to coordinate: 
R = 0.33; p = 0.012; volume overlaps with STN: R = 0.28; p = 0.036; see supplementary figure S7). 
However, in direct comparison with the EP-based approach, no significant amounts of additional 
variance in clinical outcomes were explained by either of the two imaging methods when combined in a 
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linear model with EP-based estimates  (EP-based approach as quantified by similarities to R-matrix from 
10-fold-CV: βstd = 0.45; p = 3.9e-4; proximity to coordinate: βstd = 0.12; p = 0.346; volume overlaps: 
βstd = 0.20; p = 0.133; model R2 = 0.28; p = 6.2e-4).  
 
DBS-PULSE: DBS-evoked response pattern guides DBS contact selection  
Finally, to explore the potential application of the proposed method to select optimal stimulation contacts 
(DBS-PULSE concept), we tested the R-matrix model in prospective dry EEG recordings. We recorded 

a more extensive dataset in three independent patients (5 hemispheres), acquiring EEG data for each 
of the four stimulation contact levels per hemisphere. This resulted in a total of 20 EP-maps which were 
again correlated with the R-matrix (generated based on the discovery cohort data, N = 58 hemispheres) 
to suggest optimal contacts. Frankly, each contact’s EP was spatially correlated with the R-matrix, and 
the resulting spatial correlation coefficients were used to rank the four contacts for each electrode. For 
each contact level, we determined the clinical effect threshold (minimum stimulation amplitude to reach 
a clinical improvement) as well as the therapeutic window (amplitude difference between clinical 
improvements and occurrence of side effects). When looking at each electrode separately, the method 
correctly ranked the DBS contact with the largest therapeutic window and lowest clinical threshold in all 
5 hemispheres, which is significantly more than what can be expected by chance (p = 9.8e-4; binomial 
test under the null hypothesis that the algorithm selects a contact randomly with a 25% chance). Spatial 
correlation coefficients of each EP (test cohort) to the R-matrix model (discovery cohort) explained 
∼44% of variance in clinical effect thresholds (R = 0.79; p = 0.002; note, that thresholds were inverted 
for ease of reading figures, see Fig. 5A), indicating, as expected, low effect thresholds for contacts with 
high similarity to the R-matrix. To account for repeated measures per hemisphere, we fitted a linear 
mixed-effect model with the similarity coefficients as fixed and hemisphere as random effect. This model 
explained significant amounts of variance in both clinical effect thresholds (βstd = 0.79; p = 1.16e-4) and 
therapeutic windows (βstd = 0.52; p = 0.03).  
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Figure 5. DBS-PULSE suggests optimal DBS contacts. A Correlation of clinical effect thresholds (minimum stimulation 

amplitude to reach clinical improvements) and similarity estimates between each DBS contact’s evoked potential (EP)-map and 

the correlation matrix (R-Matrix) from the N = 58 discovery cohort. The more similar the EP-map, the lower was the effect threshold 

for this particular deep brain stimulation (DBS) contact (x-axis inverted for ease of reading the figure). Dots are color-coded for 

each of the five hemispheres that were tested across three prospective patients. B, C Correlations of estimated (fitted) and 

empirical clinical effect thresholds and therapeutic windows (relative amplitude difference between clinical improvements and 

occurrence of side effects) when included in a linear mixed effect model that accounts for hemisphere as a random effect. The 

colored lines represent the fit within each individual hemisphere. D DBS electrode localizations labeled with the respective clinical 

effect thresholds. Arrows indicate the best (red), or worst (blue) clinical contact level(s) selected based on clinical testing (ground 

truth) and EEG-EP analyses (suggestion by the model).  
 
To assess the method’s applicability in clinical practice, we wanted to evaluate whether recording 
durations as carried out here were necessary, or whether even shorter recording sessions could be 
equally informative. We therefore repeated the contact selection analysis for various recording durations 
(i.e. only using the first x seconds of recordings; see supplementary figure S8), ranging from less than 
20 seconds (100 stimulation pulses/epochs) to about 2 and a half minutes (800 epochs). Besides the 
linear mixed effect model’s beta coefficients, we computed a receiver operating characteristic curve 
(ROC) for each recording duration. While beta coefficients remained stable for recording times of over 
50 seconds (= 300 epochs), only at recording times of over 100 s (= 600 epochs), the ROC analysis 
began to indicate good discriminative abilities (AUC > 0.7), which is still significantly shorter than the 
recordings we carried out (~960 epochs on average). Based on this analysis, recording times to suggest 
contact selections should at least have durations between 50 to 100 seconds per contact. This would 
amount to a total recording time between 6 and 10 minutes for 8 DBS electrode contacts. 
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Discussion 
 
