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Abstract

Transcriptome- and proteome-wide association studies (TWAS/PWAS) have
proven successful in prioritizing genes and proteins whose genetically regulated
expression modulates disease risk, but they ignore potential co-expression and
interaction effects. To address this limitation, we introduce the co-expression-
wide association study (COWAS) method, which can identify pairs of genes or
proteins whose genetically regulated co-expression is associated with complex
traits. COWAS first trains models to predict expression and co-expression con-
ditional on genetic variation, and then tests for association between imputed
co-expression and the trait of interest while also accounting for direct effects
from each exposure. We applied our method to plasma proteomic concentrations
from the UK Biobank, identifying dozens of interacting protein pairs associated
with cholesterol levels, Alzheimer’s disease, and Parkinson’s disease. Notably,
our results demonstrate that co-expression between proteins may affect complex
traits even if neither protein is detected to influence the trait when considered on
its own. We also show how COWAS can help disentangle direct and interaction
effects, providing a richer picture of the molecular networks that mediate genetic
effects on disease outcomes.
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Introduction

Translating genetic associations into knowledge of causal genes and proteins is a
central problem in genetic epidemiology. Although genome-wide association studies
(GWAS) can rapidly identify the single nucleotide polymorphisms (SNPs) and genetic
loci associated with any measurable phenotype, most of the significant GWAS hits for
complex traits fall outside of protein-coding regions and are thought to affect the phe-
nome through regulatory pathways [1–6]. A popular approach for aggregating these
regulatory effects into interpretable gene-level functional units is the transcriptome-
wide association study (TWAS) method [7, 8]. TWAS is a two-stage framework
that first trains a model to predict gene expression levels from genetic variation,
thereby estimating the genetically regulated component of expression, and then tests
for association between imputed expression and the trait of interest. Although most
commonly applied to gene expression data, TWAS can be used with any heritable
molecular phenotype. For example, proteome-wide association studies (PWAS) iden-
tify disease-relevant proteins by applying the two-stage TWAS framework to proteomic
concentrations [9–11].

Many innovative methodological extensions to TWAS and PWAS have been devel-
oped since their initial introductions [12–19], with applications spanning hundreds of
outcome traits [20–26]. All existing TWAS/PWAS methods, however, have a major
limitation: they fail to account for correlations or interactions among the functional
units being studied. In standard TWAS approaches, each gene or protein is consid-
ered independently of the rest. This marginal assumption is mathematically simple
and provides for a straightforward implementation of the method, but it is biologically
implausible. Moreover, discounting interaction effects in TWAS may lead to a loss
of statistical power and missed biological insights when considering molecular drivers
that primarily affect complex traits through synergistic pathways.

Recent methods have partially addressed the marginal limitation in TWAS by
fine-mapping candidate TWAS genes to separate the effects of multiple correlated
exposures [27–29]. These methods can tease out the likely causal genes within a larger
set of co-expressed genes by conditioning each gene on the others. However, they do
not model the genetic regulation of co-expression and cannot be used to infer the
impact of gene–gene or protein–protein interactions on the outcome trait. In a separate
line of research, protein–protein interaction (PPI) networks have been used to aid in
the interpretation of PWAS findings [30]. Such use of PPI networks, however, still
relies on the results of testing each protein individually for association with disease,
and only utilizes evidence of interactions to cluster those marginal associations. Thus,
no existing approaches are able to elucidate the extent to which co-expression and
interactions among molecular phenotypes mediate genetic effects on complex traits.

The importance of epistasis, co-expression, and PPIs in complex disease patho-
genesis has been well established and is the subject of extensive research despite the
challenges of ascertaining interaction effects from genomic data [31–34]. An increasing
burden of evidence also highlights the role of genetic variation in regulating gene–gene
and protein–protein interactions. For example, single-cell RNA sequencing data has
enabled the detection of genetic variants that significantly alter co-expression rela-
tionships [35]. More recently, a pan-cancer study demonstrated that point mutations
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correlate with altered, tumor-specific PPIs and can rewire interaction networks [36].
Other work used gene co-expression networks to link cancer driver genes to cancer
GWAS genes, showing that common genetic variants are involved in the regulation
of co-expression networks [37]. More generally, large-scale sequencing studies have
established that both germline and somatic mutations are responsible for widespread
perturbations in PPI networks in human diseases [38]. Such evidence suggests that it
should be possible to predict the effects of genetic variation on gene or protein co-
expression, and to consequently assess the association between genetically regulated
co-expression and disease.

In this paper we introduce the co-expression-wide association study (COWAS)
method to identify interacting genes or proteins whose genetic component of co-
expression is associated with complex traits. COWAS analyzes pairs of co-expressed
molecular exposures, first imputing their genetically regulated expression and co-
expression, and then jointly testing for both direct effects and interaction effects on
the outcome trait. We also extend COWAS to a summary statistics setting, making
it easy to apply our method to any trait of interest for which GWAS summary-level
data are available.

We applied COWAS to plasma proteomic concentrations from the UK Biobank
(UKB) [39, 40] and large GWAS datasets for three complex traits [41–43]. We first
trained imputation models for pairs of proteins with known PPIs, and then tested
each well-imputed pair for association with low-density lipoprotein (LDL) cholesterol,
Alzheimer’s disease (AD), and Parkinson’s disease (PD). Our results demonstrate that
COWAS can successfully identify protein pairs whose co-expression impacts complex
traits while at the same time disentangling their direct and interaction effects. Our
approach also increases power relative to standard PWAS analyses, leading to the dis-
covery of proteins that were missed by PWAS. Notably, we show that co-expression
between proteins may affect disease risk even if neither protein influences the disease
when considered on its own. Overall, our contribution provides a novel framework for
studying the effects of genetically regulated co-expression on complex traits, facili-
tating interrogation of the phenotypic consequences of gene–gene and protein–protein
interactions using GWAS summary statistics.

Results

Overview of COWAS

The co-expression-wide association study (COWAS) method prioritizes pairs of inter-
acting genes or proteins whose genetically regulated expression or co-expression is
significantly associated with a complex trait. Note that COWAS can be applied to
either gene expression or protein expression data, but since our application concerns
the proteome, we will primarily refer to protein expression throughout the rest of the
paper.

The key motivation behind our approach is the observation that genetic variation
modulates not only protein expression, but also protein co-expression (Figure 1a). We
refer to genetic variants associated with co-expression as co-expression quantitative
trait loci (coQTLs) [35], analogously to how variants associated with gene expression
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Fig. 1 Overview of the COWAS framework.
aGenes A and B code for proteins A and B, which interact with each other. The transcription, translation,
and interaction processes are regulated by eQTLs, pQTLs, and coQTLs, respectively, which may overlap
and are collectively denoted as xQTLs. b Proteins A and B may have direct effects on a complex trait
(θA and θB , respectively), but they may also impact the trait through their interactions with each other
(θco). c The training stage of COWAS involves first building models to impute the expression levels of
each protein from pQTL genotypes, and then building a third model to impute their conditional co-
expression. d The testing stage of COWAS involves jointly estimating direct and interaction effects on a
complex trait of interest using the fitted model weights from the training stage, an LD reference panel,
and GWAS summary statistics for the outcome trait.
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are termed expression quantitative trait loci (eQTLs) and variants associated with
protein expression are termed protein quantitative trait loci (pQTLs). A variant can
belong to one or more of these xQTL classes, but we assume that a coQTL is most
likely also an eQTL or a pQTL. Furthermore, we consider co-expression to be a proxy
for interaction effects. Although gene–gene and protein–protein interactions are not
directly measured in large biobank studies such as the UKB, co-variation of protein
abundance is an accurate proxy for PPIs because interacting protein pairs are known
to be highly co-expressed [36, 44]. COWAS leverages pQTL data to learn the patterns
of genetic regulation underlying protein expression and co-expression, and ultimately
estimates the direct and interaction effects of genetically regulated expression on a
complex trait of interest (Figure 1b).

