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Abstract 24 

IMPORTANCE As individuals age, they often face a variety of health challenges. Physical 25 

resilience indicates how well a person can cope with and recover from physical challenges, 26 

which is crucial for maintaining independence and quality of life in older age. 27 

 28 

OBJECTIVE To develop a multivariate phenotype of physical resilience based on individual 29 

recovery dynamics before and after a clinical stressor. 30 

 31 

DESIGN, SETTING, AND PARTICIPANTS This observational study included 112 32 

individuals aged 60 and older who underwent elective total knee replacement for degenerative 33 

joint disease between December 2, 2019, and January 4, 2023. Physical function was assessed 34 

before surgery and at 1, 6, and 12 months post-surgery to characterize resilience trajectories. 35 

 36 

EXPOSURE Elective total knee replacement surgery for degenerative joint disease. 37 

 38 

MAIN OUTCOMES AND MEASURES A multivariate resilience phenotype was derived from 39 

physical function trajectories assessed using the Short Physical Performance Battery, the 40 

Pittsburgh Fatigability Scale-Physical Subscale, the KOOS Quality of Life, and the SF36-41 

Physical Component Score. This phenotype was validated against surrogate markers (i.e., frailty, 42 

self-reported health) and determinants (e.g., the Charlson Comorbidity Index) of recovery 43 

potential (aka resilience capacity). 44 

 45 
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RESULTS The study identified distinct resilience profiles across four measures: 4 profiles for 46 

the Short Physical Performance Battery and the KOOS Quality of Life, 3 each for the Pittsburgh 47 

Fatigability Scale-Physical Subscale and the SF36-Physical Component Score, showing varied 48 

baseline levels and/or change rates over 12 months. By combining and analyzing resilience 49 

profiles across measures, two distinct groups emerged: 35.7% classified as non-resilient and 64.3% 50 

as resilient. The non-resilient group had a higher prevalence of frailty (35.0% vs. 9.7%, p<0.01), 51 

poor or fair self-reported health (45.0% vs. 5.6%, p<0.01), and a moderate/severe comorbidity 52 

burden (Charlson Comorbidity Index >2; 27.5% vs. 11.1%, p=0.06). 53 

 54 

CONCLUSIONS AND RELEVANCE The distinct recovery trajectories observed after the 55 

surgery indicated varying resilience levels that were not fully explained by baseline status. This 56 

research underscores the importance of resilience in surgical recovery and could pave the way 57 

for better patient care by focusing on individual resilience capacities and shifting the focus from 58 

managing health conditions to promoting recovery and overall well-being. 59 

  60 
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Key Points 61 

Question: Can recovery trajectories of physical function following total knee replacement 62 

surgery serve as indicators of resilience to physical stressors? 63 

 64 

Findings: An observational study of adults aged 60+ undergoing elective total knee replacement 65 

surgery found distinct 12-month recovery paths, with 35.7% classified as non-resilient and 64.3% 66 

as resilient, independent of pre-surgery health or fitness. 67 

 68 

Meaning: This finding suggests that resilience is measurable and may require dynamic testing, 69 

rather than just relying on baseline health, to assess recovery potential.  70 
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Introduction 71 

Resilience is an individual’s ability to adapt, recover, and return to equilibrium at molecular, 72 

cellular, system, organ, or organism level after experiencing a significant adversity or stress
1
 73 

This paper focused on physical stressors, and therefore, “physical” resilience.
2
 We further posit 74 

that resilience differs from robustness (or resistance) in that the former refers to “bouncing back” 75 

following a stressor to retain “essential identity and function”,
3
 whereas the latter pertains to the 76 

ability to withstand stressors . For example, the rate and degree of recovery from an invasive 77 

surgery illustrates resilience, whereas humoral immunity to avoid symptomatic viral/bacterial 78 

infections exemplifies robustness. This distinction helps focus resilience on the characterization 79 

of response dynamics following the stressor. 80 

Different approaches have been proposed to characterize physical resilience phenotypes, 81 

which can be broadly divided into two main types. The first type views resilience as a state that 82 

can be ascertained cross-sectionally at a specific point in time, using instruments such as the 83 