Using a 32-channel dry EEG system, we recorded cortical potentials evoked by stimulation from 78 
electrode contacts in 32 patients with Parkinson’s disease. The grand average EP revealed a fronto-
central bipolar topography with peaks around 20, 60, 100, and 140 ms following the stimulation pulse. 
Based on our discovery cohort, which included 58 stimulation sites and a total of 57,503 stimulation 
epochs, we created a model of optimal EP topography (R-matrix). This optimal model approximates the 
EP pattern an effective electrode should ideally elicit to induce maximal symptom relief. Similarities of 

individual EP patterns to this optimal response model were able to estimate significant amounts of 
variance in empirical UPDRS-improvements, when subjecting the process to various cross-validation 
designs. When computing the R-matrices based on symptom sub-score improvements, we observed 
symptom-specific EP topographies, that were especially distinct for rigidity and tremor, while 
bradykinesia matched the global improvement model. In direct comparison to imaging-based measures, 
the EP-based model explained additional amounts of variance in empirical total UPDRS-III 
improvements. Finally, we tested whether the model was capable of selecting the optimal contact in 
prospective recordings where we activated each of four contact levels per electrode, independently. 
This process, which we term ‘PULSE-DBS’, correctly identified the best stimulation contact in five out of 
five tested hemispheres. 
 
Several studies have investigated the mechanism of how EPs are generated. Potentials at latencies 
between 2 and 10 ms seem to result from an antidromic activation of the cortico-subthalamic 
‘hyperdirect’ pathway which is also reflected by their cortical distribution 6,33,34. Potentials with longer 
latencies were hypothesized to instead originate from an orthodromic activation of the basal ganglia-
thalamo-cortical loop and localized to the motor cortex and prefrontal areas 6,34,35. Importantly, the 
primary focus of our study was not to investigate mechanistic aspects of EP generation and was not 
geared towards analysis of early EPs (i.e. 2-10 ms). First, our recording setup did not allow an analysis 
of potentials with latencies shorter than 10 ms (supplementary Fig. 2 D), given artifacts from monopolar 
DBS shadow this time window. Additionally, short latency EP are only a few milliseconds long, while 
with our sampling rate of 500 Hz, only 2 samples were recorded per millisecond. Second, the spatial 
resolution of 32-channel dry EEG is limited and did not allow for a thorough differentiation of cortical 
sources underlying EP generation as previously studied 6. Third, to gain an actual mechanistic 

understanding of EP at the cortical level, subcortical alongside cortical recordings would be optimal 36.  
 
Instead, the goal of our study was to test the clinical utility of a setup that could be applicable in clinical 
practice. We introduce a novel concept that utilizes the stimulation response pattern across the entire 
sensor space (and thus entire cortex) and is naïve to absolute magnitudes of EPs but rather leverages 
the relative distribution of EPs across the cortex as well as their time course. This being said, the data 
used in the algorithm was limited to longer latency EPs, namely as observed at 20, 60, 100 and 140 ms 
post-stimulus onset, while not restricting the analysis to any one chosen EP component. 
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Several studies before the present one have also focused on EP at latencies longer than 10 ms 
6,14,16,34,37. These have been shown to correlate with clinical improvements along with short latency 
potentials in patients with Parkinson’s disease 6,16,37. Long-latency potentials have further been 
conceptualized to occur from resonant phenomena within the basal ganglia-cortical circuitry, with a 
preferential propagation of activity around ~20 Hz 26,37. The frequency of the grand average EP that we 
recorded only roughly matched a 20 Hz resonant oscillation (Fig. 2). The R-matrix, however, showed a 
more pronounced peak around 100 ms across parietal and central channels alongside a frontal 60 ms 

and a central 20 ms peak, which would constitute a ~25 Hz resonant oscillation.  
 
Critically, besides the resonance of EP (time axis), our model was informed by the topography changes 
(spatial/channel axis) across time. Consistent with previous work 6,26, the N20 was distributed along 
fronto-central channels. The EP topography at longer latencies has only been studied with a few EEG 
channels so far, with the largest amplitudes recorded in frontal channels 14, which is also in agreement 
with our results (Fig. 2B). When correlating the EP-maps with clinical improvements, the pattern for the 
N20 changed toward a positively correlated band across central channels (Fig 3 A). Previous findings 
indicated relationships between N20 amplitudes and motor improvements for motor cortex and 
supplementary motor area but not for other frontal areas 6. Additionally, the R-matrix highlights a 
positively correlated pattern at parieto-central channels around 100 ms. In the grand average, there was 
no pronounced peak around this latency. This could point toward a clinically beneficial EP pattern, that 
is dominated by high beta resonance with an inter-peak distance of about 40 ms.  
 