The COWAS framework is comprised of a training stage (Figure 1c) and a testing
stage (Figure 1d). The training stage must be performed on individual-level genotype
and expression data. First, models are trained to predict the expression levels of each
protein from its pQTLs. Next, the measured and imputed expression levels are used
to estimate a quantity derived from the conditional Pearson correlation coefficient.
Finally, a third model is trained to impute this quantity from the union of all consid-
ered pQTLs. Predictions from the co-expression model have the desired property of
representing the correlation between the two proteins’ expression levels conditioned
on genetic information. Our method exploits the properties of conditional covariance
to remove the components of co-expression that are explained by genetic effects on
mean expression levels or by factors unrelated to genetics, allowing us to focus on
how genetic variation modulates the amount of correlation between the two exposures.
Explicitly modeling the conditional correlation of expression is the primary innovation
of COWAS, because it enables our approach to incorporate the genetic component of
gene or protein co-expression into an association testing framework.

The testing stage of COWAS is typically performed using fitted model weights from
the training stage, a linkage disequilibrium (LD) reference panel, and summary-level
GWAS data for the outcome trait of interest (Figure 1d). Here three effect sizes are
jointly estimated: the direct effect of the first protein’s genetically regulated expres-
sion on the trait (θA), the direct effect of the second protein’s genetically regulated
expression on the trait (θB), and the effect of their genetically regulated co-expression
on the trait (θco). Note that θA and θB are distinct from the marginal effects obtained
through standard TWAS or PWAS, since here the three effect sizes are estimated
together in a joint model. As a result, each effect size is conditional on the other two.

Several hypothesis tests can be performed with these estimated effect sizes and
their standard errors. The COWAS global test determines if the protein pair has an
overall effect on the outcome trait, potentially boosting power relative to marginal
TWAS/PWAS analyses of each exposure. Alternatively, we can test the effect size
estimates individually in order to disentangle the impact of each protein’s genetically
regulated expression from the impact of their genetically regulated co-expression. In
particular, the COWAS interaction test determines if co-expression has an effect on the
outcome trait while accounting for direct effects from both exposures. This flexibility
and increased statistical power enable COWAS to identify novel disease-relevant genes
or proteins and aid in the interpretation of GWAS findings. Significant COWAS protein
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Fig. 2 Performance metrics for COWAS models trained on UKB data.
a,c Density plots of the out-of-sample correlation between estimated and imputed co-expression (in pink),
and between measured and imputed single-protein expression (in blue). b,d Counts of the numbers of
protein pairs in which all three prediction models had an out-of-sample correlation greater than 0.03.
Models in a and b were trained with only cis-pQTLs as predictors. Models in c and d were trained with
both cis-pQTLs and trans-pQTLs as predictors.

pairs can then be visualized as an interaction network in order to highlight protein
complexes that mediate genetic risk on the outcome trait.

Accurately imputing genetically regulated co-expression

We trained COWAS models to predict protein expression and co-expression using
genotypes and proteomic concentrations from the UKB Pharma Proteomics Project
[40]. After quality control, we retained 2,833 proteins coded by autosomal genes. Since
training imputation models for each of the

(
2,833

2

)
= 4, 011, 528 possible protein pairs

would have been computationally infeasible, we restricted our analysis to pairs with
some prior evidence of PPIs, as listed in the Human Integrated Protein–Protein Inter-
action rEference (HIPPIE) database [45]. In total, we trained COWAS models using
UKB genotypes and normalized protein abundance residuals for 26,433 protein pairs.

To ensure that COWAS can accurately predict genetically regulated co-expression,
we explored the out-of-sample imputation performance of several regression methods
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(Figure 2). We considered penalized linear regression models with either an elastic
net penalty, a lasso penalty, or a ridge penalty. For each of these three model types,
we pre-screened genetic variants using either the P values or the effect sizes of their
association with each protein’s expression. Additionally, we also considered the extent
to which including both local pQTLs (cis-pQTLs) and distant pQTLs (trans-pQTLs)
improved model imputation performance relative to only including cis-pQTLs.

Our results show that accurate imputation is more challenging for protein co-
expression than for the expression of individual proteins. Across all of the model types
we considered, the median out-of-sample correlation between estimated and imputed
co-expression was always lower than between measured and imputed single-protein
expression (Figure 2a, Figure 2c, and Supplementary Data 1). This was expected, since
interaction effects are known to be more difficult to detect than main effects, with
considerably larger sample sizes being needed for the same level of power or prediction
quality. Interestingly, including trans-pQTLs in addition to cis-pQTLs significantly
increased the imputation quality for single-protein models, but it did not have a pro-
nounced effect on the performance of co-expression models (Figure 2a and Figure 2c).
This suggests that trans-pQTLs only weakly regulate PPIs, with the bulk of heritabil-
ity in co-expression stemming from local genetic variation. However, it is also possible
that trans-coQTLs may not overlap with trans-pQTLs. Since we pre-screened genetic
variants based on the strength of their association with the individual proteins in each
pair, the inclusion of distant variants primarily increases the number of strong pQTLs
present in each model and may not necessarily increase the number of strong coQTLs.

Next, we filtered the protein pairs to those in which all three imputation models
yielded an out-of-sample correlation greater than 0.03 (Figure 2b and Figure 2d).
Among these well-imputed pairs, lasso regression with cis-pQTLs pre-screened by their
effect sizes achieved the highest mean out-of-sample R2 for predicting co-expression
(mean R2 = 0.0038, Supplementary Data 1). On the other hand, ridge regression with
both cis-pQTLs and trans-pQTLs pre-screened by their P values yielded the greatest
number of well-imputed protein pairs (Figure 2d and Supplementary Data 1). We
decided to use the former approach in our main analyses in order to maximize the
imputation quality of conditional co-expression. Model performance metrics for every
combination of protein pair and model type are provided in Supplementary Data 2-13.

COWAS identifies co-expressed proteins associated with
complex traits

Having shown that COWAS is able to accurately impute both single-protein expression
and protein co-expression, we applied it to three complex trait outcomes: low-density
lipoprotein (LDL) cholesterol, Alzheimer’s disease (AD), and Parkinson’s disease
(PD). For each trait, we downloaded summary-level data from the largest publicly
available GWAS study [41–43]. To ensure complete overlap between the genetic vari-
ants included in the imputation models and the GWAS data, we re-trained COWAS
models for each trait using only the intersection of variants found in both the UKB
genotype data and the trait’s GWAS. We also re-assessed the out-of-sample predic-
tive performance of each model separately for each trait and only kept pairs with
sufficiently high imputation accuracy, thus guaranteeing that differences between the
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GWAS datasets do not negatively impact the validity of association testing. As a result,
the numbers of considered protein pairs somewhat differed among the three traits. For
LDL cholesterol 613 pairs were accurately imputed, for AD there were only 564 well-
imputed pairs, and for PD we retained 592 well-imputed pairs (Supplementary Data
14-16).

To compare our new approach with currently available methods, we also performed
a standard PWAS analysis for each protein included in the COWAS analyses. The
same training samples, model types, and variant screening strategies were applied for
both COWAS and PWAS. Namely, we selected the top 100 pQTLs for each protein
by their association effect sizes and used them as features in linear regression models
with a lasso penalty. Full imputation performance metrics for all analyzed proteins and
outcome traits are provided in Supplementary Data 14-16. We also used the same LD
reference panel derived from UKB data when computing effect sizes in both COWAS
and PWAS. To account for multiple testing in COWAS, we performed a Bonferroni
correction on the number of well-imputed protein pairs. Similarly, in standard PWAS
we performed a Bonferroni correction on the number of well-imputed proteins.