Physical Resilience Scale.
2
 The second type defines physical resilience as a dynamical entity 84 

based on the change observed before and after a stressor, necessitating an assessment prior to the 85 

stressor. We further divide the second type into two subtypes. The first subtype quantifies 86 

resilience by assessing either the absolute or percentage change from the pre-stressor baseline, 87 

within a designated post-stressor time window that holds clinical importance.
4
 This approach is 88 

suitable for examining the immediate dynamics of stress-response. For example, monitoring the 89 

initial few weeks following an organ transplant is critical to assessing the risk of acute rejection 90 

and longer-term survival and making an accurate prognosis. The second subtype focuses on risk 91 

profiling based on individual recovery trajectories, emphasizing longer term rather than 92 

immediate dynamics. This approach includes methods that generate either quantitative 93 
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summaries of resilience (e.g., recovery differential)
5
 or qualitative resilience profiles (e.g., high 94 

vs. low resilience)
6
.   95 

Choosing among the different approaches depends on the context in which they are used 96 

and the study design and data availability. The cross-sectional post-stressor ascertainment 97 

approach is suitable for situations involving an unpredictable stressor, such as a hip fracture, 98 

where assessing pre-stressor status is usually infeasible and self-recall may be unreliable. 99 

Conversely, the trajectory approach is more appropriate for predictable stressors such as elective 100 

surgery, where it is possible to evaluate pre-stressor status. In terms of trajectory summary, the 101 

quantitative approach offers granularity, precision, and statistical power but requires advanced 102 

modeling techniques and can be complex to interpret in clinical settings. On the other hand, 103 

qualitative profiles, although easier to communicate and supportive of clinical decision-making, 104 

may involve complex computing algorithms and risk misclassification and reduced statistical 105 

power.   106 

This study used data from one of the three substudies of the Study of Physical Resilience 107 

and Aging (SPRING)--RESilience in TOtal knee REplacement (RESTORE).
7
 We aimed to 108 

develop a multivariate phenotype of physical resilience for adults 60 and older undergoing 109 

elective total knee replacement (TKR) surgery for degenerative joint disease, based on their 110 

individual recovery dynamics before and after the surgical stressor. The primary utility of this 111 

phenotype is to provide a study outcome for validating measures of pre-stressor physical 112 

resilience capacity and its determinants (Figure 1). Additionally, it could serve as a prognostic 113 

tool for identifying vulnerable patients who may require special attention and interventions post-114 

surgery in order to minimize adverse outcomes.  115 

 116 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted October 4, 2024. ; https://doi.org/10.1101/2024.10.03.24314863doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.03.24314863


7 
 

Methods 117 

Study Population 118 

SPRING was an observational study aimed at developing a framework to identify clinically 119 

relevant signatures of resilience in older adults facing physical stressors.
7
 Within SPRING, the 120 

RESilience in TOtal knee REplacement (RESTORE) substudy focused on characterizing older 121 

adults undergoing elective TKR surgery (eMethods 1). Extensive measurements were collected 122 

on a total of 112 older adults aged 60 years or older before, during, and after the surgical 123 

procedure to understand the impact of this stressor. This study was observational and did not 124 

influence surgical decisions.  125 

 126 

Clinical Assessments 127 

 Two baseline visits and follow-ups at 1, 6 & 12 months were used to assess resilience and 128 

related measures (eFigure 1). The resilience phenotype was derived from four measures the 129 

RESTORE team deemed particularly relevant for TKR resilience: the Short Physical 130 

Performance Battery (SPPB,
8
 the Pittsburgh Fatigability Scale – Physical Subscale (PFS),

9
 the 131 

Knee Injury and Osteoarthritis Outcome Score Quality of Life subscale (KOOS-QOL),
10

 and the 132 

physical component summary (PCS) of the SF-36 questionnaire.
11

 The SPPB assesses lower 133 

extremity function in older adults by evaluating their performance in three tasks simulating daily 134 

activities: balancing, standing from a chair, and walking, yielding a score from 0 to 12 with 135 

higher scores indicating better physical performance. The PFS is a self-administered 10-item 136 

questionnaire assessing perceived physical and mental fatigability related to fixed-intensity and 137 

duration activities, scored on a scale of 0 to 50 (reversed here, with higher scores indicating less 138 

fatigue). The KOOS-QOL measures the impact of knee injury or osteoarthritis on quality of life, 139 
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transformed to a 0–100 scale with higher scores indicating better knee-related quality of life. The 140 

