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Abstract

Transcriptome-wide association studies (TWAS) have proven successful in pri-
oritizing genes and proteins whose genetically regulated expression modulates
disease risk, but they ignore potential co-expression and interaction effects. Here
we introduce the co-expression-wide association study (COWAS) method to
identify pairs of co-expressed genes or proteins that are associated with com-
plex traits. COWAS first trains models to predict co-expression conditional on
genetic variation, and then tests for association between imputed co-expression
and the trait while also accounting for direct effects from each exposure. We
applied our method to plasma proteomic concentrations from the UK Biobank,
identifying dozens of interacting protein pairs associated with cholesterol levels,
Alzheimer’s disease, and Parkinson’s disease. Notably, our results demonstrate
that co-expression between proteins may affect complex traits even if neither
protein is detected to influence the trait when considered on its own.

Introduction

Translating genetic associations into knowledge of causal genes and proteins is a
central problem in genetic epidemiology. Although genome-wide association studies
(GWAS) can rapidly identify the single nucleotide polymorphisms (SNPs) and genetic
loci associated with any measurable phenotype, most of the significant GWAS hits for
complex traits fall outside of protein-coding regions and are thought to affect the phe-
nome through regulatory pathways [1–6]. A popular approach for aggregating these
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regulatory effects into interpretable gene-level functional units is the transcriptome-
wide association study (TWAS) method [7, 8]. TWAS is a two-stage framework
that first trains a model to predict gene expression levels from genetic variation,
thereby estimating the genetically regulated component of expression, and then tests
for association between imputed expression and the trait of interest. Although most
commonly applied to gene expression data, TWAS can be used with any heritable
molecular phenotype. For example, proteome-wide association studies (PWAS) iden-
tify disease-relevant proteins by applying the two-stage TWAS framework to proteomic
concentrations [9–11].

Many innovative methodological extensions to TWAS and PWAS have been devel-
oped since their initial introductions [12–19], with applications spanning hundreds of
outcome traits [20–26]. All existing TWAS/PWAS methods, however, have a major
limitation: they fail to account for correlations or interactions among the functional
units being studied. In standard TWAS approaches, each gene or protein is consid-
ered independently of the rest. This marginal assumption is mathematically simple
and provides for a straightforward implementation of the method, but it is biologically
implausible. Moreover, discounting interaction effects in TWAS may lead to a loss
of statistical power and missed biological insights when considering molecular drivers
that primarily affect complex traits through synergistic pathways.

Recent methods have partially addressed the marginal limitation in TWAS by
fine-mapping candidate TWAS genes to separate the effects of multiple correlated
exposures [27–29]. These methods can tease out the likely causal genes within a larger
set of co-expressed genes by conditioning each gene on the others. However, they do
not model the genetic regulation of co-expression and cannot be used to infer the
impact of gene–gene or protein–protein interactions on the outcome trait. In a separate
line of research, protein–protein interaction (PPI) networks have been used to aid in
the interpretation of PWAS findings [30]. Such use of PPI networks, however, still
relies on the results of testing each protein individually for association with disease,
and only utilizes evidence of interactions to cluster those marginal associations. Thus,
no existing approaches are able to elucidate the extent to which co-expression and
interactions among molecular phenotypes mediate genetic effects on complex traits.

The importance of epistasis, co-expression, and PPIs in complex disease patho-
genesis has been well established and is the subject of extensive research despite the
challenges of ascertaining interaction effects from genomic data [31–34]. An increasing
burden of evidence also highlights the role of genetic variation in regulating gene–gene
and protein–protein interactions. For example, single-cell RNA sequencing data has
enabled the detection of genetic variants that significantly alter co-expression rela-
tionships [35]. More recently, a pan-cancer study demonstrated that point mutations
correlate with altered, tumor-specific PPIs and can rewire interaction networks [36].
Other work used gene co-expression networks to link cancer driver genes to cancer
GWAS genes, showing that common genetic variants are involved in the regulation
of co-expression networks [37]. More generally, large-scale sequencing studies have
established that both germline and somatic mutations are responsible for widespread
perturbations in PPI networks in human diseases [38]. Such evidence suggests that it
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should be possible to predict the effects of genetic variation on gene or protein co-
expression, and to consequently assess the association between genetically regulated
co-expression and disease.

In this paper we introduce the co-expression-wide association study (COWAS)
method to identify co-expressed genes or proteins that are associated with complex
traits. COWAS analyzes pairs of co-expressed molecular exposures, first imputing their
genetically regulated expression and co-expression, and then jointly testing for both
direct effects and interaction effects on the outcome trait. We also extend COWAS
to a summary statistics setting, making it easy to apply our method to any trait of
interest for which GWAS summary-level data are available.

We applied COWAS to plasma proteomic concentrations from the UK Biobank
(UKB) [39, 40] and large GWAS datasets for three complex traits [41–43]. We first
trained imputation models for pairs of proteins with known PPIs, and then tested
each well-imputed pair for association with low-density lipoprotein (LDL) cholesterol,
Alzheimer’s disease (AD), and Parkinson’s disease (PD). Our results demonstrate that
COWAS can successfully identify protein pairs whose co-expression impacts complex
traits while at the same time disentangling their direct and interaction effects. Our
approach also increases power relative to standard PWAS analyses, leading to the dis-
covery of proteins that were missed by PWAS. Notably, we show that co-expression
between proteins may affect disease risk even if neither protein influences the disease
when considered on its own. Overall, our contribution provides a novel framework for
studying the effects of genetically regulated co-expression on complex traits, facili-
tating interrogation of the phenotypic consequences of gene–gene and protein–protein
interactions using GWAS summary statistics.

Results

Overview of COWAS

The co-expression-wide association study (COWAS) method prioritizes pairs of inter-
acting genes or proteins whose genetically regulated expression or co-expression is
significantly associated with a complex trait. Note that COWAS can be applied to
either gene expression or protein expression data, but since our application concerns
the proteome, we will primarily refer to protein expression throughout the rest of the
paper.

The key motivation behind our approach is the observation that genetic variation
modulates not only protein expression, but also protein co-expression (Fig. 1a). We
refer to genetic variants associated with co-expression as co-expression quantitative
trait loci (coQTLs) [35], analogously to how variants associated with gene expression
are termed expression quantitative trait loci (eQTLs) and variants associated with
protein expression are termed protein quantitative trait loci (pQTLs). A variant can
belong to one or more of these xQTL classes, but we assume that a coQTL is most
likely also an eQTL or a pQTL. Furthermore, we consider co-expression to be a proxy
for interaction effects. Although gene–gene and protein–protein interactions are not
directly measured in large biobank studies such as the UKB, co-variation of protein
abundance is an accurate proxy for PPIs because interacting protein pairs are known
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Fig. 1 Overview of the COWAS framework.
a, Genes A and B code for proteins A and B, which interact with each other. The transcription, trans-
lation, and interaction processes are regulated by eQTLs, pQTLs, and coQTLs, respectively, which may
overlap and are collectively denoted as xQTLs. b, Proteins A and B may have direct effects on a com-
plex trait (θA and θB , respectively), but they may also impact the trait through their interactions with
each other (θco). c, The training stage of COWAS involves first building models to impute the expression
levels of each protein from pQTL genotypes, then using the imputed expression levels to estimate the
conditional co-expression between the two proteins, and finally building a third model to impute their
estimated conditional co-expression. d, The testing stage of COWAS involves jointly estimating direct
and interaction effects on a complex trait of interest using the fitted model weights from the training
stage, an LD reference panel, and GWAS summary statistics for the outcome trait.
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to be highly co-expressed [36, 44]. COWAS leverages pQTL data to learn the patterns
of genetic regulation underlying protein expression and co-expression, and ultimately
estimates the direct and interaction effects of genetically regulated expression on a
complex trait of interest (Fig. 1b).