Our results demonstrate that COWAS is able to detect PPIs with a significant
genetically regulated effect on complex traits. For LDL cholesterol, which had the best-
powered GWAS of the three traits we considered, we identified 38 protein pairs with
a significant co-expression effect (Supplementary Figure 1). Of these protein pairs,
24 had at least one protein that was also identified by a standard PWAS analysis,
while the rest were uniquely identified by our method. We also performed a global
test on each pair to assess whether it has an overall effect on LDL cholesterol, which
yielded 116 significant pairs. As expected, nearly all of those pairs contained at least
one protein that was also detected by PWAS. However, the COWAS global test did
identify 12 pairs with a significant effect on LDL cholesterol in which neither protein
was significant when considered on its own, and 5 of those pairs did not even have a
significant interaction term. This suggests that explicitly modeling co-expression can
boost power relative to standard marginal tests, even when there is no statistically
significant effect of co-expression on the outcome trait.

COWAS can also help disentangle the effects of interacting groups of proteins on
complex traits, thereby providing a richer picture of the functional consequences of
genetically regulated molecular phenotypes. By visualizing significant COWAS pairs as
a network, we identified complexes of mutually interacting proteins that modulate LDL
cholesterol levels (Supplementary Figure 2). Moreover, our method can reveal when
the effect of genetically regulated co-expression on a complex trait is in the opposite
direction relative to the effects of the interacting proteins themselves. For example,
we found that APOE and PLTP both decrease LDL cholesterol levels, while their co-
expression was associated with increased LDL cholesterol levels (Supplementary Figure
3). In other cases, the direct and interaction effects may all be in the same direction,
such as observed for the effects of APOE and AGRN on LDL cholesterol. Full results
for LDL cholesterol, including the estimated effect sizes and standard errors within
each pair, are provided in Supplementary Data 14.

8

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 13, 2024. ; https://doi.org/10.1101/2024.10.02.24314813doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.02.24314813
http://creativecommons.org/licenses/by/4.0/


a b

c

Significant tests

COWAS global

COWAS interaction

Standard PWAS

Fig. 3 COWAS and PWAS results for Alzheimer’s disease.
a A Venn diagram displaying the numbers of protein pairs identified as significant for AD by the COWAS
global test (green), the COWAS interaction test (pink), or a standard PWAS analysis (yellow). Here
“standard PWAS” refers to pairs in which at least one of the proteins was identified by PWAS. b A
network diagram showing all of the protein pairs identified as significant for AD by either the COWAS
global test (green edges) or the COWAS interaction test (pink edges). Node colors indicate whether each
protein was identified as significant for AD by standard PWAS (yellow) or not (gray). c A heat map
displaying signed − log10(P ) values from COWAS single-protein and interaction tests as well as from a
standard PWAS analysis for all pairs included in the Venn diagram. A and B refer to the first and second
proteins listed in each pair, respectively. To facilitate visualization, the − log10(P ) values were capped
at 20.

COWAS boosts power and corroborates known PPIs driving
Alzheimer’s disease risk

We identified fewer significant protein pairs for AD compared to LDL cholesterol, but
this was expected due to the lower power of the corresponding GWAS study. Yet here
again, both the COWAS global test and the COWAS interaction test were able to
detect significant protein pairs missed by standard PWAS (Figure 3a). Our method
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can also provide additional insights even in pairs where one protein was identified by
PWAS. For example, we discovered 5 proteins that jointly modulate AD risk together
with CD33 (Figure 3b). Although CD33 itself was identified by standard PWAS, our
application of COWAS reveals a fuller picture of the molecular pathways underlying
AD.

Notably, the COWAS global test identified the pair comprised of amyloid-beta pre-
cursor protein (APP) and death-associated protein kinase 2 (DAPK2) as significant for
AD (P = 1.25e-05), while a standard PWAS analysis failed to identify either of these
proteins (P = 7.72e-04 for APP and P = 1.31e-02 for DAPK2). APP is concentrated
in the synapses of neurons and is the precursor molecule for the generation of amy-
loid beta (Aβ), which contributes to the formation of amyloid plaques—a hallmark
pathology in AD [46–48]. Yet despite the central role of APP in Alzheimer’s patho-
genesis, standard PWAS lacked the power to identify it in our dataset. On the other
hand, COWAS was able to boost power and attain statistical significance by jointly
considering APP and a member of the DAPK family, which has also been previously
implicated in late-onset AD [49].

Furthermore, COWAS discovered a highly significant effect of the interaction
between APOE and LDLR on AD risk (P < 1e-50). Although APOE was also highly
significant according to a standard PWAS analysis (P < 1e-50), LDLR was not (P
= 0.48). This result is notable, because LDLR is known to be a receptor for APOE
that preferentially binds lipidated APOE particles and plays an important role in
Aβ clearance [50, 51]. Our results are consistent with this mechanistic explanation,
since we found APOE and its interaction with LDLR to have opposite effects on AD
(Figure 3c). Thus, COWAS provides strong support to the hypothesis that APOE and
LDLR have a synergistic effect in Alzheimer’s pathogenesis, even after accounting for
the direct effect of APOE on AD risk.

The other two significant interactions implicated by COWAS for AD are also likely
true positives, further confirming the sensitivity and power of our approach. We iden-
tified a significant effect of the interaction between LILRB2 and NOTCH1 on AD
(P = 5.73e-05), whereas standard PWAS failed to identify either protein (P = 0.80
for LILRB2 and P = 0.13 for NOTCH1). LILRB2 is a neuronal cell surface receptor
that interacts with Aβ and is being studied as a promising therapeutic target for AD
[52, 53], while NOTCH1 has been found to be differentially expressed in Alzheimer’s
patients [54] and is potentially involved in neurodegeneration-related cell signaling dis-
ruptions [55]. Finally, the COWAS interaction test also discovered a significant effect
of co-expression between CNTN2 and CNTNAP2 on AD (P = 8.42e-05), whereas
standard PWAS again failed to detect either protein as significant (P = 0.94 and
P = 0.38, respectively). The mechanisms by which these proteins are involved in
Alzheimer’s pathology have not yet been thoroughly studied, but earlier genetic and
functional genomic evidence indicates that they might play a role [56]. Full results
for AD, including the estimated effect sizes and standard errors within each pair, are
provided in Supplementary Data 15.
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Fig. 4 COWAS and PWAS results for Parkinson’s disease.
a A Venn diagram displaying the numbers of protein pairs identified as significant for PD by the COWAS
global test (green), the COWAS interaction test (pink), or a standard PWAS analysis (yellow). Here
“standard PWAS” refers to pairs in which at least one of the proteins was identified by PWAS. b A
network diagram showing all of the protein pairs identified as significant for PD by either the COWAS
global test (green edges) or the COWAS interaction test (pink edges). Node colors indicate whether each
protein was identified as significant for PD by standard PWAS (yellow) or not (gray). c A heat map
displaying signed − log10(P ) values from COWAS single-protein and interaction tests as well as from a
standard PWAS analysis for all pairs included in the Venn diagram. A and B refer to the first and second
proteins listed in each pair, respectively. To facilitate visualization, the − log10(P ) values were capped
at 5.