PCS of the SF-36 provides an overall view of perceived physical functioning based on a 141 

weighted sum of eight subscale scores and standardized to have a mean of 50 and a standard 142 

deviation of 10, with higher scores indicating better physical health. 143 

 144 

According to the SPRING conceptual framework (Figure 1),
7
 surrogates and determinants of 145 

physical resilience were used to assess the convergent validity of the resilience phenotype. 146 

Frailty (surrogate) was assessed using the physical frailty phenotype,
12

 based on five criteria 147 

including unintentional weight loss (10 pounds or more in the past year), weakness (measured by 148 

reduced grip strength), poor endurance and energy (self-reported exhaustion or low energy 149 

levels), slowness (slow walking speed over 4 meters), and low physical activity (based on self-150 

reported activity). Frailty and pre-frailty were determined by the presence of three or more, and 151 

one or two of these criteria, respectively. Self-reported overall health (surrogate) based on self-152 

perception was assessed by self-report on a 5-point scale excellent, very good, good, fair, and 153 

poor. Disease burden (determinant) was measured by the Charlson Comorbidity Index (CCI). 154 

Comorbidity severity was graded as none (CCI=0), mild (CCI=1-2), moderate (CCI=3-4), and 155 

severe (CCI ≥5).
13

 156 

 157 

Statistical Analyses 158 

We summarized the baseline characteristics for the study sample and compared them based on 159 

the overall resilience status using two-sample t-tests with unequal variances for continuous 160 

factors and Fisher’s exact tests for categorical factors. To develop resilience phenotypes using 161 

data from pre-surgery baseline and follow-ups at 1-, 6-, and 12-months post-surgery, we 162 
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employed a two-stage latent variable model: a first-stage latent profile analysis (LPA),
14,15

 163 

followed by a second-stage latent class analysis (LCA).
14

 The LPA was applied separately to 164 

each of the four phenotypic measures to capture distinct temporal trajectory profiles. In the 165 

second stage, the LCA aggregated these trajectory profiles across measures to derive a summary 166 

phenotype, distinguishing resilience from non-resilience (eMethods 2). Next, we assessed the 167 

convergent validity of the resilience phenotypes by analyzing their associations with the 168 

surrogates and determinant of resilience capacity identified above. MPLUS (version 8.10) was 169 

used to fit the latent variable model, and other analyses used Stata/SE 18.0. 170 

 171 

Results 172 

Of the 112 participants in this study, the mean age was 70 years; 38% were Black and 59% were 173 

White. The group was predominantly female (66%) and had more than a high school education 174 

(62.5%), and nearly half (49%) were married. The mean BMI was 32. Regarding health status, 175 

19% and 58% were frail and pre-frail, respectively; 38% reported excellent or very good health, 176 

and 22% reported fair or poor health. Additionally, 27% and 17% had mild and moderate/severe 177 

comorbidity burden based on CCI (Table 1). 178 

 179 

For all four phenotypic measures except KOOS-QOL, the majority of recovery occurred between 180 

one and six months post-surgery, while KOOS-QOL showed continued improvement through 12 181 

months (Figure 2). The latent profile model identified four trajectory classes based on SPPB 182 

scores at baseline and during follow-ups (Figure 3A). Two classes represented the lowest (9.8%) 183 

and highest (35.7%) mean SPPB scores at baseline, both improving over time. The other two 184 

classes had similar intermediate baseline scores but showed differing trends over time: one with 185 
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a stable SPPB trajectory (17.9%) and the other with an improving trajectory (36.6%). We 186 

identified three trajectory classes for PFS, primarily differentiated by varying levels of baseline 187 

physical fatigability (Figure 3B): low (23.2%), medium (63.4%), and high (13.4%). All classes 188 

showed improvements from one month to six months post-surgery. The analysis of KOOS-QOL 189 

scores over time identified four trajectory classes, all showing improvement (Figure 3C). The 190 

group with the lowest baseline mean score saw a moderate increase from baseline to 1 month, 191 

then plateaued (4.5%). The two classes with medium baseline scores exhibited steady growth 192 

until six months; one continued to rise (17.0%), while the other stabilized (22.3%). The largest 193 

group, with the highest baseline mean score, demonstrated consistent improvement throughout 194 

the 12 months (56.3%). Three trajectory classes for PCS were identified, each improving over 195 

time (Figure 3D). Two classes, one with the lowest baseline mean score (22.3%) and the other 196 

with the highest (34.8%), showed similar trends, with improvements noted between 1 and 6 197 

