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Abstract 

Metabolomic studies are increasingly used for both etiological and predictive research, but frequently report 

missing values. We hypothesized that interindividual genetic variation may account for part of this missingness. 

Therefore, we performed a GWAS of missingness in measured metabolite levels using an untargeted mass 

spectrometry-based platform in the Netherlands Epidemiology of Obesity Study (N=594) and the Rhineland Study 

(N=4,165). We considered metabolites missing in 10%-90% of individuals in both cohorts (N=224). GWAS meta-

analyses of these metabolites’ probability of missingness revealed 55 metabolome-wide significant associations, 

including 42 novel ones (p<1.58×10-10), involving 28 metabolites and 41 lead SNPs. Despite considerable 

pleiotropy, the majority of identified SNP-‘missing metabolite’ associations were biologically plausible, relating 

to beta-oxidation, bile acids, steroids, and xenobiotics metabolism. These findings suggest that missing values in 

metabolomics are nonrandom and partly reflect genetic variation, accounting for which is important for both 

clinical and epidemiological studies, especially nutritional and pharmacogenetics studies. 
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Introduction  

Metabolites are small molecules that are produced or consumed during anabolic or catabolic reactions and 

constitute the basic building blocks of all biological processes. Circulating metabolite levels are thought to reflect 

the integrated metabolic response to changes in genetic and non-genetic (including dietary and other 

environmental) factors.1 This hypothesis has made metabolomics an attractive field of study for elucidating the 

biological mechanisms underlying complex multifactorial diseases.1,2 Recent advances in metabolomics have 

enabled high-throughput analysis of thousands of metabolites from a single biological sample, and have been 

applied to study a wide range of cardiovascular,3,4 metabolic,5,6 and neurodegenerative outcomes,7,8 as well as 

other traits.9-11 

 

The field of metabolomics remains relatively new and still faces several challenges. One important challenge is 

the biological meaning of missing measurements of metabolites, particularly with untargeted approaches.12,13 

Conceptually, missing data could be due to either random or systematic (i.e., technical) measurement errors, or 

reflect the actual absence of specific metabolites. In addition, when the metabolite concentration in the sample is 

below the limit of detection of the measurement method, it will be reported as a missing value.12,13 Indeed, in most 

studies, missing data are assumed to reflect values below the limit of detection, and consequently are either 

removed from the analysis or imputed.12,13 However, a priori, it cannot be excluded that missing values of 

metabolites are caused by genetic variants. In this case, the metabolites with missing values could be truly absent 

from the sample due to functional alterations of specific biological pathways driven by genetic variation.9,14,15 

Therefore, imputation or removal of those metabolites from the analysis could bias biological interpretation.  

 

Long before large-scale metabolomics data became available, rare genetic mutations affecting metabolism were 

identified and investigated.16 Disorders caused by genetic mutations that disrupt metabolism are referred to as 

inborn errors of metabolism (IEM). Usually, the causal genetic mutations are located in protein coding genes and 

affect the structure of the encoded proteins to such an extent that their biological function is disrupted.17 For 

example, IEM disorders can disrupt carbohydrate metabolism, protein metabolism, fatty acid oxidation, and 

glycogen storage.17,18 Collectively, IEM disorders have an overall incidence of 1 in 2500 births.18 IEM illustrate 

that certain genetic variants have the potential to prevent the synthesis or breakdown of specific metabolites by 

disrupting metabolic pathways.19 We set out to test the hypothesis that at least some of the common missing values 

in metabolomics data, either due to levels below the limit of detection or otherwise, is caused by common genetic 

variation. We also hypothesized that the nature and context of the potential associations could provide insights 

into the potential causes of the missingness (i.e., technical, below limit of detection, or truly absent). To address 

these hypotheses, we performed genome-wide association studies (GWAS) to discover SNPs associated with the 

probability of absence (i.e., ‘missingness’ due to concentrations below the limit of detection or truly absent) of 

metabolite measures.  