When computing symptom-specific R-matrices, we observed three distinct ‘optimal’ EP topographies 
that were dominated by frontal correlations in the case of rigidity and parieto-central correlations for 
tremor (Fig. 4). This symptom-specific gradient aligned with prior literature results, 9,28,29 including a 
recent large-scale study that investigated a total of 237 patients 9. Notably, the gradient observed for 
EEG recordings at channel and scalp level is not well resolved anatomically and can only be interpreted 
as a rough estimate of the actual cortical distribution. Still, our data suggest, that the segregated 
topography could help guide a more personalized programming approach that could go above and 
beyond optimizing global motor improvements. Such an approach could further be informed by baseline 
symptom sub-scores, yielding a personalized symptom-weighted model for individualized DBS 
parameter selection as previously suggested in the framework of ‘network blending’ 9,38.  

 
Our study addressed several aspects of clinical applicability for EP-guided DBS programming. First, the 
32-channel dry EEG system tested to record DBS-EP can be set up within a few minutes and appears 
robust against monopolar DBS pulses, allowing us to study EP as early as 20 ms after the stimulation 
pulse (supplementary Fig. 2 D). Second, even though medication effects on longer latency potentials 
have been described 26, we purposefully chose to record patients in the condition in which they would 
usually visit an outpatient department (best medication ON) to potentially prevent the necessity of a 
medication off-state for an EP-guided programming approach. Third, we tested the downscaling of the 
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recording time to enable a relatively quick EP recording during or shortly before an outpatient clinic 
appointment. Hypothetically, with a fixed stimulation amplitude for all contacts, the process of contact 
selection could be concluded within about 10 minutes (50-100 seconds per contact) for 8 DBS electrode 
contacts based on our recording duration analysis (see supplementary figure S8) after a ~2-5 minute 
set up time. Fourth, the analysis pipeline was kept simple to enable an easy and automated approach 
to data cleaning and results. Even when considering the time for manual EEG data analysis steps, with 
10 minutes of EEG data, the amount of time for clinical programming and testing with bothersome 

symptoms and side effects for the patient would still be remarkably reduced. Additionally, the model 
seems to be generalizable toward novel data, as shown using both cross-validations and hold-out test 
set application. In other words, based on these results, no further training of the model would be 
necessary to apply it to unseen cases. 
 
Despite these advantages of the approach, several limitations should be considered when interpreting 
results. First, we only focused on upper limb UPDRS improvements when evaluating patients alongside 
the dry EEG recordings. This might reduce the applicability of our results to lower limb motor function 
and axial symptoms such as gait. Still, in many centers, upper limb symptoms are exactly what is being 
measured during monopolar review testing, i.e. the standard of care in the first stage of programming 
does not take other symptoms into account, either. Second, our approach will be limited to contact 
selection and given the fixed amplitude and frequency design of the experiment, no inferences on the 
optimal stimulation amplitude or frequency can currently be made. Yet, even with contact selection 
alone, the approach would present a useful clinical tool to speed up DBS programming. Moreover, in 
disorders in which stimulation effects are less immediate or even prolonged, such as dystonia or 
depression, biomarkers for contact selection and therapeutic success could considerably improve the 
success of DBS 39–41. Still, further studies are needed to test the applicability of our approach in other 
disorders and symptoms above and beyond the motor domain, and different R-matrix models need to 
be trained for other disorders and DBS targets. Third, our prospective results are limited to 20 DBS 
contacts sampled in only five hemispheres (three patients). Future studies to prospectively validate the 
approach in a double-blind randomized clinical trial will be necessary to assess non-inferiority or even 
superiority to standard of care clinical testing using monopolar reviews. Fourth, even though our method 
selected the correct clinical contact level in all of the five hemispheres, we did not test for directional 
DBS contacts and most of the patients in the discovery cohort were stimulated with omnidirectional 

stimulation settings. Previous work suggests that DBS-EP might be capable of indicating the optimal 
stimulation direction in segmented leads 16. However, differences across segmented contacts were 
small and future studies with a model trained on both directional and omnidirectional contacts are 
needed. Lastly, our approach could further benefit from advanced signal processing methods, such as 
spatial filtering, that could enhance the model’s performance and enable detecting e.g. small differences 
of spatial patterns between directional DBS contacts 42.  
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In conclusion, we present a novel approach, DBS-PULSE, that proved useful for identifying the optimal 
stimulation contact and would be clinically applicable at scale. Future validations in larger patient 
populations will be critical to further confirm findings on our model’s performance for DBS contact 
selection. 
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Methods 
 