months. The third class, featuring a similar baseline mean score as the lowest baseline class, 198 

demonstrated steady improvement from baseline to six months, accounting for 42.9% of the 199 

sample (eTable 1). The sensitivity analysis that treated the phenotypic measures as ordinal latent 200 

class indicators showed similar patterns (eFigure 2). 201 

 202 

Latent class analysis of the four phenotypic measures identified two trajectory summary classes 203 

characterized by high (64.3%) and low (35.7%) resilience. Figure 4 compares phenotypic 204 

trajectory profile prevalence for resilient versus non-resilient individuals. There is one panel per 205 

measure: Each shows the percentages for each trajectory profile, progressing from the least 206 

favorable on the left to the most favorable on the right, comparing the resilient and non-resilient 207 
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summary classes. Across all measures, individuals in the resilient group demonstrated more 208 

favorable trajectory patterns compared to those in the non-resilient group.  209 

 210 

Frailty was associated with low resilience, with 67%, 31%, and 23% frail, prefrail, and robust of 211 

individuals exhibiting a low resilience trajectory (p=0.004). Conversely, better self-reported 212 

health was associated with greater resilience, with 86%, and 67% of those in excellent/very good, 213 

and good health classified as having high resilience, compared to 18% of those in fair/poor 214 

health (p<0.001). These associations remained significant after adjusting for age, race, obesity, 215 

and disease burden. Specifically, frailty reduced the odds of high resilience by 79.3% (95% 216 

confidence interval (CI), 5.6-95.5%; p=0.042) compared to being robust, while excellent/very 217 

good health and good health increased the odds (Odds ratio (OR)=19.4, 95% CI, 4.0-92.8; 218 

p<0.001 and OR=10.1, 95% CI, 2.5-41.1; p=0.001), compared to poor/fair health. Greater 219 

disease burden was associated with lower resilience, with 58% of those with moderate/severe 220 

disease burden classified as having low resilience, compared to 37% and 29% for those with 221 

mild or no burden (p=0.064). After adjusting for age, race, and obesity, moderate/severe disease 222 

burden was associated with 72% lower odds of high resilience compared to no burden (95% CI, 223 

12.5-91.0%; p=0.029). 224 

 225 

Discussion 226 

In this observational study, we tracked the trajectories of physical function, beginning shortly 227 

before and continuing for twelve months after TKR. We identified distinct patterns, indicating 228 

varying resilience levels not fully explained by baseline status. The consistency across measures 229 

supports the concept of an overall physical resilience phenotype. Strong correlations between 230 
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this resilience phenotype and both physical frailty and self-reported health, surrogates of 231 

resilience capacity, further validated its relevance to the intended measurement target.  232 

 233 

In recent decades, studies have sought to better characterize recovery trajectories in individuals 234 

undergoing TKR. Some focused on the natural history and expected clinical course, while others 235 

examined early recovery to predict long-term outcomes. Our work aligns with the former 236 

approach but differs in two key ways: we broadened resilience measures beyond knee pain and 237 

dysfunction to include whole-body function, and we defined resilience at the whole-person level 238 

by analyzing trajectories across multiple functional measures. Our findings are consistent with 239 

others, showing that most improvement occurs within the first six months post-TKR. 
16-22

 240 

Additionally, we identified subsets of older adults with similar pre-TKR function but diverging 241 

trajectories, highlighting variability in resilience. 
23-25

 The close alignment between overall 242 

resilience status and measure-specific resilience profiles supports the concept of an underlying 243 

resilience capacity influencing recovery across domains. This lays the foundation for future 244 

research into the biological underpinnings of physical resilience, particularly the integrity of the 245 

stress response system dynamics,
7
 with the goal of developing interventions to enhance 246 

resilience capacity in older adults before physical stressors occur. 247 

 248 

Various approaches have been used to model between-person heterogeneity in resilience 249 

trajectories. They can be broadly classified into three categories:  growth curve models,
26

 growth 250 

mixture models,
27

 and latent variable models. For example, random effects (aka multilevel) 251 

models assume a parametric form for trajectories, with parameters such as time slope and 252 

acceleration varying continuously across individuals, as seen in  the “Expected Recovery 253 
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Differential Approach.”
5
 Growth mixture models, in contrast, identify distinct subgroups with 254 

different trajectory patterns, sharing a common form but varying in baseline function and rates of 255 

change.
5
 We opted for LPA due to its flexibility in capturing trajectory patterns 256 

nonparametrically, followed by LCA to summarize patterns across measures. While this model 257 

provides qualitative insights into trajectory patterns, it doesn't quantify recovery levels or 258 

intervention effectiveness. Instead, it is valuable for hypothesis testing concerning determinants 259 

of physical resilience and for validating the construct of pre-stressor resilience capacity.  260 