Results  

Discovery Genome-wide Association Studies of Missing Metabolites  

The GWAS of missing metabolite measures was performed separately in 594 individuals from the Netherlands 

Epidemiology of Obesity (NEO) study (mean (standard deviation (SD)) age: 55.8 (5.9), range: 45-66 years, 53% 

women), and 4,165 individuals from the Rhineland Study (mean (SD) age: 55.5 (14), range: 30-96 years, 56% 
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women). Individual study characteristics and general genotype assay information are summarized in Table 1. 

GWAS results in NEO identified 712 metabolome-wide significant (p<1.58×10-10) associations between 537 SNPs 

and 6 out of the 341 included metabolites. In the Rhineland Study, we identified 4,370 metabolome-wide 

significant (p<1.59×10-10) associations between 2,615 SNPs and 32 out of the 425 included metabolites. Restricted 

to the metabolites that were available in both studies (N=224), the study-specific GWAS identified 523 and 2,613 

metabolome-wide significant SNPs for 5 and 26 metabolites in the NEO and the Rhineland study, respectively. 

The overall workflow of the GWAS analysis and following downstream analyses is illustrated in Fig. 1. The 

summary statistics of GWAS analysis are available in Supplementary Tables 1 and 2 for NEO and the Rhineland 

Study, respectively.  

 

Genome-wide Meta-analysis of Missing Metabolites  

A meta-analysis of the overlapping 224 metabolites in the two studies identified 5,455 significant associations 

(p<1.59×10-10), including 3,260 SNPs across 33 different metabolites (Fig. 2 and Supplementary Table 3). The 

direction of the associations was similar across both cohorts (Pearson correlation R2=0.92) using independent 

SNP-metabolite (r2<0.6) associations (Extended Data Fig. 1 and Supplementary Table 4). The majority of these 

metabolites belonged to the steroid metabolism pathway (N=7), followed by amino-acid metabolism (N=4), fatty 

acid metabolism (N=4), bile acid metabolism (N=5), and unannotated metabolites (N=8). Other hits belonged to 

food and plant-derived xenobiotics (i.e., alliin, solanidine, ferulic acid 4-sulfate and caffeic acid sulfate) and 

nucleotide metabolites (xanthosine).  

 

Genetically Influenced Metabotypes 

Genetically Influenced Metabotypes (GIMs), defined as variant-metabolite clusters,7 were identified by merging 

the summary statistics of all SNP-metabolite associations and selecting the SNPs with the lowest association P-

value, resulting in a set of 7,310,783 unique SNPs. Functional Mapping and Annotation (FUMA) identified 3,260 

metabolome-wide significant SNPs indexed by 41 lead SNPs (linkage disequilibrium (LD) r2 < 0.1) located across 

25 genomic risk loci (Supplementary Table 4 and 5). Those 41 lead SNPs had a total of 55 associations with the 

odds of missingness of 28 metabolites. Those 55 lead SNP-metabolite associations were further cross-referenced 

with previous metabolomic GWAS results and metabolome-based GWAS databases to assess the novelty of the 

associations (Table 2 and Supplementary Table 6). We defined SNP-metabolite associations as “novel” if the 

SNP-metabolite association was not reported previously, and labelled it as “reported” otherwise. Accordingly, we 

found 42 novel and 13 previously reported associations. Several of the associated metabolites were connected by 

shared pathways and genes, as shown in Fig. 3, and formed two large clusters. The first cluster was enriched for 

steroids and bile acid metabolites and contained two pleiotropic SNPs (rs4149056 and rs45446698) associated 

with 5 and 4 metabolites, respectively. The second cluster comprised of acetylated tryptophan and lysine related 

metabolites, along with the xenobiotic metabolite alliin. An interactive version of this network is available online 

at https://tofaquih.github.io/GWASMissingMetabolites/ for further exploration. 

 

Identification of eQTLs, pQTLs and mQTLs 

Using GTEx (version 7), we identified 23 expression Quantitative Trait Loci (eQTLs) (Supplementary Table 6). 