Recruitment and clinical data collection 
We recruited 32 patients (11 female; mean age: 60.4 ± 6.8 years) with Parkinson’s disease from the 
Department of Neurology at Charité – Universitätsmedizin in Berlin, Germany and obtained written 
informed consent of all patients prior to study inclusion. Three out of 32 patients were recruited  
upon completing the primary analysis and recruitment of the discovery cohort for prospective  
validation (test cohort) and underwent more extensive recordings (see below). The study protocol is in 

accordance with the Declaration of Helsinki and was approved by the local ethics committee at Charité  
(Ethic proposal number EA2/247/21). LEDD were calculated based on the standard procedure 
described in the literature 43 and individual LEDD, chronic DBS settings and other patient demographics 
are reported in supplementary table S1.  
 
Data acquisition 
We used a 32-channel dry EEG system (Starstim 32, Neuroelectrics, Cambridge, MA, USA) and 
acquired resting state data referenced to the right ear electrode with a sampling rate of 500 Hz. In a 
discovery cohort of 29 patients, we recorded dry EEG data during unilateral STN stimulation at the 
individual clinically established stimulation contact (see supplementary table S1) with a frequency of 2 
Hz and a stimulation amplitude of 8 mA for 10 minutes in each hemisphere (N=58). Given the low 
stimulation frequency, these amplitudes were tolerated well by the participants. We purposefully chose 
high stimulation amplitudes to elicit strong and sustained EP over the time course of the inter-pulse 
interval. During stimulation of the left STN, the right STN electrode was turned off and vice versa. In the 
discovery cohort, the stimulation frequency was set to 2 Hz to enable the analysis of long-latency EP 37. 
This decision was also related to the fact that we kept the clinically used monopolar stimulation montage 
at the chronic stimulation contact and that together with the relatively low sampling rate these artifacts 
might prevent the analysis of short latency EP 6,13,34. After the recording, UPDRS upper limb motor 
scores were assessed (UPDRS-III items 3.3-3.6; 3.15-3.17) under stimulation switched off and after at 
least 30 minutes of high-frequency stimulation at chronic DBS settings. To characterize potential 
artifacts affecting the dry EEG recordings, we produced a conductive gelatine phantom for combined 
EEG-DBS recordings. An openly available phantom model for EEG recordings was used to print a mold 
using a commercially available 3D printer 44. Two DBS electrodes were introduced into the gelatine and 

connected to an impulse generator (supplementary Fig. S2 B). Stimulation was applied with the same 
settings as in the patient recordings.  
 
In three of the 32 recruited patients, that were not included in the discovery cohort, we prospectively 
recorded a validation dataset. To reduce the recording time, we increased the stimulation frequency to 
6 Hz and recorded 2.5 minutes of dry EEG data per stimulation contact level (10 minutes per 
hemisphere). This adjustment was justified by our observation in the discovery cohort that no clear EP 
was detected after 200 ms. In one of the three patients, we only acquired data in one hemisphere due 
to extended recording time caused by reference electrode issues, which were resolved but which 
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prolonged the session. Consequently, we could complete data acquisition for only one hemisphere 
before the patient became too tired to continue without the clinically effective stimulation. We determined 
the clinical effect thresholds for each electrode level in the three patients based on the earliest clinically 
relevant improvement of contralateral upper limb bradykinesia and rigidity as well as side effect 
thresholds at the earliest sustained side effect in a separate testing session in medication off-state 
(standard of care). 
 

Data analysis 
The EEG data of patient and phantom recordings was analyzed with Brainstorm 45. The data was visually 
inspected for artifacts and bad segments and channels were rejected. Subsequently, bad channels were 
interpolated using the surrounding channels. We applied a high pass filter at 4 Hz. This relatively high 
filter frequency was chosen, given the time scale of our EP analysis with a time range of interest of 100 
to 200 ms, which is considerably shorter than the temporal dynamics captured by these low frequencies. 
We then re-referenced the data to the average across channels. We used the custom peak detection 
algorithm as implemented in Brainstorm to detect the stimulation artifact with a threshold of 2 standard 
deviations and a minimum inter-stimulus interval of 490 ms (150ms for the 6 Hz DBS recordings) in a 
visually selected channel, that showed the largest stimulation artifact. Then, we epoched the data based 
on the detected stimulation artifacts with a baseline period of 100 ms before the stimulation pulse and 
400 ms of data after (16 ms before and 150 ms after in the case of 6 Hz DBS in the test cohort data). 
After the rejection of bad segments (20.7 % of epochs) an average of 958 (± 236) epochs were included 
(total number of epochs across all recordings: 57,503). The average across epochs was calculated per 
hemisphere resulting in a total of 58 amplitude maps (EP-maps): 32 channels x time [-50, 450 ms] (see 
Fig. 1 A). The phantom EEG data was processed using the same pipeline.  
 