Co-expression analysis identifies SNCA interactions in
Parkinson’s disease pathogenesis

For PD the COWAS global test identified all of the protein pairs that were discovered
by the COWAS interaction test or by a standard PWAS analysis (Figure 4a). In
addition to those pairs, the COWAS global test also uniquely identified an effect of
GRK5 and SNCA on PD (P = 4.81e-06). This pair was not significant according to the
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COWAS interaction test (P = 2.75e-04) or according to standard PWAS (P = 0.04 for
GRK5 and P = 1.65e-03 for SNCA). However, note that both of these proteins have
been previously implicated in PD pathogenesis. Alpha-synuclein (SNCA) regulates
the release of neurotransmitters from the axon terminals of presynaptic neurons, and
insoluble forms of SNCA accumulate in the form of Lewy bodies, leading to nerve cell
death and the development of PD symptoms [57–59]. As for GRK5, some evidence
suggests that it plays a role in the pathogenesis of sporadic forms of PD [60]. These
results further highlight the ability of COWAS to boost power relative to marginal
approaches such as PWAS.

Interestingly, all four of the significant co-expression effects on Parkinson’s risk
that were identified by COWAS are comprised of SNCA interacting with some other
protein (Figure 4b). In particular, the COWAS interaction test identified significant
effects on PD from genetically regulated co-expression between SNCA and DARS1 (P
= 1.21e-13), SNCA and ENSA (P = 1.03e-08), SNCA and HCLS1 (P = 5.50e-05),
and SNCA and USP8 (P = 3.64e-07). Note that co-expression between SNCA and
each of these four proteins has a positive effect on PD even though the effect of SNCA
itself is negative (Figure 4c). This suggests that a genetically regulated escalation of
co-expression between SNCA and each of these proteins elevates PD risk, illustrating
potential avenues for therapeutic intervention.

None of the four proteins whose interaction with SNCA had an effect on PD
were significant according to a standard PWAS analysis, with marginal PWAS P
values ranging from P = 0.88 to P = 0.07 (Supplementary Data 16). However, the
COWAS discoveries are reasonable in light of previous research. For example, USP8 is a
deubiquitinase that has also been found in Lewy bodies and plays a role in determining
SNCA levels [61, 62]. ENSA has been shown to interfere with SNCA self-assembly
and thereby alleviate its neurotoxicity [63], and variants in HCLS1 binding protein 3
were found to be associated with the related condition of essential tremor (but not
PD itself) [64]. We are not aware of any existing evidence for the role of DARS1
in Parkinson’s pathogenesis, but its identification by COWAS points to a potential
avenue for further research. Full results for PD, including the estimated effect sizes
and standard errors within each pair, are provided in Supplementary Data 16.

Discussion

In this paper we introduced the co-expression-wide association study (COWAS)
method, the first statistical framework for identifying gene or protein pairs whose
genetically regulated interactions are associated with complex traits. COWAS extends
the two-stage least squares approach underlying TWAS/PWAS by explicitly imput-
ing the conditional correlation between pairs of exposures, which we interpret as a
proxy for genetically regulated gene–gene or protein–protein interactions. This enables
COWAS to jointly test for direct and interaction effects of genetically regulated expres-
sion on a complex trait of interest, thereby boosting power relative to existing methods
and helping to disentangle the functional mechanisms by which molecular exposures
influence the outcome trait. We also extended COWAS to a summary statistics set-
ting, making it easy to apply our method to any trait for which GWAS summary data
are available.
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In our application of COWAS to the UKB Pharma Proteomics Project dataset,
we first explored the performance of different regression models for imputing genet-
ically regulated co-expression and then applied our method to identify protein pairs
associated with three complex traits. Our method was able to discover biologically
relevant co-expressed proteins for all three traits, highlighting the importance of inter-
action effects in driving complex disease risk. Notably, COWAS identified a number
of protein pairs with a significant interaction term in which neither protein had a
significant effect when analyzed independently via standard PWAS. These results
underscore the importance of considering interaction effects in future research, since
the marginal TWAS/PWAS approaches currently used to analyze molecular pheno-
types may be missing important sources of signal. Moreover, our results demonstrate
how COWAS can be used to implicate groups of proteins in complex disease risk and
distinguish between direct and interaction effects, providing a more complete picture
of the molecular pathways that mediate genetic risk on downstream traits.

Notwithstanding the many advantages of COWAS, our approach has several lim-
itations. First of all, COWAS only considers one pair of molecular units at a time.
Although these pairwise results can be visualized as a network, COWAS does not
simultaneously model the genetic regulation of entire protein complexes. Proteins may
interact in larger, multi-protein interaction networks with nontrivial topological struc-
tures [65–67], and it is possible that genetic variation may impact such higher-order
network properties. Extending COWAS to allow for other types of interactions among
more than two exposures at a time could illuminate additional disease-relevant genes
and proteins, but it is not obvious how to do so in a computationally efficient way.
Furthermore, we found that the predictive capacity of protein co-expression imputa-
tion models is lower than that of expression imputation models for individual proteins.
This was expected given the difficulty of ascertaining interaction effects in general, yet
even so we were able to obtain sufficiently good imputation quality for over a thousand
protein pairs. However, more work could be done to explore different machine learning
algorithms for training co-expression imputation models. Finally, we only considered
individuals of a single genetic ancestry in this study. Since transcriptome and pro-
teome imputation models are generally not portable across ancestry groups [68–71],
we subset the UKB data to the largest genetically-inferred ancestry subgroup, which
roughly corresponds to White British individuals, and correspondingly used GWAS
studies conducted on European individuals for our three outcome traits. An exten-
sion of COWAS to handle multiple genetic ancestries and admixed individuals would
expand the diversity and relevance of its applications.

The field of human genetics has historically focused on studying linear, marginal
effects. This is exemplified by the popularity of GWAS and TWAS/PWAS analyses,
which only consider one genetic variant or one functional molecular unit at a time. By
providing a simple yet powerful approach for analyzing genetically regulated gene or
protein co-expression using existing biobank data, our work joins the growing body of
evidence emphasizing the limitations of this historical paradigm. The COWAS method
exhibits high statistical power, provides flexibility in modeling direct and interaction
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effects, and is easy to use. We envision that COWAS, along with its future improve-
ments and extensions, will enhance the interpretation of genomic findings and lead to
the discovery of new biological insights and therapeutic targets.

Methods

Modeling genetically regulated co-expression

The COWAS method is applied to one outcome trait and two molecular exposures at
a time. Let A,B ∈ Rn denote the expression or abundance levels of the two exposures,
as measured in n individuals. Further, let ZA ∈ Rn×pA be the genotype matrix of
pA xQTLs for exposure A, which were genotyped in the same set of individuals.
Similarly, let ZB ∈ Rn×pB be the genotype matrix of pB xQTLs for exposure B, and
let Z ∈ Rn×p be the joint matrix of all p xQTLs, where p is the number of unique
variants in the union of xQTLs for the two exposures. (If there is no overlap among
the xQTLs for the two exposures, then p = pA + pB .) Finally, let Y ∈ Rn be the
outcome trait of interest. All of these vectors and each column of these matrices are
assumed to be centered around 0 and scaled to have a variance of 1.

Just like in standard TWAS or PWAS, we assume that the mean genetically reg-
ulated expression of each molecular exposure can be modeled as a linear combination
of its xQTL genotypes. That is,

A = γA +ZAβA + εA, (1)

B = γB +ZBβB + εB . (2)

Here βA ∈ RpA and βB ∈ RpB are unknown xQTL weights, while γA ∈ R and γB ∈ R
are unknown intercepts. The error terms εA and εB are assumed to be normally
distributed.