 261 

Definitions of physical resilience vary in the literature. For example, Resnick et al. defined it as 262 

the ability to “overcome physical challenges encountered by a physically stressful event.”
2
 In 263 

contrast, Whitson et al. viewed it as “a characteristic at the whole person level which determines 264 

an individual’s ability to resist functional decline or recover physical health following a 265 

stressor.”
1
 The former focuses on the physical nature of the stressor, while the latter addresses 266 

physical health as the main domain of interest. We adopted the first perspective, recognizing that 267 

stressors, physical or not, exert their influence through a complex interplay of biological, 268 

psychosocial, environmental, and behavioral factors. Focusing solely to physical health may 269 

oversimplify this impact, overlooking roles of social, psychological, and recent health events in 270 

physical function.
28

 Defining physical resilience by the nature of the stressor allows 271 

consideration of multiple factors – physical, psychological, environmental, and societal – when 272 

designing interventions to improve outcomes for older adults with low resilience or promote 273 

resilience against physical challenges. 274 

 275 
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In selecting measures of physical resilience, several key criteria were considered to ensure both 276 

scientific robustness and clinical relevance. Physical function measures were prioritized due to 277 

their proven importance in maintaining independence and quality of life in older adults.
29-31

 278 

Sensitivity to stress-related changes, including recovery potential, was also crucial.
32

 A balance 279 

was sought between general and condition-specific measures. In our study, we used both broad 280 

indicators of overall health (e.g., PCS) and knee-specific metrics (e.g., KOOS-QOL) for a 281 

comprehensive view of resilience beyond just knee mobility.
33

 To minimize confounding, we 282 

chose measures less influenced by lifestyle factors (e.g., physical activity levels) unrelated to 283 

health.
34

 Specificity was key, especially for stressor-specific resilience, as reflected in the 284 

inclusion of KOOS-QOL and SPPB. The measures also needed to demonstrate variability at 285 

baseline and over time to capture meaningful differences, as seen in the diverging trajectories in 286 

Figure 3. Both self-reports and objective performance measures were included to capture a full 287 

understanding of physical capabilities.
35

 Discrepancies between these could offer valuable 288 

insights into cognitive impairments, social influences, or compensatory mechanisms. Lastly, 289 

practical aspects such as feasibility and cost-effectiveness were considered, especially for 290 

measures sensitive to short-term dynamics within six months post-stressor.
36

 The focus on short-291 

term outcomes was balanced with the need to predict longer-term clinical endpoints. In summary, 292 

these criteria establish a robust framework for assessing physical resilience in both clinical and 293 

research settings. 294 

 295 

The study has severe strengths. First, the comprehensive assessment of function before and after 296 

a common clinical stressor provides a rare glimpse into the dynamics of impact and recovery in a 297 

real-world scenario. Second, the use of latent variable models generated both measure-specific 298 
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and aggregate resilience phenotypes while accounting for measurement error in the phenotypic 299 

measures. Third, these phenotypes provide necessary means to validate the construct of 300 

resilience capacity and its determinants – central goals of the SPRING study. However, the study 301 

also limitations. The limited sample size necessitated more restrictive assumptions in the LPA 302 

such as fixing the variance of SPPB and KOOS-QOL across latent classes,
37

 potentially biasing 303 

class assignment.
38

 Nonetheless, the observed individual-specific trajectories aligned reasonably 304 

with classification ( see eFigures 3-6). Additionally, the low prevalence of certain classes, such 305 

as the 4.5% in the “low” resilience class for KOOS-QOL, may be unreliable. Sensitivity testing 306 

by merging this class with the adjacent “medium” resilience class reclassified four subjects as 307 

non-resilient but did not alter the status of those initially classified as low resilience. Third, 308 

resilience phenotypes may be context-specific. While appropriate for the RESTORE study, these 309 

measures might not suit other settings with high complication rates, like bone marrow transplants 310 