To compare the stimulation artifact between phantom and patient recordings, the absolute EP were 
averaged across all EEG channels for the phantom and two representative patient recordings 
(supplementary Fig. 2). Then, a logarithmic scale was chosen to show the stimulation artifact alongside 
the EP on one scale (supplementary Fig. 2). Given the slightly different topography of the DBS artifact 
in phantom and patient recordings, it was necessary to average across channels and to use absolute 
amplitudes to be able to make artifacts comparable. We additionally generated an EP map for both 
phantom and patient recordings and overlaid the two to visualize artifact and EP across different 

channels. One of the two representative patients was selected and the average across epochs for the 
right STN stimulation was used to create an EP-map (Fig. 1 A). Then, the same steps were applied to 
a right sided phantom stimulation file. We calculated a mask across time points and channels indicating 
where the phantom EP-map showed a higher amplitude than the patient recording for the respective 
channel and time point. Then we applied the mask to the phantom file, by setting the respective values 
to 1 and every other value to 0. This mask was then plotted on top of the patient EP-map (Fig. 2 E).   
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The 58 average EP-maps were now used to create an ‘optimal’ EP-map, indicating the pattern and 
amplitude across channels and time that is associated with UPDRS improvement (Fig. 1B). This 
‘optimal’ map was created using an element wise correlation with the percentage improvement in 
contralateral hemi-body UPDRS scores following a mass-univariate model approach 23. Before 
correlating the EP-maps with clinical improvement, we masked them to the relevant time window 
between 10 ms and 200 ms after the stimulation pulse (10 ms and 150 ms for the prospective recordings 
with 6 Hz DBS) and flipped the maps by assigning right to left channel labels for the right STN-DBS 

recordings (e.g. channel signal C4 was assigned to C3 etc.). After all right stimulation recordings were 
flipped to the left, we selected the left-sided channels (Fp1, AF3, C3 etc.) as well as the midline channels 
(Fz, Cz, Pz and Oz) for further analysis (= 18 channels). These steps were also performed for the 
prospective patient recordings. An additional analysis with all 32 channels is shown in supplementary 
figure S4.  
 
We repeated the element-wise correlation with the percentage improvement in contralateral upper limb 
symptom sub-scores (rigidity: 3.3 b-c; bradykinesia: 3.4-3.6 and tremor: 3.15-3.17) and plotted the R-
matrices (Figure 4 and supplementary figure S5) for exploratory analysis. For each of the symptom 
improvements, patients with baseline symptom scores of less than 2 points were excluded. Hence, for 
rigidity a subset of 21 and for tremor a subset of 8 hemispheres were included. As the defining symptom 
for Parkinson’s disease, bradykinesia was present in all patients at baseline (N=58).   
 
DBS electrode localization and imaging-based analysis 
DBS leads were localized using Lead-DBS v3.0 for all patients as previously described 30,46. 
Postoperative CT and preoperative MRI were co-registered and non-linearly warped to ICBM 2009b 
Nonlinear Asymmetric (‘MNI’) space using Advanced Normalization Tools (ANTs, 
https://stnava.github.io/ANTs/). Following brain shift correction due to possible pneumocephalus, the 
non-linear warp was manually refined with focus on the STN region as the target zone of interest using 
WarpDrive 32,47. Then, electrode trajectories were reconstructed using PaCER 48 in case of postoperative 
CT images or TRAC/CORE 49 if postoperative MRI scans were available. Last, the chronic DBS settings 
(supplementary table S1) were used to compute the Euclidean proximity to published motor symptom 
improvement sweet spot coordinates in MNI-space ([± 12.42, - 12.58, - 5.92 mm]) 31. Additionally, we 
computed the volume overlap of electric stimulation fields (E-fields) with the STN in native space. To 

this end, the chronic DBS settings were used to compute E-fields using recently developed methods 
and the overlap with the STN outline in native patient space was computed for each hemisphere and 
correlated with % UPDRS improvements 50. 
 