The COWAS framework is comprised of a training stage (Fig. 1c) and a testing
stage (Fig. 1d). The training stage must be performed on individual-level genotype
and expression data. First, models are trained to predict the expression levels of each
protein from its pQTLs. Next, the measured and imputed expression levels are used
to estimate the co-expression of the two proteins conditional on genetic information,
which we define in terms of conditional correlation. COWAS exploits the properties of
conditional covariance to remove the components of co-expression that are explained
by genetic effects on mean expression levels or by factors unrelated to genetics, allowing
us to focus on how genetic variation modulates the amount of correlation between the
two exposures. Finally, a third model is trained to predict estimated conditional co-
expression from the union of all considered pQTLs. Explicitly modeling the conditional
correlation of expression is the primary innovation of COWAS, because it enables our
approach to incorporate the genetic component of gene or protein co-expression into
an association testing framework.

The testing stage of COWAS is typically performed using fitted model weights from
the training stage, a linkage disequilibrium (LD) reference panel, and summary-level
GWAS data for the outcome trait of interest (Fig. 1d). Here three effect sizes are jointly
estimated: the direct effect of the first protein’s genetically regulated expression on the
trait (θA), the direct effect of the second protein’s genetically regulated expression on
the trait (θB), and the effect of their genetically regulated co-expression on the trait
(θco). Note that θA and θB are distinct from the marginal effects obtained through
standard TWAS or PWAS, since here the three effect sizes are estimated together in
a joint model. As a result, each effect size is conditional on the other two.

Several hypothesis tests can be performed with these estimated effect sizes and
their standard errors. The COWAS global test determines if the protein pair has an
overall effect on the outcome trait, potentially boosting power relative to marginal
TWAS/PWAS analyses of each exposure. Alternatively, we can test the effect size
estimates individually in order to disentangle the impact of each protein’s genetically
regulated expression from the impact of their genetically regulated co-expression. In
particular, the COWAS interaction test determines if co-expression has an effect on the
outcome trait while accounting for direct effects from each exposure. This flexibility
and increased statistical power enable COWAS to identify novel disease-relevant genes
or proteins and aid in the interpretation of GWAS findings.

Accurately imputing genetically regulated co-expression

We trained COWAS models to predict protein expression and co-expression using
genotypes and proteomic concentrations from the UKB Pharma Proteomics Project
[40]. After quality control, we retained 2,833 proteins coded by autosomal genes. Since
training imputation models for each of the

(
2,833

2

)
= 4, 011, 528 possible protein pairs

would have been computationally infeasible, we restricted our analysis to pairs with
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Fig. 2 Performance metrics for COWAS models trained on UKB data.
a,c, Density plots of the correlation between measured and imputed expression, as well as estimated
and imputed co-expression, on a held-out test set. b,d, Counts of the numbers of protein pairs in which
all three prediction models had an out-of-sample correlation greater than 0.03. Models in a and b were
trained with only cis-pQTLs as predictors. Models in c and d were trained with both cis-pQTLs and
trans-pQTLs as predictors.

some prior evidence of PPIs, as listed in the Human Integrated Protein–Protein Inter-
action rEference (HIPPIE) database [45]. In total, we trained COWAS models using
UKB genotypes and normalized protein abundance residuals for 26,433 protein pairs.

To ensure that COWAS can accurately predict genetically regulated co-expression,
we explored the out-of-sample imputation performance of several regression methods
(Fig. 2). We considered penalized linear regression models with either an elastic net
penalty, a lasso penalty, or a ridge penalty. For each of these three model types, we
pre-screened genetic variants using either the P values or the effect sizes of their
association with each protein’s expression. Additionally, we also considered the extent
to which including both local pQTLs (cis-pQTLs) and distant pQTLs (trans-pQTLs)
improved model imputation performance relative to only including cis-pQTLs.

Our results show that accurate imputation is more challenging for protein co-
expression than for the expression of individual proteins. Across all of the model types
we considered, the median out-of-sample correlation between estimated and imputed
co-expression was always lower than between measured and imputed single-protein
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expression (Figs. 2a,c and Supplementary Data 1). This was expected, since interaction
effects are known to be more difficult to detect than main effects, with considerably
larger sample sizes being needed for the same level of power or prediction quality.
Interestingly, including trans-pQTLs in addition to cis-pQTLs significantly increased
the imputation quality for single-protein models, but it did not have a pronounced
effect on the performance of co-expression models (Figs. 2a,c). This suggests that
trans-pQTLs only weakly regulate PPIs, with the bulk of heritability in co-expression
stemming from local genetic variation. However, it is also possible that trans-coQTLs
may not overlap with trans-pQTLs. Since we pre-screened genetic variants based on
the strength of their association with the individual proteins in each pair, the inclusion
of distant variants primarily increases the number of strong pQTLs present in each
model and may not necessarily increase the number of strong coQTLs.

Next, we filtered the protein pairs to those in which all three imputation mod-
els yielded an out-of-sample correlation greater than 0.03 (Fig. 2b,d). Among these
well-imputed pairs, lasso regression with cis-pQTLs pre-screened by their effect
sizes achieved the highest mean out-of-sample R2 for predicting co-expression (mean
R2 = 0.0038, Supplementary Data 1). On the other hand, ridge regression with both
cis-pQTLs and trans-pQTLs pre-screened by their P values yielded the greatest num-
ber of well-imputed protein pairs (Fig. 2d and Supplementary Data 1). We decided
to use the former approach in our main analyses in order to maximize the imputation
quality of conditional co-expression. Model performance metrics for every combination
of protein pair and model type are provided in Supplementary Data 2-13.

COWAS identifies co-expressed proteins associated with
complex traits

Having shown that COWAS is able to accurately impute both single-protein expression
and protein co-expression, we applied it to three complex trait outcomes: low-density
lipoprotein (LDL) cholesterol, Alzheimer’s disease (AD), and Parkinson’s disease
(PD). For each trait, we downloaded summary-level data from the largest publicly
available GWAS study [41–43]. To ensure complete overlap between the genetic vari-
ants included in the imputation models and the GWAS data, we re-trained COWAS
models for each trait using only the intersection of variants found in both the UKB
genotype data and the trait’s GWAS. We also re-assessed the out-of-sample predic-
tive performance of each model separately for each trait and only kept pairs with
sufficiently high imputation accuracy, thus guaranteeing that differences between the
GWAS datasets do not negatively impact the validity of association testing. As a result,
the numbers of considered protein pairs somewhat differed among the three traits. For
LDL cholesterol 613 pairs were accurately imputed, for AD there were only 564 well-
imputed pairs, and for PD we retained 592 well-imputed pairs (Supplementary Data
14-16).

To compare our new approach with currently available methods, we also performed
a standard PWAS analysis for each protein included in the COWAS analyses. The
same training samples, model types, and variant screening strategies were applied for
both COWAS and PWAS. Namely, we selected the top 100 pQTLs for each protein by
their association effect sizes and used them as features in linear regression models with
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a lasso penalty. We also used the same LD reference panel derived from UKB data
when computing effect sizes in both COWAS and PWAS. Full imputation performance
metrics for all analyzed proteins and outcome traits are provided in Supplementary
Data 14-16.

a LDL cholesterol b Alzheimer’s disease c Parkinson’s disease

COWAS global

COWAS global
COWAS global

COWAS interaction

COWAS interaction

COWAS interaction

Standard PWAS

Standard PWAS

Standard PWAS

d LDL cholesterol

e Alzheimer’s disease
f Parkinson’s disease

Fig. 3 COWAS and PWAS results for three complex traits.
a-c, Venn diagrams displaying the numbers of protein pairs identified by the COWAS global test, the
COWAS interaction test, and a standard PWAS analysis. Here “standard PWAS” refers to pairs in
which at least one of the proteins is identified by PWAS. Statistical significance was assessed at the
95% confidence level, with Bonferroni multiple testing corrections for the number of protein pairs (in
COWAS) or the number of unique proteins (in PWAS). d-f, Heatmaps displaying signed − log10(P )
values from COWAS single-protein and interaction tests as well as from standard PWAS analyses for all
pairs included in the Venn diagrams. To facilitate visualization, the − log10(P ) values were capped at
20 for LDL cholesterol and AD, and at 5 for PD. A and B refer to the first and second proteins listed in
each pair, respectively.
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Our results demonstrate that COWAS is able to detect PPIs with a significant
genetically regulated effect on complex traits (Fig. 3). We identified 38 protein pairs
whose co-expression has a significant effect on LDL cholesterol levels after account-
ing for the direct effects of each protein and adjusting for multiple testing (Fig. 3a).
Of these protein pairs, 24 had at least one protein that was also identified by a stan-
dard PWAS analysis, while the rest were uniquely identified by our method. We also
performed a global test on each pair to assess whether it has an overall effect on
LDL cholesterol, which yielded 116 significant pairs after adjusting for multiple test-
ing. As expected, nearly all of those pairs contained at least one protein that was
also detected by PWAS. However, the COWAS global test did identify 12 pairs with
a significant effect on LDL cholesterol in which neither protein was significant when
considered on its own, and 5 of those pairs did not even have a significant interaction
term (Fig. 3a). This suggests that explicitly modeling co-expression can boost power
relative to standard marginal tests, even when there is no statistically significant effect
of co-expression on the outcome trait.