What sets COWAS apart from previous methods, however, is that we also model
the genetically regulated co-expression of the two functional units instead of analyzing
them independently of each other. The most popular metric for co-expression is the
Pearson correlation between measured expression levels [72, 73]. Therefore, genetically
regulated co-expression should be defined as the Pearson correlation conditional on
genetic information. Formally, we define the genetically regulated co-expression of A
and B as

Corr(A,B | ZA,ZB) =
Cov(A,B | ZA,ZB)√

V ar(A | ZA)V ar(B | ZB)
, (3)

where the conditional covariance between A and B is

Cov(A,B | ZA,ZB) = E
(
(A− E(A | ZA))(B − E(B | ZB)) | ZA,ZB

)
. (4)

To simplify estimation of this quantity, we make the assumption that V ar(A | ZA)
and V ar(B | ZB) are both constant. In other words, we assume that genetic variants
only regulate the mean of each molecular phenotype and their covariance, but not
their individual variances. Although not exactly true from a biological perspective,
this simplifying assumption is reasonable because any effects of genetic variation on
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the variance of protein concentrations are likely to be much smaller than the effects
of genetic variation on the quantities we are considering.

Using these definitions and assumptions, we can approximate the conditional
correlation of A and B as

Corr(A,B | ZA,ZB) ∝ Cov(A,B | ZA,ZB) (5)

= E
(
(A− E(A | ZA))(B − E(B | ZB)) | ZA,ZB

)
(6)

≈ E
(
(A− Â)(B − B̂) | ZA,ZB

)
, (7)

where Â = ZAβ̂A and B̂ = ZBβ̂B are the genetically imputed expression levels of the
two exposures. Thus, the appropriate way to model genetically regulated co-expression
is

(A− Â)(B − B̂) = γco +Zβco + εco, (8)

where βco ∈ Rp is the unknown vector of coQTL weights and γco ∈ R is an unknown
intercept. The random error term εco is again assumed to be normally distributed.
For conciseness, let C = (A− Â)(B − B̂) and Ĉ = Zβ̂co.

We can interpret β̂co as representing the effects of genetic information on the
correlation between A and B. In general, correlation between A and B may be due to
some combination of the following three factors:

1. Genetic effects on the mean expression levels of the two proteins. In other words,
co-expression can be induced through correlation between the genetically regulated
expression levels E(A | ZA) and E(B | ZB).

2. Genetic effects that modulate the correlation between A and B. That is, genetic
variation can influence the level of correlation between εA and εB .

3. Factors unrelated to genetics. For example, a shared tissue environment or various
other environmental effects may cause A and B to be correlated.

Our formulation of conditional covariance in Equation (7) effectively removes the first
factor, so what remains may be some combination of the second and third factors.
However, the effects of any factors unrelated to genetics should be constant with
respect to genetic variation, and so they will be captured by the intercept term γco.
Notice that we estimate this intercept term and then discard it before imputing Ĉ,
thereby removing environmental effects on co-expression. In the end, this procedure
for estimating Ĉ isolates the genetic component of co-expression.

Next, we estimate the effect of genetically regulated co-expression on the outcome
trait (Y ) while accounting for direct effects of A and B on Y . We assume that the
outcome trait depends on a linear combination of the genetically regulated expres-
sion levels of both molecular exposures and their genetically regulated co-expression.
Formally, our model for the outcome trait is

Y = ÂθA + B̂θB + Ĉθco + εY , (9)

where θA, θB , θco ∈ R are unknown scalars and εY is a normally distributed, inde-
pendent error term. The ultimate goal of COWAS is to estimate θA, θB , and θco and
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to test each of them for statistical significance. We will also derive a global test to
determine if the model in Equation (9) is significantly better than a null model.

Two-sample model estimation and hypothesis testing

In practice, the COWAS models are estimated in a two-sample setting akin to standard
TWAS and PWAS. Suppose we have two nonoverlapping, individual-level datasets
from the same population with sample sizes n1 and n2. Genotypes for all p xQTLs
are available in both datasets, but the molecular exposures A,B are only measured
on the n1 samples in the first dataset, while the outcome trait Y is only measured on
the n2 samples in the second dataset.

In the model training stage, COWAS first trains models to estimate βA and βB

using data from the first dataset. Then it imputes expression for each exposure on
that same dataset. That is, we compute

Â = ZAβ̂A, (10)

B̂ = ZBβ̂B , (11)

using the same n1 individuals used for model training. Next, COWAS computes the
quantity C = (A− Â)(B− B̂). This quantity is then used as the outcome for training

the model in Equation (8), yielding the fitted weights β̂co.

In the testing stage, the fitted weights β̂A, β̂B , and β̂co are used to impute
expression and co-expression for the n2 samples in the second dataset. That is, we
compute

Â∗ = Z∗
Aβ̂A, (12)

B̂∗ = Z∗
Bβ̂B , (13)

Ĉ∗ = Z∗β̂co, (14)

where the ∗ symbol is used to distinguish quantities measured or imputed in the
outcome dataset from those in the expression dataset. Finally, we fit the outcome trait
model

Y = Â∗θA + B̂∗θB + Ĉ∗θco + εY (15)

to estimate each of its coefficients and their standard errors. Any linear model hypoth-
esis tests can be performed on the estimated coefficients θ̂A, θ̂B , and θ̂co. In this study,
we primarily consider an interaction test and a global test.

Interaction test: To determine if co-expression has an effect on the outcome trait,
we test the hypothesis H0 : θco = 0 against its two-sided alternative using a Wald test.
Namely, the test statistic is w = (θ̂co)

2/V ar(θ̂co), which asymptotically follows a χ2

distribution with 1 degree of freedom under H0.
Global test: To determine if the two exposures have an overall effect on the

outcome trait, we test whether the model in Equation (15) fits the data better
than an intercept-only model using an F test. Namely, the test statistic is f =
RSSnull−RSS
(n2−1)−(n2−4)/

RSS
n2−4 = n2−4

3RSS (n2−1−RSS), where RSS is the residual sum of squares
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from the COWAS model in Equation (15) and RSSnull = n2 − 1 is the residual sum
of squares from an intercept-only model. f follows an F distribution with (3, n2 − 4)
degrees of freedom under the null hypothesis.

The interaction test and the global test can help to disentangle the effects of co-
expression from the direct effects of the individual exposures. If the global test rejects
its null hypothesis but the interaction test does not, we can conclude that the molecular
exposures directly influence the outcome trait. Our implementation of COWAS in R
also provides P values for Wald tests on θA and θB , enabling users to test whether
each exposure has a significant effect while accounting for the other exposure and the
co-expression term.

Extension of COWAS for use with GWAS summary data

In this section we extend the association testing stage of COWAS so that it can be
performed with summary-level GWAS data. The formulas we derive here only require
fitted weights for expression and co-expression imputation models, Z scores from a
GWAS for the outcome trait, and an LD reference panel. Note that we used this
summary-level version of COWAS to obtain all of the results reported in this paper.

Let β̂A, β̂B , β̂co ∈ Rp be the trained model weights for molecular phenotypes A, B
and their co-expression, respectively. Note that, unlike in the individual-level formu-
lation, the dimensions of all three weight vectors must match; this can be ensured by
padding β̂A and β̂B with zeros. We will denote the joint matrix of all model weights
by β̂ = (β̂A, β̂B , β̂co) ∈ Rp×3.