Statistics & model Validations 
The correlation matrix (R-matrix) has the same dimensions as the masked EP-map and consists of 
correlation coefficients indicating the relationship to motor outcomes across hemispheres (18 channels 
x time [10, 200 ms]). To test how much variance the R-matrix is able to explain in this dataset, we 
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correlated all of the individual EP-maps with the R-matrix based on the full cohort. The resulting 
correlation coefficients (i.e. spatial correlations/similarities) can serve as estimates of the empirical 
improvements. We thus correlated empirical improvements and similarities to the R-matrix to calculate 
the ceiling of variance explained by the model. Since we use the same EP-maps to generate the R-
matrix that we later correlate it with, this analysis is circular and can solely express the overall variance 
that can be explained by the model. Thus, to validate the R-matrix model, we subjected it to leave-one 
hemisphere-out cross-validation. The similarity between each left out hemisphere’s EP-map and the R-

matrix was calculated as an estimator of clinical improvement by correlating the two matrices. Iteratively, 
the process was repeated, each time leaving out one hemisphere from the R-matrix calculation. The 
similarities to the respective R-matrices were then correlated with the empirical improvements across 
all hemispheres. To account for potential similarities between the two EP-maps based on left and right 
sided stimulation recorded in the same patient, we performed a leave-one-patient out analysis as well. 
Additionally, the data was subjected to a 10-fold and 5-fold cross-validation essentially shuffling the data 
to 10 or 5 folds, building an R-matrix with all but one-fold and using the latter to calculate the similarities 
to the R-matrix (see supplementary figure S3 and S4). All analyses were carried out using a two tailed 
correlation test (Spearman’s rho). 
 
Also, the symptom-specific R-matrices were subjected to cross-validations. For the tremor R-matrix, 
only leave-one-out cross-validations could be applied, given the small sample size. Given the 
hypothesis-driven, exploratory nature of the symptom-specific R-matrix analysis and given that in cross-
validation experiments, only positive correlations are valid, we employed a one-sided (right-tailed) 
significance test for the correlation. Additionally, the symptom-specific R-matrices were used to estimate 
improvements in each of the other symptoms. To this end, each symptom R-matrix was correlated with 
each individual EP-map in a leave-one-out design and the three similarity values per hemisphere  
were each correlated with tremor, rigidity and bradykinesia outcomes resulting in a 3 x 3 matrix  
(see supplementary figure S6). 
 
To compare the R-matrix approach with two imaging-based methods to estimate DBS outcomes, we 
computed the Euclidean proximity between clinical stimulation contacts and the coordinate of a 
published motor improvement sweet spot within the STN as well as the weighted volume overlaps 
between e-fields with the STN (see above). These two metrics were then correlated with the percentage 

UPDRS-III improvements using two tailed correlation tests (Spearman’s rho). To directly compare the 
amounts of variance in DBS outcomes that were explained by each of the imaging-based and the EEG 
method, we fitted a linear model. In this model, we included (1) the spatial correlations of individual 
unseen EP-maps with the R-matrix from the 10-fold-cross validation (see above), (2) the Euclidean 
proximities, as well as (3) the weighted volume overlaps as independent variables and the percentage 
UPDRS-III improvement as the dependent variable. 
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To test if the R-matrix can be used to determine the optimal stimulation contact in unseen patients based 
on dry EEG recordings (DBS-PULSE concept), we used the prospective validation dataset consisting of 
EP-maps for 20 contacts in five hemispheres. We correlated the 20 EP-maps with the R-matrix that was 
based on the discovery cohort to estimate improvements for each of the contacts. We then correlated 
the similarities to the R-matrix with therapeutic effect thresholds previously determined for each of the 
contacts (Fig. 5 A). To account for the repeated recordings per hemisphere, we additionally fitted a linear 
mixed-effect model to relate R-matrix similarities (fixed effect) to therapeutic thresholds in mA and 

relative therapeutic windows in % (therapeutic window in mA divided by therapeutic threshold in mA). 
Hemisphere was modelled as a random effect. We determined the optimal contact based on the lowest 
clinical threshold and the largest therapeutic window and compared that contact to the DBS contact that 
showed the highest EP-map similarity to the R-matrix. To assess whether this selection (based on the 
EP-map’s similarity) was better than chance, we conducted a binomial test under the null hypothesis 
that the algorithm selects a solution randomly (p = ¼= 25%; i.e. 1 out of 4 contacts), and estimated the 
probability of obtaining five correct selections out of five trials by chance, which we report as a p-value.  
 
To determine if the time for dry EEG recordings could be reduced, we repeated the linear mixed effect 
model analysis for different numbers of epochs from the full dataset (100, 200, 300, 400, 500, 600, 700, 
and 800 epochs), equivalent to recording durations of ~20 to 130 seconds, when a stimulation frequency 
of 6 Hz was applied. Additionally, we conducted an exploratory receiver operating characteristic- (ROC) 
analysis to assess the performance of our model at each of the recording durations. This analysis was 
conducted based on a contact selection variable (considering both, lowest clinical threshold and largest 
therapeutic window) and used the similarity of the respective contact’s EP-map for contact selection with 
the highest similarity indicating the best DBS contact.  
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Supplementary Table 1. Patient demographics. Sex, Age in years, LEDD in mg, DBS parameters for left and right 
STN (STN L and STN R), UPDRS III items 3.3-3.6; 3.15-3.17 scores for Stimulation Off and On state, DBS system 
(MDT=Medtronic, BSC= Boston Scientific). Mean and standard deviation are provided for Age, LEDD and UPDRS 
scores. LEDD (levodopa equivalent daily dose) in mg was calculated based on Jost et al. Mov Dis 2023. 
 