Interestingly, the effect of co-expression on a complex trait can have an opposite
direction relative to the effects of the interacting proteins themselves. For example,
we found that APOE and PLTP both decrease LDL cholesterol levels, while their co-
expression was associated with increased LDL cholesterol levels (3d). In other cases,
the direct and interaction effects may all be in the same direction, such as observed
for the effects of APOE and AGRN on LDL cholesterol. This illustrates the poten-
tial of COWAS to help disentangle the effects of interacting proteins on complex
traits, thereby providing a richer picture of the functional consequences of molecular
phenotypes. Full results for LDL cholesterol, including the estimated effect sizes and
standard errors within each pair, are provided in Supplementary Data 14.

COWAS boosts power and corroborates known PPIs driving
Alzheimer’s disease risk

We identified fewer significant protein pairs for AD compared to LDL cholesterol,
but this was expected due to the lower power of the corresponding GWAS study.
Yet here again, our approach was able to detect significant protein pairs missed by
standard PWAS (Fig. 3b and Supplementary Data 15). Notably, the COWAS global
test identified the pair comprised of amyloid-beta precursor protein (APP) and death-
associated protein kinase 2 (DAPK2) as significant for AD (P = 1.25e-05), while
a standard PWAS analysis failed to identify either of these proteins (P = 7.72e-
04 for APP and P = 1.31e-02 for DAPK2, Fig. 3e and Supplementary Data 15).
APP is concentrated in the synapses of neurons and is the precursor molecule for
the generation of amyloid beta (Aβ), which contributes to the formation of amyloid
plaques—a hallmark pathology in AD [46–48]. Yet despite the central role of APP
in Alzheimer’s pathogenesis, standard PWAS lacked the power to identify it in our
dataset. On the other hand, COWAS was able to boost power and attain statistical
significance by jointly considering APP and a member of the DAPK family, which has
also been previously implicated in late-onset AD [49].

Furthermore, COWAS discovered a highly significant effect of the interaction
between APOE and LDLR on AD risk (P < 1e-50). Although APOE was also highly
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significant according to a standard PWAS analysis (P < 1e-50), LDLR was not (P
= 0.48). This result is notable, because LDLR is known to be a receptor for APOE
that preferentially binds lipidated APOE particles and plays an important role in Aβ
clearance [50]. Our results are consistent with this mechanistic explanation, since we
found APOE and its interaction with LDLR to have opposite effects on AD (Fig. 3e).
Thus, COWAS provides strong support to the hypothesis that APOE and LDLR have
a synergistic effect in Alzheimer’s pathogenesis, even after accounting for the direct
effect of APOE on AD risk.

The other two significant interactions implicated by COWAS for AD are also likely
true positives, further confirming the sensitivity and power of our approach. We iden-
tified a significant effect of the interaction between LILRB2 and NOTCH1 on AD
(P = 5.73e-05), whereas standard PWAS failed to identify either protein (P = 0.80
for LILRB2 and P = 0.13 for NOTCH1). LILRB2 is a neuronal cell surface receptor
that interacts with Aβ and is being studied as a promising therapeutic target for AD
[51, 52], while NOTCH1 has been found to be differentially expressed in Alzheimer’s
patients [53] and is potentially involved in neurodegeneration-related cell signaling dis-
ruptions [54]. Finally, the COWAS interaction test also discovered a significant effect of
co-expression between CNTN2 and CNTNAP2 on AD (P = 8.42e-05), whereas stan-
dard PWAS again failed to detect either protein as significant (P = 0.94 and P = 0.38,
respectively). The mechanisms by which these proteins are involved in Alzheimer’s
pathology have not yet been thoroughly studied, but earlier genetic and functional
genomic evidence indicates that they do play a role [55].

Co-expression analysis identifies SNCA interactions in
Parkinson’s disease pathogenesis

For PD the COWAS global test identified all of the protein pairs that were also
discovered by the COWAS interaction test or by a standard PWAS analysis (Fig. 3c).
In addition to those pairs, the COWAS global test also uniquely identified an effect of
GRK5 and SNCA on the risk of Parkinson’s (P = 4.81e-06). Note that both of these
proteins have been previously implicated in PD pathogenesis. Alpha-synuclein (SNCA)
is a protein that regulates the release of neurotransmitters from the axon terminals of
presynaptic neurons, and insoluble forms of SNCA accumulate in the form of Lewy
bodies, leading to nerve cell death and the development of PD symptoms [56–58]. As
for GRK5, some evidence suggests that it plays a role in the pathogenesis of sporadic
forms of Parkinson’s [59]. These results further highlight the ability of COWAS to
boost power relative to marginal approaches such as PWAS.

Interestingly, all four of the significant co-expression effects on PD that were iden-
tified by COWAS are comprised of SNCA interacting with some other protein (Fig. 3f
and Supplementary Data 16). In particular, the COWAS interaction test identified sig-
nificant effects on Parkinson’s from genetically regulated co-expression between SNCA
and DARS1 (P = 1.21e-13), SNCA and ENSA (P = 1.03e-08), SNCA and HCLS1 (P
= 5.50e-05), and SNCA and USP8 (P = 3.64e-07). Note that co-expression between
SNCA and each of these four proteins has a positive effect on PD even though the
effect of SNCA itself is negative (Fig. 3f). This suggests that a genetically regulated
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escalation of co-expression between SNCA and each of these proteins elevates PD risk,
illustrating potential avenues for therapeutic intervention.

None of the four proteins whose interaction with SNCA had an effect on PD
were significant according to a standard PWAS analysis, with marginal PWAS P
values ranging from P = 0.88 to P = 0.07 (Supplementary Data 16). However, the
COWAS discoveries are reasonable in light of previous research. For example, USP8 is a
deubiquitinase that has also been found in Lewy bodies and plays a role in determining
SNCA levels [60, 61]. ENSA has been shown to interfere with SNCA self-assembly
and thereby alleviate its neurotoxicity [62], and variants in HCLS1 binding protein 3
were found to be associated with the related condition of essential tremor (but not
PD itself) [63]. We are not aware of any existing evidence for the role of DARS1 in
Parkinson’s, but its identification by COWAS points to a potential avenue for further
research.

Discussion

In this paper we introduced the co-expression-wide association study (COWAS)
method, the first statistical framework for identifying gene or protein pairs whose
genetically regulated interactions are associated with complex traits. COWAS extends
the two-stage least squares approach underlying TWAS/PWAS by explicitly estimat-
ing and imputing the conditional correlation between pairs of exposures, which we
interpret as a proxy for genetically regulated gene–gene or protein–protein interactions.
This enables COWAS to jointly test for direct and interaction effects of genetically
regulated expression on a complex trait of interest, thereby boosting power relative
to existing methods and helping to disentangle the functional mechanisms by which
molecular exposures influence the outcome trait. We also extended COWAS to a sum-
mary statistics setting, making it easy to apply our method to any trait for which
GWAS summary data are available.

In our application of COWAS to the UKB Pharma Proteomics Project dataset,
we first explored the performance of different regression models for imputing genet-
ically regulated co-expression and then applied our method to identify protein pairs
associated with three complex traits. Our method was able to discover biologically
relevant co-expressed proteins for all three traits, highlighting the importance of inter-
action effects in driving complex disease risk. Notably, COWAS identified a number
of protein pairs with a significant interaction term in which neither protein had a
significant effect when analyzed independently via standard PWAS. These results
underscore the importance of considering interaction effects in future research, since
the marginal TWAS/PWAS approaches currently used to analyze molecular pheno-
types may be missing important sources of signal. Moreover, our results demonstrate
that the COWAS global test is able to identify more disease-relevant protein pairs
than methods that consider one protein at a time, even in the absence of significant
interaction effects and despite the better imputation quality of single-protein models.