Furthermore, let z1, . . . , zp ∈ R be Z scores from a GWAS study for the outcome
trait of interest (Y ) for the same set of p genetic variants. We assume that the GWAS
was conducted in a population of the same genetic ancestry as the population used to
train COWAS model weights. Importantly, reference and effect alleles must be consis-
tent between the GWAS summary data and the COWAS weights. Our implementation
of COWAS automatically checks for allele consistency, flips GWAS Z scores when
necessary, and removes variants that cannot be harmonized. Next, COWAS converts
the GWAS Z scores to pseudocorrelation estimates. This is done by relying on the
monotonic relationship between Z scores and correlations [74], leading to the following
formula for the pseudocorrelation between Y and variant i:

ĉi =
zi√

n′ − 1 + z2i
, (16)

where n′ is the sample size of the GWAS cohort for the outcome trait.
Finally, let G ∈ Rm×p be a genotype matrix for m individuals and the same set of

p variants included in the COWAS models. We assume that these m individuals are
of the same genetic ancestry as those used to train the COWAS model weights and
conduct the outcome trait GWAS. Moreover, we assume that each column of G has
been centered around 0 and scaled to a variance of 1. An LD reference panel represents
correlations among genetic variants, so we compute it from G as

D̂ =
1

m
GTG. (17)
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Now we will derive an estimator for θ = (θA, θB , θco)
T in terms of the

trained COWAS model weights β̂, the variant-outcome pseudocorrelation vector ĉ =
(ĉ1, . . . , ĉp)

T, and the LD reference panel D̂. Suppose that X̂∗ = (Â∗, B̂∗, Ĉ∗) ∈ Rn2×3

is the matrix of imputed expression and co-expression in an individual-level dataset
for the outcome trait, so that Equation (15) can be rewritten as Y = X̂∗θ+ εY . This
is a multiple linear regression model, so the ordinary least squares estimator of θ is

θ̂ =
(
(X̂∗)TX̂∗

)−1

(X̂∗)TY (18)

=
(
(Z∗β̂)TZ∗β̂

)−1

(Z∗β̂)TY (19)

=
(
β̂TZ

∗TZ∗

n2
β̂
)−1

β̂TZ
∗TY

n2
. (20)

Observe that Z∗TZ∗

n2
is a matrix of correlations among the xQTLs in Z∗, so we can

estimate it with D̂. Moreover, Z∗TY
n2

is a vector of correlations between each variant and
Y , so we can estimate it with ĉ. Therefore, the effects of expression and co-expression
on the outcome trait are jointly estimated by

θ̂ =
(
β̂TD̂β̂

)−1

β̂Tĉ. (21)

Similarly, the variance of θ̂ can be estimated in terms of θ̂, β̂, D̂, and ĉ. The
residual sum of squares for Y = X̂∗θ + εY is

RSS = ∥Y − X̂∗θ̂∥2 (22)

= Y TY − 2Y TX̂∗θ̂ + θ̂T(X̂∗)TX̂∗θ̂ (23)

= (n2 − 1)
Y TY

n2 − 1
− 2Y TZ∗β̂θ̂ + θ̂Tβ̂TZ∗TZ∗β̂θ̂ (24)

= (n2 − 1)
Y TY

n2 − 1
− 2n2

(Z∗TY

n2

)T

β̂θ̂ + n2θ̂
Tβ̂TZ

∗TZ∗

n2
β̂θ̂. (25)

Observe that Y TY
n2−1 = 1 because we assumed that Y was scaled to have a variance of

1, Z∗TY
n2

can be estimated by ĉ, Z∗TZ∗

n2
can be estimated by D̂, and the leftover n2

can be replaced by n′. Therefore, we estimate the RSS by

RSS ≈ n′
(
1− 2ĉTβ̂θ̂ + θ̂Tβ̂TD̂β̂θ̂

)
− 1. (26)

Finally, we estimate the variance of θ̂ by

V̂ ar(θ̂) =
(
(X̂∗)TX̂∗

)−1 RSS

n2 − 4
(27)
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≈
(
β̂TD̂β̂

)−1 RSS

n′(n′ − 4)
. (28)

A Wald test for the effect of Â, B̂, or Ĉ on the outcome trait can be performed
in the same way as with individual-level data. An F test of overall significance can
also be performed using the formula derived for individual-level data, except that the
sample size of the individual-level outcome cohort (n2) should be replaced with the
sample size of the GWAS cohort (n′).

Expression and co-expression imputation models

Any statistical or machine learning algorithms can be used to build expression and co-
expression imputation models for COWAS when individual-level data is available for
the outcome trait. In order to perform the testing stage of COWAS using summary-
level GWAS data, however, the models must be built using an algorithm that can
provide a vector of xQTL weights. In this paper, we evaluated penalized linear regres-
sion models with three different penalties: the elastic net penalty, the lasso penalty,
and the ridge penalty. All models were trained using the glmnet package in R. The α
hyperparameter was set to α = 0.5 for elastic net regression, α = 1 for lasso regression,
and α = 0 for ridge regression. The λ hyperparameter, which controls the strength
of the penalty, was chosen through 10-fold cross validation. Our implementation of
COWAS also provides the option for linear regression with stepwise variable selection,
but we did not use that method in this study due to its much longer runtime.

To further increase the computational performance of COWAS, we pre-screened
genetic variants before including them as features in the penalized regression models.
First, we conducted a proteome-wide pQTL mapping study to compute the association
between each variant and the standardized residuals of each protein. This enabled us
to consider two approaches for pre-screening predictive variants to ensure that only
strong pQTLs are considered by each model. For P value screening, we ranked variants
by their pQTL P values and kept the top 100. For effect size screening, we instead
ranked variants by the absolute values of their pQTL effect sizes and kept the top 100.
In both cases, the feature set for the co-expression model was taken to be the union
of the top-ranked pQTLs for the two proteins. Note that for the models trained with
cis-pQTLs only, we restricted the rankings to variants located close to the gene that
codes for the given protein. Performing feature screening before training imputation
models greatly decreases the runtime of COWAS, making it computationally feasible
to apply to large-scale biobank studies.

It is important to ensure that only well-imputed protein pairs are considered in the
testing stage. COWAS assesses the predictive performance of each model by calculating
the correlation between imputed and measured expression on a held-out test set. In
particular, we randomly selected 80% of the available samples for each protein pair to
train imputation models and the remaining 20% to test their predictive performance.
For the single-protein models, we calculated the correlation between imputed and
measured expression on the test set. Recall that the outcome for the co-expression
model, on the other hand, is a quantity estimated using measured expression levels
as well as predictions from single-protein models. Thus, to evaluate the performance
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of the co-expression model, we first obtained Ĉ using co-expression and single-protein
models trained only on the 80% training set. Then we calculated C on the 20% test
set, but this time using single-protein models trained on all available data. The out-
of-sample correlation for the co-expression model was calculated as the correlation
between these estimates of Ĉ and C. After assessing predictive performance, all three
models were re-trained on the full dataset to obtain the final xQTL weight vectors.
Only pairs in which all three models had out-of-sample correlations greater than 0.03
were used for hypothesis testing.

Standard PWAS analysis

We compared our proposed method with the marginal, single-exposure PWAS
approach commonly used today. Note that PWAS is independently performed on one
protein at a time, so we considered a pair to be significant according to a PWAS anal-
ysis if at least one of its proteins was identified by PWAS. Without loss of generality,
we will use the notation for protein A to explain the PWAS association test.

Let β̂A ∈ RpA be a vector of fitted pQTL weights for imputing the expression
of protein A. These weights could be obtained from any regression model, such as
the penalized linear regression models we considered in this study. In a setting with
individual-level data available for the outcome trait, we first compute

Â∗ = Z∗
Aβ̂A, (29)

where Z∗
A is a matrix of pQTL genotypes for individuals in the outcome trait dataset.