Interestingly, among the novel associations, the SNP rs2413667, which was associated with the odds of 

missingness of solanidine, was an eQTL of CYP2D6, an important enzyme for xenobiotic metabolism20, in adipose 
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tissue. The PhenoScanner results showed that five lead SNPs were previously reported as protein Quantitative 

Trait Loci (pQTLs) for seven different proteins (Table 3 and Supplementary Table 7). These included peptidyl-

prolyl cis-trans isomerase D, major histocompatibility class I polypeptide-related sequence B, and DNA repair 

protein RAD51 homolog. Finally, using the metabolome-based GWAS study databases, we identified 27 lead 

SNPs as metabolome Quantitative Trait Loci (mQTLs) (Supplementary Table 8). For example, we identified 

rs211710, which was associated with the odds of missingness of 3-decenoylcarnitine in our study, as an mQTL 

for decenoylcarnitine.  

 

Prioritized Candidate Genes for Missing Metabolites 

To map the 41 identified lead SNPs associated with the odds of missingness of the metabolites to candidate casual 

genes, we used the ‘Prioritization of candidate causal Genes at Molecular QTLs’ (ProGeM) framework. This 

framework maps SNPs to genes using two complementary methods. The first is based on positional proximity, 

which mapped the identified SNPs to 121 genes. The second is based on biological relevance, which mapped the 

SNPs to 100 relevant genes (Fig. 4, Supplementary Table 9 and 10). Subsequently, we focused the analysis on 

genes that were mapped through both methods, resulting in 59 candidate causal genes.  

  

Mediation Analysis Between SNP, Gene Expression Levels, And Odds of Missingness 

Out of the 162 identified genes, we conducted a functional analysis for 78 genes whose expression levels were 

available in 2,575 participants of the Rhineland Study. We found that 18 lead SNPs were significantly associated 

with 20 genes at a nominal p-value threshold—with the relation between rs10201159 and ALMS1 emerging as the 

strongest association (β = -1.55, p-value < 0.001) (Supplementary Table 11). The expression levels of 18 genes 

were significantly associated with the odds of missingness for 11 metabolites—with the HPS1 and N2-acetyl, 

N6,N6-dimethyllysine association emerging as the strongest (β = -0.4532, p-value < 0.001). Finally, mediation 

analysis (Table 4) conducted involving 9 genes whose expression levels were significantly associated with both 

lead SNPs and the corresponding metabolites, indicated that SMDT1 and HPS1 partially mediated the relation 

between the SNPs and the odds of missingness of the corresponding metabolites (p<0.05). SMDT1 mediated the 

effect between rs2413667 and solanidine by 3.2% (β (SE) = -0.02 (0.01)), while HPS1 mediated the effect between 

rs2147896 and N2-acetyl, N6,N6-dimethyllysine by 2.8% (β (SE) = -0.02 (0.01)).  

 

Missing Metabolites Variants Implicated in Diseases  

Our search in the DisGeNET database, using curated data, revealed that six lead SNPs were related to sixteen 

phenotypes, three diseases and one syndrome (Supplementary Table 12). The phenotypes were either related to 

liver, kidney, or reproductive function. Notably, rs4149056 was associated with 7 phenotypes including levels of 

thyroxine, sex hormone binding globulin (SHBG), and estradiol. Another notable SNP was rs45446698, which 

was related to three phenotypes, including birth body weight, body height, and blood protein measurement. Lastly, 

in the disease category, we found rs4149056 SNP to be associated with squamous cell carcinoma.   

Discussion 

We conducted a genome-wide meta-analysis to identify genetic variants associated with the odds of missingness 

of metabolites and identified 55 lead SNP- ‘missing metabolite’ associations, of which 42 associations were novel 

(i.e., not found in previous GWAS of metabolite levels). Based on comprehensive in silico functional analyses, 
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we identified associations between specific groups of metabolites and common metabolic pathways. First, we 

identified several SNP-metabolite associations involving metabolites that play a biological role in fatty acid beta 

oxidation pathways—generally containing an acetyl group—and that are also expressed or related to kidney 

function. Second, we found a group of metabolites and SNPs related to bile acid and steroid metabolism. And 

third, we identified SNPs associated with two xenobiotics primarily derived from plant sources. 