Notwithstanding the many advantages of COWAS, our approach has several lim-
itations. First of all, COWAS only considers one pair of molecular units at a time.
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Although this assumption is more realistic than the single-exposure setting of exist-
ing methods, it does not reflect the full range of possibilities. Proteins may interact
in larger, multi-protein interaction networks with complex topological structures [64–
66]. Extending COWAS to allow for interactions among more than two exposures at
a time could illuminate even more disease-relevant genes and proteins, but it is not
obvious how to do so in a computationally efficient way. Furthermore, we found that
the predictive capacity of protein co-expression imputation models is lower than that
of expression imputation models for individual proteins. This was expected given the
difficulty of ascertaining interaction effects in general, yet even so we were able to
obtain sufficiently good imputation quality for over a thousand protein pairs. How-
ever, more work could be done to explore different machine learning algorithms for
training co-expression imputation models. Finally, we only considered individuals of
a single genetic ancestry in this study. Since transcriptome and proteome imputation
models are not portable across ancestry groups [67–69], we subset the UKB data to the
largest genetically-inferred ancestry subgroup, which roughly corresponds to White
British individuals, and correspondingly used GWAS studies conducted on European
individuals for our three outcome traits. An extension of COWAS to handle multiple
genetic ancestries and admixed individuals would expand the diversity and relevance
of its applications.

The field of human genetics has historically focused on studying linear, marginal
effects. This is exemplified by the popularity of GWAS and TWAS/PWAS analyses,
which only consider one genetic variant or one functional molecular unit at a time. By
providing a simple yet powerful approach for analyzing genetically regulated gene or
protein co-expression using existing biobank data, our work joins the growing body of
evidence emphasizing the limitations of this historical paradigm. The COWAS method
exhibits high statistical power, provides flexibility in modeling direct and interaction
effects, and is easy to use. We envision that COWAS, along with its future improve-
ments and extensions, will enhance the interpretation of genomic findings and lead to
the discovery of new biological insights and therapeutic targets.

Methods

Modeling genetically regulated co-expression

The co-expression-wide association study (COWAS) method is applied to one outcome
trait and two molecular exposures at a time. Let A,B ∈ Rn denote the expression
or abundance levels of the two exposures, as measured in n individuals. Further, let
ZA ∈ Rn×pA be the genotype matrix of pA xQTLs for exposureA, which are genotyped
in the same set of individuals. Similarly, let ZB ∈ Rn×pB be the genotype matrix of pB
xQTLs for exposure B, and let Z ∈ Rn×p be the joint matrix of all p xQTLs, where p
is the number of unique variants in the union of xQTLs for the two exposures. (If there
is no overlap among the xQTLs for the two exposures, then p = pA + pB .) Finally, let
Y ∈ Rn be the outcome trait of interest. All of these vectors and each column of these
matrices are assumed to be centered around 0 and scaled to have a variance of 1.

Just like in standard TWAS or PWAS, we assume that the mean genetically reg-
ulated expression of each molecular exposure can be modeled as a linear combination

12

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 4, 2024. ; https://doi.org/10.1101/2024.10.02.24314813doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.02.24314813
http://creativecommons.org/licenses/by/4.0/


of its xQTL genotypes. That is,

A = γA +ZAβA + εA, (1)

B = γB +ZBβB + εB . (2)

Here βA ∈ RpA and βB ∈ RpB are unknown xQTL weights, while γA ∈ R and γB ∈ R
are unknown intercepts. The error terms εA and εB are assumed to be normally
distributed.

What sets COWAS apart from previous methods, however, is that we also model
the genetically regulated co-expression of the two functional units instead of analyzing
them independently of each other. The most popular metric for co-expression is the
Pearson correlation between measured expression levels [70, 71]. Therefore, genetically
regulated co-expression should be defined as the Pearson correlation conditional on
genetic information. Formally, we define the genetically regulated co-expression of A
and B as

Corr(A,B | ZA,ZB) =
Cov(A,B | ZA,ZB)√

V ar(A | ZA)V ar(B | ZB)
, (3)

where the conditional covariance between A and B is

Cov(A,B | ZA,ZB) = E
(
(A− E(A | ZA))(B − E(B | ZB)) | ZA,ZB

)
. (4)

To simplify estimation of this quantity, we make the assumption that V ar(A | ZA)
and V ar(B | ZB) are both constant. In other words, we assume that genetic variants
only regulate the mean of each molecular phenotype and their covariance, but not
their individual variances. Although not exactly true from a biological perspective,
this simplifying assumption is reasonable because any effects of genetic variation on
the variance of protein concentrations are likely to be much smaller than the effects
of genetic variation on the quantities we are considering.

With the above in mind, we can approximate the conditional correlation of A and
B as

Corr(A,B | ZA,ZB) ∝ Cov(A,B | ZA,ZB) (5)

= E
(
(A− E(A | ZA))(B − E(B | ZB)) | ZA,ZB

)
(6)

≈ E
(
(A− Â)(B − B̂) | ZA,ZB

)
, (7)

where Â = ZAβ̂A and B̂ = ZBβ̂B are the genetically imputed expression levels of the
two exposures. Thus, the appropriate way to model genetically regulated co-expression
is

(A− Â)(B − B̂) = γco +Zβco + εco, (8)

where βco ∈ Rp is the unknown vector of coQTL weights and γco ∈ R is an unknown
intercept. The random error term εco is again assumed to be normally distributed.
For conciseness, let C = (A− Â)(B − B̂) and Ĉ = Zβ̂co.

We can interpret β̂co as representing the effects of genetic information on the
correlation between A and B. In general, correlation between A and B may be due to
some combination of the following three factors:
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1. Genetic effects on the mean expression levels of the two proteins. In other words,
co-expression can be induced through correlation between the genetically regulated
expression levels E(A | ZA) and E(B | ZB).

2. Genetic effects that modulate the correlation between A and B. That is, genetic
variation can influence the level of correlation between εA and εB .

3. Factors unrelated to genetics. For example, a shared tissue environment or various
other environmental effects may cause A and B to be correlated.

Our formulation of conditional covariance in Equation 7 effectively removes the first
factor, so what remains may be some combination of the second and third factors.
However, the effects of any factors unrelated to genetics should be constant with
respect to genetic variation, and so they will be captured by the intercept term γco.
Notice that we estimate this intercept term and then discard it before imputing Ĉ,
thereby removing all environmental effects on co-expression. In the end, this procedure
for estimating Ĉ isolates the genetic component of co-expression.

Next, we estimate the effect of genetically regulated co-expression on the outcome
trait (Y ) while accounting for direct effects of A and B on Y . We assume that the
outcome trait depends on a linear combination of the genetically regulated expres-
sion levels of both molecular exposures and their genetically regulated co-expression.
Formally, our model for the outcome trait is

Y = ÂθA + B̂θB + Ĉθco + εY , (9)

where θA, θB , θco ∈ R are unknown scalars and εY is a normally distributed, inde-
pendent error term. The ultimate goal of COWAS is to estimate θA, θB , and θco and
to test each of them for statistical significance. We will also derive a global test to
determine if the model in Equation 9 is significantly better than a null model.

Two-sample model estimation and hypothesis testing

In practice, the COWAS models are estimated in a two-sample setting akin to standard
TWAS and PWAS. Suppose we have two nonoverlapping, individual-level datasets
with sample sizes n1 and n2. Genotypes for all p xQTLs are available in both datasets,
but the molecular exposures A,B are only measured on the n1 samples in the first
dataset, while the outcome trait Y is only measured on the n2 samples in the second
dataset.

In the model training stage, COWAS first trains models to estimate βA and βB

using data from the first dataset. Then it imputes expression for each exposure on
that same dataset. That is, we compute

Â = ZAβ̂A, (10)

B̂ = ZBβ̂B , (11)

using the same n1 individuals used for model training. Next, COWAS computes the
conditional correlation C = (A− Â)(B − B̂). These conditional correlation values are
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then used as the outcome for training the model in Equation 8, yielding the fitted
weights β̂co.