Then we fit the model
Y = Â∗θA,M + εY,A, (30)

where θA,M ∈ R is the coefficient of interest and εY,A is an independent, normally
distributed error term. To determine if the genetically regulated component of A has
a significant effect on Y , we test the hypothesis H0 : θA,M = 0 against its two-

sided alternative using a Wald test. The test statistic is (θ̂A,M )2/V ar(θ̂A,M ), which
asymptotically follows a χ2 distribution with 1 degree of freedom under H0.

Importantly, note that the PWAS effect size θA,M is distinct from the COWAS

effect size θA. Whereas θA,M is the marginal effect of Â on Y , the COWAS coefficient

θA is the effect of Â on Y after accounting for the effects of B̂ and Ĉ.
In practice, we performed PWAS using summary-level GWAS data for the outcome

trait and an LD reference panel. Let ĉA = (ĉ1, . . . , ĉpA
)T be a vector of pseudocor-

relations between each of the pA variants in Z∗
A and the outcome trait Y . Also let

D̂A ∈ RpA×pA be an LD reference panel for those same pA pQTLs. Then we can
estimate θA,M by

θ̂A,M =
(
β̂T
AD̂Aβ̂A

)−1

β̂T
AĉA. (31)

The residual sum of squares for Y = Â∗θA,M + εY,A can be estimated by

RSSA ≈ n′
(
1− 2ĉTAβ̂Aθ̂A,M + θ̂TA,M β̂T

AD̂Aβ̂Aθ̂A,M

)
− 1, (32)
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and finally we can estimate the variance of θ̂A,M by

V̂ ar(θ̂A,M ) =
(
β̂T
AD̂Aβ̂A

)−1 RSSA

n′(n′ − 2)
, (33)

where n′ is the sample size of the GWAS for Y . Notice that these formulas are anal-
ogous to the ones derived for COWAS, except with different degrees of freedom and
dimensions for each quantity.

Data processing and quality control

We trained protein expression and co-expression imputation models on individual-level
data from the UKB. First we downloaded genotype data for 92,457,702 autosomal
markers and 487,363 samples. Imputation, phasing, and extensive quality control
checks had already been performed on the provided data as detailed previously
[39]. We further removed any individuals that had a missingness rate greater than
1% across markers, and then subset the data to only keep high-quality samples of
genetically-inferred White British ancestry with no relatives of third degree or closer,
using indicators provided by UKB. Lastly, we subset the data to individuals who
have proteomic data available at the baseline visit. After these steps, 36,171 samples
remained.

We also performed additional variant-level quality control on the UKB genotype
data. In particular, we removed all variants with a missingness rate greater than 10%
across the remaining individuals, those with a minor allele count (MAC) less than
100, those with a minor allele frequency (MAF) less than 1%, and those that failed a
Hardy–Weinberg equilibrium test with P < 10−15. To facilitate matching up variants
between UKB data and outcome trait GWAS data, we also removed all variants lacking
an rsID and those that are palindromic. Finally, we pruned the variants to r2 < 0.8
with a 1,000 base pair (bp) window and a step size of 100 bp. After these steps,
1,689,714 variants remained. All sample-level and variant-level quality control was
done in PLINK 2.00 (https://www.cog-genomics.org/plink/2.0/).

Next, we computed genetic principal components (PCs) from the quality-controlled
genotype data. Before computing PCs, we applied several data processing steps in
addition to those described in the previous paragraph. In particular, we additionally
removed all variants in regions of long-range LD [39] and then pruned the remaining
ones to a strict threshold of r2 < 0.1 with a 1,000 bp window and a step size of 100
bp. The computation of genetic PCs was also done in PLINK 2.00.

Proteomic profiling in blood plasma was performed by the UKB Pharma Pro-
teomics Project using the antibody-based Olink Explore 3072 proximity extension
assay, which measured 2,941 protein analytes across eight panels and captured 2,923
unique proteins [40]. Various quality control checks and normalization had already
been performed as described previously [40]. We downloaded Normalized Protein
eXpression (NPX) values for 2,923 proteins in 53,073 samples. Then we subset the data
to the set of 36,171 individuals with high-quality genotype data and only kept pro-
tein abundance measurements from the baseline visit. The sample sizes for individual
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proteins ranged from 106 to 35,581 individuals, with a median of 33,643 individu-
als. Rather than imputing missing values, we used the intersection of samples with
non-missing data within each protein pair.

Next, we normalized the NPX levels using a rank-based inverse normal transfor-
mation. In particular, we utilized the commonly-used Blom transform with an offset of
3/8 and ties broken by averaging. Following the transformation, we regressed out the
following standardized covariates: age, age2, sex, age ∗ sex, age2 ∗ sex, UKB assess-
ment center, genotyping array, and the first 20 genetic PCs. These protein expression
residuals, after normalizing and adjusting for covariates, were used in all downstream
analyses.

Protein annotations

We trained models that include pQTLs screened from across the genome, as well
as models that only include cis-pQTLs. To identify the cis-SNPs for each protein,
we obtained start and end positions for the genes coding each assayed protein from
annotations provided by the UKB Pharma Proteomics Project [40], and then lifted
them over to the hg19 genome build using the UCSC LiftOver web tool (https://
genome.ucsc.edu/cgi-bin/hgLiftOver). For proteins coded by several genes, we only
considered the first gene listed in the UKB annotation file. We defined the cis region
for each gene as beginning 500,000 bp upstream of its transcription start site and
ending 500,000 bp downstream of its transcription end site. Thus, the cis-pQTLs for
a given protein are the top-ranked variants that fall within this genomic window.

In this study we only trained models for pairs of proteins found in the HIPPIE
database of PPIs [45]. To identify those pairs, we downloaded version 2.3 of the HIPPIE
database and mapped each protein in the database to its gene name using the UniProt
ID Mapping web tool (https://www.uniprot.org/id-mapping). The gene names were
then matched with protein annotations from UKB, and protein pairs present in the
HIPPIE database were retained. Note that we considered all protein pairs listed in
the HIPPIE database, regardless of their interaction confidence score.

GWAS data for outcome traits

We considered three complex traits as outcomes in our application of COWAS: low-
density lipoprotein (LDL) cholesterol, Alzheimer’s disease (AD), and Parkinson’s
disease (PD). The testing stage of COWAS was performed using summary-level data
from the largest available GWAS study for each trait. Since none of the GWAS stud-
ies provided Z scores in their summary data, we computed them by dividing each
variant’s effect size by its standard error.

For LDL cholesterol levels, we downloaded GWAS summary statistics data from
the Global Lipids Genetics Consortium (GLGC) [41]. The GLGC aggregated GWAS
results from 1,320,016 individuals of European ancestry across 146 cohorts. Their
meta-analysis provided summary statistics for 47,006,483 genetic variants and five
lipid traits, including LDL cholesterol. Although the authors also conducted a
multi-ancestry meta-analysis, we used results that were meta-analyzed solely in the
European cohorts to ensure consistency with the genetic ancestry of the majority of
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UKB participants. A total of 1,624,628 genetic variants remained after harmonization
with our quality-controlled UKB genotype data.

For AD status, we downloaded GWAS summary statistics data from the Euro-
pean Alzheimer & Dementia Biobank (EADB) consortium [42]. Namely, we used their
stage 1 GWAS of AD and related dementias in individuals of European ancestry. The
stage 1 GWAS was a meta-analysis based on 39,106 clinically diagnosed cases, 46,828
proxy cases (with disease status inferred from parental history), and 401,577 controls.
Summary statistics for 21,101,114 genetic variants were provided, of which 1,435,986
remained after harmonization with our quality-controlled UKB genotype data.