 

Regarding the first group of SNP-metabolites associated with fatty acid beta oxidation, notable findings were 

related to the following metabolites: 1) 3-decenoylcarnitine, a medium-chain acylcarnitine that is involved in the 

production of energy via beta-oxidation by transporting acyl-groups into mitochondria21; we found five novel 

associations between intronic regions of ACADM and ECI2, as well as exonic loci in PPID (also known as CypD 
22) and 3-decenoylcarnitine’s odds of missingness, 2) indoleacetylglutamine, a gut microbiome–derived 

metabolite23 involved in tryptophan metabolism and has been reported in various studies regarding gut microbiome 

and chronic kidney disease.24,25 Two novel associations near the ACSM1 and ACSM2A genes were associated with 

its odds of missingness, 3) N-acetylkynurenine, another metabolite involved in tryptophan metabolism. A novel 

association in the STAMPB gene and a novel association (rs10201159) in the intergenic region of NAT8 were 

associated with its odds of missingness, 4) N2-acetyl,N6,N6-dimethyllysine, an amino acid and is the precursor of 

N6,N6,N6-trimethyl-L-lysine (also known as trimethyllysine (TML)), which in turn has been reported as a 

potential precursor for trimethylamine and trimethylamine N-oxide.26,27 The rs10201159 near NAT8 and three 

novel associations near PYROXD2 gene were associated with its odds of missingness.  

 

All five novel loci associated with 3-decenoylcarnitine were located in the vicinity of genes that were strongly 

linked to the regulation of fatty acid beta-oxidation.28-30 In addition, disruptions of the metabolism of acylcarnitine 

and the process of beta-oxidation are well known causes for specific IEM. ACADM in particular is linked to 

medium chain acyl-CoA dehydrogenase (MCAD) deficiency,29,31 supporting our hypothesis of genetic variations 

affecting the missingness of 3-decenoylcarnitine. The pQTL analysis showed that rs9410 had been associated with 

PPID protein expression. Since the protein coded by PPID (CypD) functions as a transport pore in the 

mitochondrial membrane,32 this mutation could affect the transport of 3-decenoylcarnitine in the mitochondria and 

lead to reduction of its levels below the limit of detection. In addition, our functional validation analyses using 

gene expression data showed that ACADM and ECI2 expression was associated with their respective genetic 

variants, as well as with those of 3-decenoylcarnitine. However, the upstream metabolite carnitine had no 

missingness in our data (none in NEO and only missing in 9 individuals in the Rhineland study). Additionally, we 

observed that 3-decenoylcarnitine missingness occurred with higher carnitine levels, not when carnitine was low 

(Extended Data Fig. 2A and Extended Data Fig. 3A). This is an indication that these genetic variations could be 

affecting the metabolism or transport of carnitine to 3-decenoylcarnitine leading to an accumulation of carnitine 

and delayed production of 3-decenoylcarnitine. Similar to 3-decenoylcarnitine, the biological pathways implicated 

in indoleacetylglutamine metabolism and its respective SNP associations were related to beta-oxidation of fatty 

acids. Indoleacetylglutamine is also reportedly elevated in urine of patients with Hartnup disease—an IEM.25,33  

 

N-acetylkynurenine is a metabolite belonging to the kynurenine pathway, which in turn are crucial for the 

breakdown of tryptophan. 34 We found the probability of N-acetylkynurenine missingness is linked to the SNP 

rs10188058 in the STAMPB gene. It is worth noting that both N-acetylkynurenine (as well as the kynurenine 
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pathway) and STAMPB were previously reported to be associated with the IEM microcephaly-capillary 

malformation syndrome.34,35 N-acetylkynurenine, along with N2-acetyl,N6,N6-dimethyllysine (lysine 

metabolism), alliin, and X-12753, are also associated with the SNP rs10201159 in the intergenic region of NAT8. 

In line with the function of NAT8, this locus has been reported to be associated with several acetyl forms of amino 

acids and fatty acids metabolism and with the progression of chronic kidney disease.36 Overall, these metabolites 

are associated with beta-oxidation, mitochondrial function, IEMs, and potentially related to kidney function. 