In the testing stage, the fitted weights β̂A, β̂B , and β̂co are used to impute
expression and co-expression for the n2 samples in the second dataset. That is, we
compute

Â∗ = Z∗
Aβ̂A, (12)

B̂∗ = Z∗
Bβ̂B , (13)

Ĉ∗ = Z∗β̂co, (14)

where the ∗ symbol is used to distinguish quantities measured or imputed in the
outcome dataset from those in the expression dataset. Finally, we fit the outcome trait
model

Y = Â∗θA + B̂∗θB + Ĉ∗θco + εY (15)

to estimate each of its coefficients and their standard errors. Any linear model hypoth-
esis tests can be performed on the estimated coefficients θ̂A, θ̂B , and θ̂co. In this study,
we primarily consider an interaction test and a global test.

Interaction test: To determine if co-expression has an effect on the outcome trait,
we test the hypothesis H0 : θco = 0 against its two-sided alternative using a Wald
test. Namely, the test statistic is w = θ̂2co/V ar(θ̂co), which asymptotically follows a χ2

distribution with 1 degree of freedom under H0.
Global test: To determine if the two exposures have an overall effect on the

outcome trait, we test whether the model in Equation 15 fits the data better
than an intercept-only model using an F test. Namely, the test statistic is f =
RSSnull−RSS
(n2−1)−(n2−4)/

RSS
n2−4 = n2−4

3RSS (n2−1−RSS), where RSS is the residual sum of squares

from the COWAS model in Equation 15 and RSSnull = n2 − 1 is the residual sum
of squares from an intercept-only model. f follows an F distribution with (3, n2 − 4)
degrees of freedom under the null hypothesis.

The interaction test and the global test can help to disentangle the effects of co-
expression from the direct effects of the individual exposures. If the global test rejects
its null hypothesis but the interaction test does not, we can conclude that the molecular
exposures directly influence the outcome trait. Our implementation of COWAS in R
also provides P values for Wald tests on θA and θB , enabling users to test whether
each exposure has a significant effect while accounting for the other exposure and the
co-expression term.

Extension of COWAS for use with GWAS summary data

Here we extend the association testing stage of COWAS for use with summary-level
GWAS data. The formulas we derive here only require fitted weights for expression
and co-expression imputation models, Z scores from a GWAS for the outcome trait,
and an LD reference panel. Note that we used this summary-level version of COWAS
to obtain all of the results reported in this paper.
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Let β̂A, β̂B , β̂co ∈ Rp be the trained model weights for molecular phenotypes A,
B, and their co-expression, respectively. We will denote the joint matrix of all model
weights by β̂ = (β̂A, β̂B , β̂co) ∈ Rp×3.

Furthermore, let z1, . . . , zp ∈ R be Z scores from a GWAS study for the outcome
trait of interest (Y ) for the same set of p genetic variants. We assume that the GWAS
was conducted in a population of the same genetic ancestry as the population used to
train COWAS model weights. Importantly, reference and effect alleles must be consis-
tent between the GWAS summary data and the COWAS weights. Our implementation
of COWAS automatically checks for allele consistency, flips GWAS Z scores when nec-
essary, and removes variants which cannot be harmonized. Next, COWAS converts
the GWAS Z scores to pseudocorrelation estimates. This is done by relying on the
monotonic relationship between Z scores and correlations [72], leading to the following
approximate formula for the pseudocorrelation between Y and variant i:

ĉi =
zi√

n′ − 1 + z2i
. (16)

Here zi is the Z score for the effect of variant i on the outcome trait and n′ is the
sample size of the GWAS cohort for the outcome trait.

Finally, let G ∈ Rm×p be a genotype matrix for m individuals and the same set of
p variants included in the COWAS models. We assume that these m individuals are
of the same genetic ancestry as those used to train the COWAS model weights and
conduct the outcome trait GWAS. Moreover, we assume that each column of G has
been centered around 0 and scaled to a variance of 1. An LD reference panel represents
correlations among genetic variants, and we compute it from G as

D̂ =
1

m
GTG. (17)

Now we will derive an estimator for θ = (θA, θB , θco)
T in terms of the

trained COWAS model weights β̂, the variant-outcome pseudocorrelation vector ĉ =
(ĉ1, . . . , ĉp)

T, and the LD reference panel D̂. Suppose that X̂∗ = (Â∗, B̂∗, Ĉ∗) ∈ Rn2×3

is the matrix of imputed expression and co-expression in an individual-level dataset
for the outcome trait, so that Equation 15 can be rewritten as Y = X̂∗θ + εY . This
is a multiple linear regression model, and the ordinary least squares estimator of θ is

θ̂ =
(
(X̂∗)TX̂∗

)−1

(X̂∗)TY (18)

=
(
(Z∗β̂)TZ∗β̂

)−1

(Z∗β̂)TY (19)

=
(
β̂TZ

∗TZ∗

n2
β̂
)−1

β̂TZ
∗TY

n2
. (20)

Observe that Z∗TZ∗

n2
is a matrix of correlations among the xQTLs in Z∗, so we can

estimate it with D̂. Moreover, Z∗TY
n2

is a vector of correlations between each variant and
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Y , so we can estimate it with ĉ. Therefore, the effects of expression and co-expression
on the outcome trait are jointly estimated by

θ̂ =
(
β̂TD̂β̂

)−1

β̂Tĉ. (21)

Similarly, the variance of θ̂ can be estimated in terms of θ̂, β̂, D̂, and ĉ. The
residual sum of squares for Y = X̂∗θ + εY is

RSS = ∥Y − X̂∗θ̂∥2 (22)

= Y TY − 2Y TX̂∗θ̂ + θ̂T(X̂∗)TX̂∗θ̂ (23)

= (n2 − 1)
Y TY

n2 − 1
− 2Y TZ∗β̂θ̂ + θ̂Tβ̂TZ∗TZ∗β̂θ̂ (24)

= (n2 − 1)
Y TY

n2 − 1
− 2n2

(Z∗TY

n2

)T

β̂θ̂ + n2θ̂
Tβ̂TZ

∗TZ∗

n2
β̂θ̂. (25)

Observe that Y TY
n2−1 = 1 because we assumed that Y was scaled to have a variance of

1, Z∗TY
n2

can be estimated by ĉ, Z∗TZ∗

n2
can be estimated by D̂, and the leftover n2

can be replaced by n′. Therefore, we estimate the RSS by

RSS ≈ n′
(
1− 2ĉTβ̂θ̂ + θ̂Tβ̂TD̂β̂θ̂

)
− 1. (26)

Finally, we estimate the variance of θ̂ by

V̂ ar(θ̂) =
(
(X̂∗)TX̂∗

)−1 RSS

n2 − 4
(27)

≈
(
β̂TD̂β̂

)−1 RSS

n′(n′ − 4)
. (28)

A Wald test for the effect of A, B, or C on the outcome trait can be performed
as described above. An F test of overall significance can also be performed using the
formula derived for individual-level data above, except that the sample size of the
individual-level outcome cohort (n2) should be replaced with the sample size of the
GWAS cohort (n′).

Expression and co-expression imputation models

Any statistical or machine learning algorithms can be used to build expression and co-
expression imputation models for COWAS when individual-level data is available for
the outcome trait. In order to perform the testing stage of COWAS using summary-
level GWAS data, however, the models must be built using an algorithm that can
provide a vector of xQTL weights. In this paper, we evaluated penalized linear regres-
sion models with three different penalties: the elastic net penalty, the lasso penalty,
and the ridge penalty. All models were trained using the glmnet package in R. The α
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hyperparameter was set to α = 0.5 for elastic net regression, α = 1 for lasso regression,
and α = 0 for ridge regression. The λ hyperparameter, which controls the strength
of the penalty, was chosen through 10-fold cross validation. Our implementation of
COWAS also provides the option for linear regression with stepwise variable selection,
but we did not use that method in this study due to its much longer runtime.