 
 

  UPDRS  DBS Parameters  

ID Sex Off On LEDD STN L STN R Electrode 
model 

01 f 15 11 390 3- / C+; 1.4 V 1- / 0,2+; 1.3 V MDT 3389 

02 m 15 12 665 4,5- / C+; 3.0 mA 4,5- / C+; 3.1 mA BSC Vercise 

03 m 19 13 739 1abc- / 2abc+; 3.6 mA 1abc-/2abc+; 3.6 mA MDT B33005 

04 m 21 8 100 1abc,3- / C+; 1.0 mA 3abc- / C+; 1.6 mA MDT B33005 

05 m 17 17 675 1abc- / C+; 1.5 mA 1abc- / C+; 2.6 mA MDT B33005 

06 m 22 9 450 2abc- / C+; 1.0 mA 2ab- / C+; 3.6 mA MDT B33005 

07 m 23 14 475 2- / C+; 1.3 mA 2,3,4- / C+; 3.6 mA BSC Vercise 

08 m 18 6 526 2,3- / C+; 2.6 mA 3,4- / C+; 2.6 mA MDT 3389 

09 f 14 9 839 2abc- / C+; 1.4 mA 1- / C+; 3.5 mA MDT B33005 

10 m 21 15 575 3abc- / C+; 1.9 mA 2abc- / C+; 1.9 mA MDT B33005 

11 m 11 5 805 7,8,9- / 4,5,6+; 2.7 mA 7,8,9- / 4,5,6+ / 2.2 mA BSC Cartesia  

12 f 18 15 495 2 to 7- / C+; 3.9 mA 2,3,4,5,6,7- / C+; 1.8 mA BSC Vercise 

13 m 23 5 980 1,2abc- / C+; 2.3 mA 1abc,2abc- / C+; 2.3 mA MDT B33005 

14 f 11 2 600 2abc- / 3+; 3.0 mA 1abc- / C+; 2.5 mA MDT B33005 

15 m 26 22 575 5,6,7- / C+; 3.0 mA 5,6,7- / C+; 2.0 mA BSC Vercise 

16 m 21 13 1114 1- / C+; 4.4 mA 3- / C+; 3.8 mA MDT 3389 

17 f 22 15 235 2c-,3- / C+ 2.4 mA 1a,2a,3- / C+; 2.4 mA MDT B33005 

18 m 15 6 750 1abc- / C+; 1.5 mA 1abc- / C+; 1.5 mA MDT B33005 

19 f 25 16 352 2abc,3- / C+; 3.2 mA 2abc / C+; 2.4 mA MDT B33005 

20 m 22 8 325 0- / C+; 3.1 mA 1- / C+; 2.2 mA MDT 3389 

21 m 18 8 300 1abc- / C+; 2.2 mA 1abc- / C+; 1.4 mA MDT B33005 

22 m 23 5 725 1abc- / C+; 2.4 mA 1abc- / C+; 2.4 mA MDT B33005 

23 m 10 3 400 2abc- / C+; 1.5 mA 2abc- / C+; 1.5 mA MDT B33005 

24 f 27 6 1000 1abc- / C+; 2.0 mA 1abc- / C+; 2.4 mA MDT B33005 

25 f 21 9 937 1- / 2+; 2.9 mA 2- / 1+; 1.9 mA MDT 3389 

26 m 16 10 1075 0- / C+; 1.4 mA 2abc- / C+; 1.8 mA MDT B33005 

27 m 19 13 350 2abc- / C+; 2.5 mA 2abc- / C+; 3.4 mA MDT B33005 

28 f 16 10 525 1abc- / C+; 2.5 mA 1abc- / C+; 2.8 mA MDT B33005 

29 f 20 5 200 1abc- / C+; 2.5 mA 1abc- / C+; 2.9 mA MDT B33005 

30 m - - 1075 1abc- / C+; 1.9 mA 2abc- / C+; 1.7 mA MDT B33005 

31 f - - 525 1abc- / C+; 1.5 mA 1abc- / C+; 1.5 mA MDT B33005 

32 m - - 798 1a-,2a- / C+; 3.6 mA 1a-,2a- / C+; 4.5 mA MDT B33005 
Mean 11 f 18.9 10.0 612    

Std  4.4 4.7 273    
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Supplementary Figure S1. DBS electrode localization (view from posterior-superior). DBS electrodes (N = 32) are 
visualized in MNI-space within both STN and chronic stimulation contacts are highlighted in red. As a backdrop 
image the Big Brain Atlas was used (Amunts et al. 2013). 