For PD status, we downloaded GWAS summary statistics data from the Interna-
tional Parkinson Disease Genomics Consortium (IPDGC) [43]. The IPDGC GWAS
is also a meta-analysis, aggregating associations across 17 cohorts with individu-
als of European ancestry. Their main analysis included 37,688 clinically diagnosed
cases, 18,618 proxy cases (with disease status inferred from first-degree relatives),
and 1,417,791 controls. However, the publicly available summary statistics exclude
three studies with individuals from 23andMe due to data sharing restrictions. We
used the publicly available GWAS data in our analysis, which was based on 15,056
clinically diagnosed cases, 18,618 proxy cases, and 449,056 controls. Summary-level
data was provided for 17,443,094 genetic variants, of which 1,393,959 remained after
harmonization with our quality-controlled UKB genotype data.

Data availability

Genotype, covariate, and protein expression data from the UK Biobank are avail-
able through the UK Biobank data access process (https://www.ukbiobank.ac.
uk/enable-your-research). Access to the UK Biobank data was approved through
UK Biobank Application #35107. Annotations for proteins assayed by the UK
Biobank Pharma Proteomics Project are publicly available on Synapse (https://
www.synapse.org/Synapse:syn51364943). Protein pairs with known interactions are
publicly accessible in the HIPPIE web tool (https://cbdm-01.zdv.uni-mainz.de/
∼mschaefer/hippie). Publicly available GWAS summary statistics for cholesterol lev-
els were downloaded from the Global Lipids Genetics Consortium website (https:
//csg.sph.umich.edu/willer/public/glgc-lipids2021). Publicly available GWAS sum-
mary statistics for Alzheimer’s disease and Parkinson’s disease were obtained from the
NHGRI-EBI GWAS Catalog (https://www.ebi.ac.uk/gwas) under accession numbers
GCST90027158 and GCST009325, respectively.

Code availability

Our software for COWAS is implemented in R and made available on GitHub under
a GPL-3.0 open source license at https://github.com/mykmal/cowas. This GitHub
repository also contains the scripts used for data quality control and batch processing.
Fitted model weights for all protein expression and co-expression imputation models
trained in this study are provided on Synapse at https://synapse.org/cowas.
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[58] Ozansoy, M. & Başak, A. N. The central theme of Parkinson’s disease: α-
synuclein. Molecular Neurobiology 47, 460–465 (2013). URL https://link.
springer.com/article/10.1007/s12035-012-8369-3.

[59] Bloem, B. R., Okun, M. S. & Klein, C. Parkinson’s disease. The Lancet 397,
2284–2303 (2021). URL https://www.thelancet.com/journals/lancet/article/
PIIS0140-6736(21)00218-X.

[60] Arawaka, S. et al. The role of G-protein-coupled receptor kinase 5 in pathogenesis
of sporadic Parkinson’s disease. The Journal of Neuroscience 26, 9227–9238
(2006). URL https://www.jneurosci.org/content/26/36/9227.

[61] Alexopoulou, Z. et al. Deubiquitinase Usp8 regulates α-synuclein clearance and
modifies its toxicity in Lewy body disease. Proceedings of the National Academy
of Sciences 113, E4688–E4697 (2016). URL https://www.pnas.org/doi/full/10.
1073/pnas.1523597113.

[62] Amer-Sarsour, F., Kordonsky, A., Berdichevsky, Y., Prag, G. & Ashkenazi, A.
Deubiquitylating enzymes in neuronal health and disease. Cell Death & Disease
12, 120 (2021). URL https://www.nature.com/articles/s41419-020-03361-5.

[63] Ysselstein, D. et al. Endosulfine-alpha inhibits membrane-induced α-synuclein
aggregation and protects against α-synuclein neurotoxicity. Acta Neuropatholog-
ica Communications 5, 3 (2017). URL https://actaneurocomms.biomedcentral.
com/articles/10.1186/s40478-016-0403-7.

29

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 13, 2024. ; https://doi.org/10.1101/2024.10.02.24314813doi: medRxiv preprint 

https://www.sciencedirect.com/science/article/pii/S1044743121000439
https://www.sciencedirect.com/science/article/pii/S1044743121000439
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0224941
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0224941
https://www.sciencedirect.com/science/article/pii/S1084952120302056
https://www.sciencedirect.com/science/article/pii/S1084952120302056
https://www.sciencedirect.com/science/article/pii/S030645221930692X
https://www.nature.com/articles/42166
https://link.springer.com/article/10.1007/s12035-012-8369-3
https://link.springer.com/article/10.1007/s12035-012-8369-3
https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(21)00218-X
https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(21)00218-X
https://www.jneurosci.org/content/26/36/9227
https://www.pnas.org/doi/full/10.1073/pnas.1523597113
https://www.pnas.org/doi/full/10.1073/pnas.1523597113
https://www.nature.com/articles/s41419-020-03361-5
https://actaneurocomms.biomedcentral.com/articles/10.1186/s40478-016-0403-7
https://actaneurocomms.biomedcentral.com/articles/10.1186/s40478-016-0403-7
https://doi.org/10.1101/2024.10.02.24314813
http://creativecommons.org/licenses/by/4.0/


[64] Keeling, B. H. et al. DRD3 Ser9Gly and HS1BP3 Ala265Gly are not associated
with Parkinson disease. Neuroscience Letters 461, 74–75 (2009). URL https:
//www.sciencedirect.com/science/article/pii/S0304394009007642.

[65] Ruffner, H., Bauer, A. & Bouwmeester, T. Human protein–protein inter-
action networks and the value for drug discovery. Drug Discovery Today
12, 709–716 (2007). URL https://www.sciencedirect.com/science/article/pii/
S1359644607002784.

[66] Chautard, E., Thierry-Mieg, N. & Ricard-Blum, S. Interaction networks:
From protein functions to drug discovery. a review. Pathologie Biologie 57,
324–333 (2009). URL https://www.sciencedirect.com/science/article/abs/pii/
S0369811408002538.

[67] Wodak, S. J., Vlasblom, J., Turinsky, A. L. & Pu, S. Protein–protein inter-
action networks: the puzzling riches. Current Opinion in Structural Biology
23, 941–953 (2013). URL https://www.sciencedirect.com/science/article/pii/
S0959440X13001541.

[68] Keys, K. L. et al. On the cross-population generalizability of gene expression
prediction models. PLOS Genetics 16, e1008927 (2020). URL https://journals.
plos.org/plosgenetics/article?id=10.1371/journal.pgen.1008927.

[69] Patel, R. A. et al. Genetic interactions drive heterogeneity in causal vari-
ant effect sizes for gene expression and complex traits. The American Journal
of Human Genetics 109, 1286–1297 (2022). URL https://www.cell.com/ajhg/
fulltext/S0002-9297(22)00252-X.

[70] Bhattacharya, A. et al. Best practices for multi-ancestry, meta-analytic
transcriptome-wide association studies: Lessons from the global biobank meta-
analysis initiative. Cell Genomics 2, 100180 (2022). URL https://www.cell.com/
cell-genomics/fulltext/S2666-979X(22)00125-2.

[71] Malakhov, M. M., Dai, B., Shen, X. T. & Pan, W. A bootstrap model com-
parison test for identifying genes with context-specific patterns of genetic
regulation. The Annals of Applied Statistics 18, 1840–1857 (2024). URL
https://projecteuclid.org/journals/annals-of-applied-statistics/volume-18/
issue-3/A-bootstrap-model-comparison-test-for-identifying-genes-with-context/
10.1214/23-AOAS1859.full.

[72] Song, L., Langfelder, P. & Horvath, S. Comparison of co-expression measures:
mutual information, correlation, and model based indices. BMC Bioinformatics
13, 328 (2012). URL https://bmcbioinformatics.biomedcentral.com/articles/10.
1186/1471-2105-13-328.
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