To further increase the computational performance of COWAS, we pre-screened
genetic variants before including them as features in the penalized regression models.
First, we conducted a proteome-wide pQTL mapping study to compute the association
between each variant and the standardized residuals of each protein. This enabled
us to consider two approaches for pre-screening predictive variants to ensure that
only strong pQTLs are considered by each model. For P value screening, we ranked
variants by their pQTL P values and kept the top 100. For effect size screening, we
instead ranked variants by the absolute values of their pQTL effect sizes and kept the
top 100. In both cases, the feature set for the co-expression model was taken to be
the union of the top-ranked pQTLs for the two proteins. Note that for the models
trained with cis-pQTLs only, we restricted the rankings to variants located close to the
gene that codes for the given protein (see details below). Performing feature screening
before training imputation models greatly decreases the runtime of COWAS, making
it computationally feasible to apply to large-scale biobank studies.

It is important to ensure that only well-imputed protein pairs are considered in
the testing stage. COWAS assesses the predictive performance of each model by cal-
culating the correlation between imputed and measured expression on a held-out test
set. In particular, we randomly selected 80% of the available samples for each protein
pair to train imputation models and the remaining 20% to test their predictive perfor-
mance. For the single-protein models, we calculated the correlation between imputed
and measured expression on the test set. Recall that the outcome for the co-expression
model, on the other hand, is a quantity estimated using measured expression levels
as well as predictions from single-protein models. Thus, to evaluate the performance
of the co-expression model, we correlated the conditional co-expression imputed by a
model trained on the 80% training set with the conditional co-expression estimated
using single-protein models trained on the entire data. After assessing predictive per-
formance, all three models were re-trained on the full dataset to obtain the final xQTL
weight vectors. Only pairs in which all three models had out-of-sample correlations
greater than 0.03 were used for hypothesis testing.

Standard PWAS analysis

We compared our proposed method with the marginal, single-exposure PWAS
approach commonly used today. Note that PWAS is independently performed on one
protein at a time, so we considered a pair to be significant according to a PWAS anal-
ysis if at least one of its proteins was identified by PWAS. Without loss of generality,
we will use the notation for protein A to explain the PWAS association test.

Let β̂A ∈ RpA be a vector of fitted pQTL weights for imputing the expression level
of protein A, as defined above. These weights could be obtained from any regression
model, such as the penalized linear regression models we considered in this study. In
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a setting with individual-level data available for the outcome trait, we first compute

Â∗ = Z∗
Aβ̂A, (29)

where Z∗
A is a matrix of pQTL genotypes for individuals in the outcome trait dataset,

as defined above. Then we fit the model

Y = Â∗θA,M + εY,A, (30)

where θA,M ∈ R is the coefficient of interest and εY,A is an independent, normally dis-
tributed error term. To determine if the genetically regulated component of A has a
significant effect on Y , we test the hypothesisH0 : θA,M = 0 against its two-sided alter-

native using a Wald test. The test statistic is θ̂2A,M/V ar(θ̂A,M ), which asymptotically

follows a χ2 distribution with 1 degree of freedom under H0.
Importantly, note that the PWAS effect size θA,M is distinct from the COWAS

effect size θA. Whereas θA,M is the marginal effect of Â on Y , the COWAS coefficient

θA is the effect of Â on Y after accounting for the effects of B̂ and Ĉ.
In practice, we performed PWAS using summary-level GWAS data for the outcome

trait and an LD reference panel. Using similar notations to those defined above, let
ĉA = (ĉ1, . . . , ĉpA

)T be a vector of correlations between each of the pA variants and

the outcome trait Y . Also let D̂A ∈ RpA×pA be an LD reference panel for those same
pA pQTLs. Then we can estimate θA,M by

θ̂A,M =
(
β̂T
AD̂Aβ̂A

)−1

β̂T
AĉA. (31)

The residual sum of squares for Y = Â∗θA,M + εY,A can be estimated by

RSSA ≈ n′
(
1− 2ĉTAβ̂Aθ̂A,M + θ̂TA,M β̂T

AD̂Aβ̂Aθ̂A,M

)
− 1, (32)

and finally we estimate the variance of θ̂A,M by

V̂ ar(θ̂A,M ) =
(
β̂T
AD̂Aβ̂A

)−1 RSSA

n′(n′ − 2)
, (33)

where n′ is the sample size of the GWAS for Y , as before. Notice that these formulas
are analogous to the ones given for COWAS, except with different degrees of freedom
and dimensions for each quantity.

Data processing and quality control

We trained protein expression and co-expression imputation models on individual-level
data from the UKB. First we downloaded genotype data for 92,457,702 autosomal
markers and 487,363 samples. Imputation, phasing, and extensive quality control
checks had already been performed on the provided data as detailed previously [39, 73].
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We further removed any individuals that had a missingness rate above 1% across mark-
ers, and then subset the data to only keep high-quality samples of genetically-inferred
White British ancestry with no relatives of third degree or closer, using indicators
provided by UKB. Lastly, we subset the data to individuals who have proteomic data
available at the baseline visit. After these steps, 36,171 samples remained.

We also performed additional variant-level quality control on the UKB genotype
data. In particular, we removed all variants with a missingness rate greater than 10%
across the remaining individuals, those with a minor allele count (MAC) less than
100, those with a minor allele frequency (MAF) less than 1%, and those that failed a
Hardy–Weinberg equilibrium test with P < 10−15. To facilitate matching up variants
between UKB data and outcome trait GWAS data, we also removed all variants lacking
an rsID and those that are palindromic. Finally, we pruned the variants to r2 < 0.8
with a 1,000 base pair (bp) window and a step size of 100 bp. After these steps,
1,689,714 variants remained. All sample-level and variant-level quality control was
done in PLINK 2.00.

Next, we computed genetic principal components (PCs) from the quality-controlled
genotype data. Before computing PCs, we applied several data processing steps in
addition to those described above. In particular, we additionally removed all variants in
regions of long-range LD [73] and then pruned the remaining ones to a strict threshold
of r2 < 0.1 with a 1,000 bp window and a step size of 100 bp. The computation of
genetic PCs was also done in PLINK 2.00.

Proteomic profiling in blood plasma was performed by the UKB Pharma Pro-
teomics Project using the antibody-based Olink Explore 3072 proximity extension
assay, which measured 2,941 protein analytes across eight panels and captured 2,923
unique proteins [40]. Various quality control checks and normalization had already
been performed as described previously [40]. We downloaded Normalized Protein
eXpression (NPX) values for 2,923 proteins in 53,073 samples. After subsetting the
data to individuals with high-quality genotypes and protein abundance measurements
at the baseline visit, as described above, a total of 36,171 samples remained. The sam-
ple sizes for individual proteins ranged from 106 to 35,581 individuals, with a median
of 33,643 individuals. Rather than imputing missing values, we used the intersection
of samples with non-missing data within each protein pair.

Then we normalized the NPX levels using a rank-based inverse normal transforma-
tion. In particular, we utilized the commonly-used Blom transform with an offset of
3/8 and ties broken by averaging. Following the transformation, we regressed out the
following standardized covariates: age, age2, sex, age ∗ sex, age2 ∗ sex, UKB assess-
ment center, genotyping array, and the first 20 genetic PCs. These protein expression
residuals, after normalizing and adjusting for covariates, were used in all downstream
analyses.

Protein annotations

We trained models that include pQTLs screened from across the genome, as well as
models that only include cis-pQTLs. To identify the cis-SNPs for each protein, we
obtained start and end positions for the genes coding each assayed protein from anno-
tations provided by the UKB Pharma Proteomics Project (Synapse: syn52364558),
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and then lifted them over to the hg19 genome build used by UKB. For proteins coded
by several genes, we only considered the first gene listed in the UKB annotation file.
We defined the cis region for each gene as beginning 500,000 bp upstream of its tran-
scription start site and ending 500,000 bp downstream of its transcription end site.
Thus, the cis-pQTLs for a given protein are the top-ranked variants that fall within
this genomic window.

In this study we only trained models for pairs of proteins found in the HIPPIE
database of PPIs [45]. To identify those pairs, we downloaded version 2.3 of the HIPPIE
database and mapped each protein in the database to its gene name using the UniProt
ID Mapping web tool (https://www.uniprot.org/id-mapping). The gene names were
then matched with protein annotations from UKB, and protein pairs present in the
HIPPIE database were retained. Note that we considered all protein pairs listed in
the HIPPIE database, regardless of their interaction confidence score.