 
Supplementary Figure S2. A-C: Dry EEG phantom setup. A: gelatine EEG phantom produced using a 3D-printed 
mold 44. B: Deep brain stimulation (DBS) electrodes introduced in gelatine and extension cables attached to the 
phantom head. C: 32-channel dry EEG cap on the conductive gelatine phantom. D: DBS artifact comparison 
between phantom recording (grey) and two representative patient recordings (see below). In the graph the average 
across channels and the standard error of the mean (shaded areas) are depicted. The amplitude is displayed on a 
logarithmic scale to visualize the high amplitude of the stimulation artifact alongside the evoked potential (EP). The 
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20 ms – response (N20) may be distinguished from the artifact decay after around 10 ms following the DBS pulse 
(time point 0). E: Average DBS-EP in a representative patient across dry EEG channels and time with color-coded 
amplitudes. The grey overlay represents the time periods in which the phantom recording had a higher amplitude 
than the patient recording for the respective channel and time point. 
 

Supplementary Figure S3. Cross-validation results using left channels. Correlation plots for each of the cross-
validations using similarities to the R-matrix. LOO-CV= leave-one-hemisphere out cross-validation; LOPO-CV= 
leave-one-patient out cross-validation.  

Supplementary Figure S4. Cross-validation results using all 32 channels. Correlation plots for each of the cross-
validations using similarities to the R-matrix. LOO-CV= leave-one-hemisphere out cross-validation; LOPO-CV= 
leave-one-patient out cross-validation.  
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Supplementary Figure S5. Cross-validation results using left channels for the symptom-specific R-matrices (right 
column shows average R-matrix topography from 15 to 40 ms). Correlation plots for each of the cross-validations 
using similarities to the R-matrices. Since in cross-validation experiments, only positive correlations are valid, we 
applied one-sided tests. For tremor, only a leave-one-out cross-validation design was tested, given the small sample 
size (N = 8) of patients that had at least 3 tremor points at baseline. 
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Supplementary Figure S6. Cross-validation results using left channels for the symptom-specific R-matrices 
estimating each of the other as well as the same symptom improvements (each column represents the UPDRS 
improvements for the symptom subitems and each row the symptom R-matrices that were used to estimate the 
improvements). Correlation tests were one-sided. The diagonal correlation plots are identical to the leave-one-out 
analysis shown in supplementary figure S5.  
 

Supplementary Figure S7. Imaging-based analysis. Correlations between distance to the motor improvement 
sweet spot (Caire et al.) and the e-field volume overlap with the STN (Ewert et al. 2018) with empirical UPDRS 
improvements. The middle panel shows two representative DBS electrodes from patient #7 and #13 in the right 
STN, that showed optimal (#13, red) and suboptimal (#7, blue) improvement, also reflected by the distance of the 
active electrode contacts (red) to the motor improvement sweet spot. 
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Supplementary Figure S8. Standardized Beta coefficients (bstd) for the linear mixed effect models and area under 
the curve (AUC) values for receiver operating characteristics curve (ROC) analysis on the prospective validation 
cohort. The linear mixed effect model fits the relationship between the spatial similarity of the respective DBS 
contact’s EP-map to the R-matrix and the clinical effect threshold (lowest stimulation amplitude eliciting a clinical 
effect) as well as the therapeutic window (relative difference between the stimulation amplitude needed for a clinical 
effect and the amplitude eliciting side effects). The ROC analysis was conducted based on a contact selection 
variable (considering both, lowest clinical threshold and largest therapeutic window) and used the similarity of the 
respective contact’s EP-map for contact selection. Each of the three measures, beta coefficient for clinical threshold 
and therapeutic window as well as AUC were computed for an increasing number of stimulation epochs per 
recording and are shown together in one plot. At the chosen stimulation frequency of 6 Hz, the recording duration 
of 20 seconds is equivalent to 120 stimulation epochs and 130 s equivalent to 800 stimulation epochs. While beta 
coefficients were stable until a recording time of around 50 seconds (= 300 epochs), the AUC indicates a decreasing 
discriminative ability of the method. Only at more than 100 s (= 600 epochs) recording time, the ROC analysis 
indicated good discriminative abilities (AUC > 0.7) of the method. 
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