This underscores the need to tailor resilience definitions for different contexts, though the 311 

fundamental principles concerning phenotypic measures and modeling approach remain 312 

applicable. Finally, the focus on physical function limits generalizability beyond physical health, 313 

but this was intentional, given the nature of the stressor and the minimal observed impact (data 314 

not shown). Additionally, SPRING’s framework considers psychological well-being a 315 

determinant, not an indicator, of physical resilience. 316 

 317 

In summary, our study revealed distinct recovery paths, showcasing various levels of resilience, 318 

which were not solely determined by pre-surgery fitness or health. This suggests that pre-stressor 319 

resilience capacity, a hypothesized key driver of recovery, may not be adequately captured by 320 

pre-stressor static function measures. Instead, resilience capacity reflects the integrity of 321 
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interconnected physiological systems governing the stress-response that is crucial to recovery.
7
 322 

This research highlights the importance of resilience in surgical recovery and could lead to 323 

improved patient care by focusing on individual resilience capacities. Future research into the 324 

factors contributing to resilience capacity in older adults could transform healthcare by shifting 325 

from merely managing symptoms and prolonging life to promoting recovery and improving 326 

quality of life for older adults.  327 

 328 

  329 
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Figure 1. Conceptual Framework for Physical Resilience. 330 

Figure 2. Marginal distribution of resilience phenotype measures by time in month. 331 

Figure 3. Patterns of phenotypic trajectories derived from latent profile analysis using 332 

continuous latent class indicators. 333 

Figure 4. Trajectory profile composition by measure: progression from least to most 334 

favorable outcomes, comparing resilient and non-resilient classes.  335 
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Table 1. Baseline characteristics of study sample. 336 

Characteristic 
All  
(N=112) 

Non-Resilient  
(n=40) 

Resilient 
(n=72) 

P Value
a
 

Age, mean (SD), year 69.5 (6.9) 69.4 (6.6) 69.6 (7.1) 0.906 

Sex, n (%)    0.513 

Female  74 (66) 28 (38) 46 (62)  

Male  38 (34) 12 (32) 26 (68)  

Race, n (%)    0.008 

White 66 (59) 16 (24) 50 (76)  

Black 42 (38) 23 (55) 19 (45)  

Other 4 (4) 1 (25) 3 (75)  

Education (grades completed), n (%)    0.704 

<12 8 (7) 3 (38) 5 (63)  

12 34 (30) 14 (41) 20 (59)  

>12 70 (63) 23 (33) 47 (67)  

Family Income (US dollar), n (%)    0.093 

<$25K 9 (8) 5 (56) 4 (44)  

≥$25K, <50K 13 (12) 4 (31) 9 (69)  

≥50K, <100K 22 (20) 11 (50) 11 (50)  

≥100K 39 (35) 8 (21) 31 (80)  

Unknown 29 (26) 12 (41) 17 (59)  

Marital status, n (%)    0.540 

Married 55 (49) 17 (31) 38 (69)  

Not married 33 (30) 14 (42) 19 (58)  

Widowed 24 (21) 9 (38) 15 (63)  

Body Mass Index: mean (SD) 32.1 (5) 33.5 (5) 31.1 (6) 0.030 

Charlson Comorbidity Index, n (%)    0.064 

None 63 (56) 18 (29) 45 (71)  

Mild 30 (27) 11 (37) 19 (63)  

Moderate/Severe 19 (17) 11 (58) 8 (42)  

Physical Frailty, n (%)    0.004 

Robust 26 (23) 6 (23) 20 (77)  

Pre-frail 65 (58) 20 (31) 45 (69)  

Frail 21 (19) 14 (67) 7 (33)  

Self-Reported Health, n (%)    <0.001 

Excellent/Very Good 42 (38) 6 (14) 36 (86)  

Good 48 (43) 16 (33) 32 (67)  

Fair/Poor 22 (20) 18 (82) 4 (18)  
a 
Two-sample t-test with unequal variances for continuous variables and Pearson chi-square test for categorical variables337 
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Figure 1. Conceptual Framework for Physical Resilience. 
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Figure 2. Marginal distribution of resilience phenotype measures by time in month. 
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Figure 3. Patterns of phenotypic trajectories derived from latent profile analysis using continuous latent class 

indicators. 
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Figure 4. Trajectory profile composition by measure: progression from least to 

most favorable outcomes, comparing resilient and non-resilient classes. 
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