GWAS data for outcome traits

We considered three complex traits as outcomes in our application of COWAS: low-
density lipoprotein (LDL) cholesterol, Alzheimer’s disease (AD), and Parkinson’s
disease (PD). The testing stage of COWAS was performed using summary-level data
from the largest available GWAS study for each trait. Since none of the GWAS stud-
ies provided Z scores in their summary data, we computed them by dividing each
variant’s effect size by its standard error.

For LDL cholesterol levels, we downloaded GWAS summary statistics data from
the Global Lipids Genetics Consortium (GLGC) [41]. The GLGC aggregated GWAS
results from 1,320,016 individuals of European ancestry across 146 cohorts. Their
meta-analysis provided summary statistics for 47,006,483 genetic variants and five
lipid traits, including LDL cholesterol. Although the authors also conducted a
multi-ancestry meta-analysis, we used results that were meta-analyzed solely in the
European cohorts to ensure consistency with the genetic ancestry of the majority of
UKB participants. A total of 1,624,628 genetic variants remained after harmonization
with our quality-controlled UKB genotype data.

For AD status, we downloaded GWAS summary statistics data from the Euro-
pean Alzheimer & Dementia Biobank (EADB) consortium [42]. Namely, we used their
stage 1 GWAS of AD and related dementias in individuals of European ancestry. The
stage 1 GWAS was a meta-analysis based on 39,106 clinically diagnosed cases, 46,828
proxy cases (with disease status inferred from parental history), and 401,577 controls.
Summary statistics for 21,101,114 genetic variants were provided, of which 1,435,986
remained after harmonization with our quality-controlled UKB genotype data.

For PD status, we downloaded GWAS summary statistics data from the Interna-
tional Parkinson’s Disease Genomics Consortium (IPDGC) [43]. The IPDGC GWAS
is also a meta-analysis, aggregating associations across 17 cohorts with individu-
als of European ancestry. Their main analysis included 37,688 clinically diagnosed
cases, 18,618 proxy cases (with disease status inferred from first-degree relatives),
and 1,417,791 controls. However, the publicly available summary statistics exclude
three studies with individuals from 23andMe due to data sharing restrictions. We
used the publicly available GWAS data in our analysis, which was based on 15,056
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clinically diagnosed cases, 18,618 proxy cases, and 449,056 controls. Summary-level
data were provided for 17,443,094 genetic variants, of which 1,393,959 remained after
harmonization with our quality-controlled UKB genotype data.

Data availability. Genotype, covariate, and protein expression data from the
UK Biobank are available through the UK Biobank data access process (https:
//www.ukbiobank.ac.uk/enable-your-research). Access to the UK Biobank data was
approved through UK Biobank Application #35107. Annotations for proteins assayed
by the UK Biobank Pharma Proteomics Project are publicly available on Synapse
(https://www.synapse.org/Synapse:syn51364943). Protein pairs with known interac-
tions are publicly accessible in the HIPPIE web tool (https://cbdm-01.zdv.uni-mainz.
de/∼mschaefer/hippie). Publicly available GWAS summary statistics for cholesterol
levels were downloaded from the Global Lipids Genetics Consortium website (https:
//csg.sph.umich.edu/willer/public/glgc-lipids2021). Publicly available GWAS sum-
mary statistics for Alzheimer’s disease and Parkinson’s disease were obtained from the
NHGRI-EBI GWAS Catalog (https://www.ebi.ac.uk/gwas) under accession numbers
GCST90027158 and GCST009325, respectively.

Code availability. Our software for COWAS is implemented in R and made
available on GitHub under a GPL-3.0 open source license at https://github.com/
mykmal/cowas. This GitHub repository also contains the scripts used for data qual-
ity control and batch processing. Fitted model weights for all protein expression and
co-expression imputation models trained in this study are provided on Synapse at
https://synapse.org/cowas.

Acknowledgements. This work was supported by the National Institutes of Health
(NIH) under grants R01 AG065636 and RF1 AG067924. The content is solely the
responsibility of the authors and does not necessarily represent the official views of the
NIH. The authors also acknowledge the Minnesota Supercomputing Institute (MSI)
at the University of Minnesota for providing high-performance computing resources
that contributed to the research results reported within this paper.

Author contributions. W.P. conceived and supervised the project. M.M. devel-
oped the method, implemented the software, and performed the analyses. M.M. drafted
the manuscript and W.P. proofread it.

Competing interests. The authors declare no competing interests.

Supplementary information

Supplementary Data 1: Summarized out-of-sample performance metrics for each
imputation model type.

Supplementary Data 2: Out-of-sample performance metrics for each protein pair
imputed by an elastic net penalized regression model with P value screening and only
cis-pQTLs as predictors.

22

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 4, 2024. ; https://doi.org/10.1101/2024.10.02.24314813doi: medRxiv preprint 

https://www.ukbiobank.ac.uk/enable-your-research
https://www.ukbiobank.ac.uk/enable-your-research
https://www.synapse.org/Synapse:syn51364943
https://cbdm-01.zdv.uni-mainz.de/~mschaefer/hippie
https://cbdm-01.zdv.uni-mainz.de/~mschaefer/hippie
https://csg.sph.umich.edu/willer/public/glgc-lipids2021
https://csg.sph.umich.edu/willer/public/glgc-lipids2021
https://www.ebi.ac.uk/gwas
https://github.com/mykmal/cowas
https://github.com/mykmal/cowas
https://synapse.org/cowas
https://doi.org/10.1101/2024.10.02.24314813
http://creativecommons.org/licenses/by/4.0/


Supplementary Data 3: Out-of-sample performance metrics for each protein pair
imputed by a lasso penalized regression model with P value screening and only cis-
pQTLs as predictors.

Supplementary Data 4: Out-of-sample performance metrics for each protein pair
imputed by a ridge penalized regression model with P value screening and only cis-
pQTLs as predictors.

Supplementary Data 5: Out-of-sample performance metrics for each protein pair
imputed by an elastic net penalized regression model with effect size screening and
only cis-pQTLs as predictors.

Supplementary Data 6: Out-of-sample performance metrics for each protein pair
imputed by a lasso penalized regression model with effect size screening and only
cis-pQTLs as predictors.

Supplementary Data 7: Out-of-sample performance metrics for each protein pair
imputed by a ridge penalized regression model with effect size screening and only
cis-pQTLs as predictors.

Supplementary Data 8: Out-of-sample performance metrics for each protein pair
imputed by an elastic net penalized regression model with P value screening and both
cis-pQTLs and trans-pQTLs as predictors.

Supplementary Data 9: Out-of-sample performance metrics for each protein pair
imputed by a lasso penalized regression model with P value screening and both cis-
pQTLs and trans-pQTLs as predictors.

Supplementary Data 10: Out-of-sample performance metrics for each protein pair
imputed by a ridge penalized regression model with P value screening and both cis-
pQTLs and trans-pQTLs as predictors.

Supplementary Data 11: Out-of-sample performance metrics for each protein pair
imputed by an elastic net penalized regression model with effect size screening and
both cis-pQTLs and trans-pQTLs as predictors.

Supplementary Data 12: Out-of-sample performance metrics for each protein pair
imputed by a lasso penalized regression model with effect size screening and both
cis-pQTLs and trans-pQTLs as predictors.

Supplementary Data 13: Out-of-sample performance metrics for each protein pair
imputed by a ridge penalized regression model with effect size screening and both
cis-pQTLs and trans-pQTLs as predictors.

Supplementary Data 14: COWAS (joint) and PWAS (marginal) results for asso-
ciation between genetically regulated (co-)expression and low-density lipoprotein
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(LDL) cholesterol. Only well-imputed protein pairs are included, and out-of-sample
performance metrics for the imputation models are also provided.

Supplementary Data 15: COWAS (joint) and PWAS (marginal) results for asso-
ciation between genetically regulated (co-)expression and Alzheimer’s disease. Only
well-imputed protein pairs are included, and out-of-sample performance metrics for
the imputation models are also provided.

Supplementary Data 16: COWAS (joint) and PWAS (marginal) results for asso-
ciation between genetically regulated (co-)expression and Parkinson’s disease. Only
well-imputed protein pairs are included, and out-of-sample performance metrics for
the imputation models are also provided.
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[37] Urzúa-Traslaviña, C. G. et al. Co-expression in tissue-specific gene networks links
genes in cancer-susceptibility loci to known somatic driver genes. BMC Medical
Genomics 17, 186 (2024). URL https://bmcmedgenomics.biomedcentral.com/
articles/10.1186/s12920-024-01941-4.

[38] Cheng, F. et al. Comprehensive characterization of protein–protein interactions
perturbed by disease mutations. Nature Genetics 53, 342–353 (2021). URL
https://www.nature.com/articles/s41588-020-00774-y.

[39] Bycroft, C. et al. The UK Biobank resource with deep phenotyping and genomic
data. Nature 562, 203–209 (2018). URL https://www.nature.com/articles/
s41586-018-0579-z.

27

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 4, 2024. ; https://doi.org/10.1101/2024.10.02.24314813doi: medRxiv preprint 

https://www.cell.com/ajhg/fulltext/S0002-9297(24)00251-9
https://www.cell.com/ajhg/fulltext/S0002-9297(24)00225-8
https://www.cell.com/ajhg/fulltext/S0002-9297(24)00225-8
https://www.nature.com/articles/nrg2579
https://www.nature.com/articles/nrg2579
https://academic.oup.com/bib/article/13/1/1/218763
https://academic.oup.com/bib/article/13/1/1/218763
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002819
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002819
https://www.nature.com/articles/s41392-020-00315-3
https://www.nature.com/articles/s41392-020-00315-3
https://www.nature.com/articles/s41588-018-0089-9
https://www.cell.com/cell/fulltext/S0092-8674(23)00780-8
https://www.cell.com/cell/fulltext/S0092-8674(23)00780-8
https://bmcmedgenomics.biomedcentral.com/articles/10.1186/s12920-024-01941-4
https://bmcmedgenomics.biomedcentral.com/articles/10.1186/s12920-024-01941-4
https://www.nature.com/articles/s41588-020-00774-y
https://www.nature.com/articles/s41586-018-0579-z
https://www.nature.com/articles/s41586-018-0579-z
https://doi.org/10.1101/2024.10.02.24314813
http://creativecommons.org/licenses/by/4.0/


[40] Sun, B. B. et al. Plasma proteomic associations with genetics and health in
the UK Biobank. Nature 622, 329–338 (2023). URL https://www.nature.com/
articles/s41586-023-06592-6.

[41] Graham, S. E. et al. The power of genetic diversity in genome-wide association
studies of lipids. Nature 600, 675–679 (2021). URL https://www.nature.com/
articles/s41586-021-04064-3.

[42] Bellenguez, C. et al. New insights into the genetic etiology of Alzheimer’s disease
and related dementias. Nature Genetics 54, 412–436 (2022). URL https://www.
nature.com/articles/s41588-022-01024-z.

[43] Nalls, M. A. et al. Identification of novel risk loci, causal insights, and heritable
risk for Parkinson’s disease: a meta-analysis of genome-wide association studies.
The Lancet Neurology 18, 1091–1102 (2019). URL https://www.thelancet.com/
journals/laneur/article/PIIS1474-4422(19)30320-5.

[44] Romanov, N. et al. Disentangling genetic and environmental effects on the pro-
teotypes of individuals. Cell 177, 1308–1318.e10 (2019). URL https://www.cell.
com/cell/fulltext/S0092-8674(19)30277-6.

[45] Alanis-Lobato, G., Andrade-Navarro, M. A. & Schaefer, M. H. HIPPIE v2.0:
enhancing meaningfulness and reliability of protein–protein interaction networks.
Nucleic Acids Research 45, D408–D414 (2017). URL https://academic.oup.com/
nar/article/45/D1/D408/2290937.

[46] Murrell, J., Farlow, M., Ghetti, B. & Benson, M. D. A mutation in the amyloid
precursor protein associated with hereditary Alzheimer’s disease. Science 254,
97–99 (1991). URL https://www.science.org/doi/10.1126/science.1925564.

[47] O’Brien, R. J. & Wong, P. C. Amyloid precursor protein process-
ing and Alzheimer’s disease. Annual Review of Neuroscience 34, 185–
204 (2011). URL https://www.annualreviews.org/content/journals/10.1146/
annurev-neuro-061010-113613.

[48] Delport, A. & Hewer, R. The amyloid precursor protein: a converging point
in Alzheimer’s disease. Molecular Neurobiology 59, 4501–4516 (2022). URL
https://link.springer.com/article/10.1007/s12035-022-02863-x.

[49] Wu, P.-R. et al. DAPK activates MARK1/2 to regulate microtubule assembly,
neuronal differentiation, and tau toxicity. Cell Death & Differentiation 18, 1507–
1520 (2011). URL https://www.nature.com/articles/cdd20112.

[50] Zhao, N., Liu, C.-C., Qiao, W. & Bu, G. Apolipoprotein E, receptors, and mod-
ulation of Alzheimer’s disease. Biological Psychiatry 83, 347–357 (2018). URL
https://www.sciencedirect.com/science/article/pii/S0006322317313586.

28

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 4, 2024. ; https://doi.org/10.1101/2024.10.02.24314813doi: medRxiv preprint 

https://www.nature.com/articles/s41586-023-06592-6
https://www.nature.com/articles/s41586-023-06592-6
https://www.nature.com/articles/s41586-021-04064-3
https://www.nature.com/articles/s41586-021-04064-3
https://www.nature.com/articles/s41588-022-01024-z
https://www.nature.com/articles/s41588-022-01024-z
https://www.thelancet.com/journals/laneur/article/PIIS1474-4422(19)30320-5
https://www.thelancet.com/journals/laneur/article/PIIS1474-4422(19)30320-5
https://www.cell.com/cell/fulltext/S0092-8674(19)30277-6
https://www.cell.com/cell/fulltext/S0092-8674(19)30277-6
https://academic.oup.com/nar/article/45/D1/D408/2290937
https://academic.oup.com/nar/article/45/D1/D408/2290937
https://www.science.org/doi/10.1126/science.1925564
https://www.annualreviews.org/content/journals/10.1146/annurev-neuro-061010-113613
https://www.annualreviews.org/content/journals/10.1146/annurev-neuro-061010-113613
https://link.springer.com/article/10.1007/s12035-022-02863-x
https://www.nature.com/articles/cdd20112
https://www.sciencedirect.com/science/article/pii/S0006322317313586
https://doi.org/10.1101/2024.10.02.24314813
http://creativecommons.org/licenses/by/4.0/


[51] Cao, Q. et al. Inhibiting amyloid-β cytotoxicity through its interaction with the
cell surface receptor LilrB2 by structure-based design. Nature Chemistry 10,
1213–1221 (2018). URL https://www.nature.com/articles/s41557-018-0147-z.

[52] Lao, K. et al. Identification of novel Aβ-LilrB2 inhibitors as potential ther-
apeutic agents for Alzheimer’s disease. Molecular and Cellular Neuroscience
114, 103630 (2021). URL https://www.sciencedirect.com/science/article/pii/
S1044743121000439.

[53] Cho, S.-J. et al. Altered expression of Notch1 in Alzheimer’s disease. PLOS ONE
14, e0224941 (2019). URL https://journals.plos.org/plosone/article?id=10.1371/
journal.pone.0224941.

[54] Kapoor, A. & Nation, D. A. Role of Notch signaling in neurovascular
aging and Alzheimer’s disease. Seminars in Cell & Developmental Biology
116, 90–97 (2021). URL https://www.sciencedirect.com/science/article/pii/
S1084952120302056.

[55] Bamford, R. A. et al. The interaction between contactin and amyloid precursor
protein and its role in Alzheimer’s disease. Neuroscience 424, 184–202 (2020).
URL https://www.sciencedirect.com/science/article/pii/S030645221930692X.

[56] Spillantini, M. G. et al. α-synuclein in Lewy bodies. Nature 388, 839–840 (1997).
URL https://www.nature.com/articles/42166.
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