 

Although little is known about N2-acetyl,N6,N6-dimethyllysine in the literature, its precursors—namely TML—

has been studied extensively.26,27,37 TML has also been associated with cardiovascular diseases and reportedly 

predicted all-cause mortality and cardiovascular disease.27 The loci associated with the missingness of N2-

acetyl,N6,N6-dimethyllysine are near the regions of PYROXD2 and NAT8. These two genes are related as 

PYROXD2 has been reported to interact with NAT8 in several studies. 9,38,39 PYROXD2 is localized in the 

mitochondrial inner membrane and has an important role in regulating mitochondrial function.40 In addition, 

PYROXD2 is associated with the IEM disorder trimethylaminuria.41 PYROXD2 is normally associated with low 

levels of trimethylamine in the urine of healthy individuals.41 Although the commonly reported primary mutations 

causing this disorder are in the FMO3 gene, growing evidence suggests that mutations in PYROXD2 play a role as 

well. Indeed, genetic variations in PYROXD2 have been reported to be implicated with the increased levels of 

trimethylamine in individuals with trimethylaminuria, specifically in sweat, breath, and urine.41,42 The eQTL 

analysis further supported that PYROXD2 expression was associated with the SNPs (rs11189559 and rs2147896) 

and with the odds of N2-acetyl,N6,N6-dimethyllysine missingness. Our GWAS and eQTL findings could indicate 

the involvement of our novel SNPs associations in PYROXD2 in relation to the missingness of N2-acetyl,N6,N6-

dimethyllysine. Subsequently, these are possibly associations with poor metabolism of TML and trimethylamine 

that could additionally relate to the development of trimethylaminuria.  

 

The second group of metabolites we have reported from our analysis were steroids and bile acids with a shared 

association with two pleiotropic SNPs: rs4149056 and rs45446698. Rs4149056 (SLCO1B1) was associated with 

two bile acids, two estrone metabolites, and an unknown metabolite X-12456—predicted to be analogous to steroid 

metabolites—which is in line with findings from previous genomic research literature.10 First, SLCO1B1 is 

associated with statin-induced myopathy via the interaction with bile acids and cholesterol.43 Second, rs4149056 

and SLCO1B1 were reported to be associated with serum estrone levels.44,45 Similarly, rs45446698 (CYP3A7) has 

been reported in studies relating breast cancer to oestrone and progesterone levels,46,47 as well as studies related to 

atorvastatin metabolism.48 In addition, PheWAS analysis indicated previous associations between rs45446698 and 

birth weight, a trait with lifetime implications for metabolism.49 Overall, these two SNPs participate in similar 

metabolic processes affecting steroid and bile acids. Although it remains unclear how these two SNPs are involved 

in reducing the metabolite levels to missingness levels, our pQTL suggests that rs45446698 is associated with 

post-translational modification of DNA repair protein RAD51 homolog 4 (RA51D) in a trans manner.50,51 These 

modifications could indicate consequences of the rs45446698 SNP on the RAD51 functionality that could 

contribute to the missingness of estrone 3-sulfate, tauro-beta-muricholate, “5alpha-androstan-3alpha,17alpha-diol 

monosulfate”, and glyco-beta-muricholate. 
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The final group we have identified was comprised of alliin and solanidine, which are both xenobiotic metabolites 

derived from the consumption of garlic and potatoes, respectively. Alliin is generally known for its health benefits, 

such as improved glucose tolerance in mice and anti-inflammatory effects in rats and in vitro studies.52,53 

Interestingly, the NAT8 locus was found to be associated with the odds of missingness of alliin. A previous study 

reported another SNP in NAT8 to be associated with the acylated form of alliin—N-acetylalliin.10 These findings 

indicate that NAT8 engages in the metabolism and acylation of alliin in some capacity. It is possible that 

rs10201159 leads to a faster metabolism of alliin into N-acetylalliin. Consequently, the levels of alliin could fall 

below the detection limit and are therefore reported as missing in metabolomic analyses.  

 
Solanidine is a steroidal alkaloid, slightly toxic metabolite in low quantities derived from potatoes and other plants 

of the Solanaceae family.54,55 We identified three novel SNPs associations from three genes strongly associated 

with solanidine. The rs2413667 SNP in the eQTL region of CYP2D6 was particularly noteworthy. The coded 

protein from this gene is responsible for the metabolism of approximately 25% of drugs used in clinical settings 

and its association with solanidine has been studied in relation to metabolism efficiency.56,57 Solanidine has also 

been reported as a potential dietary marker to assess the efficiency of CYP2D6 functionality.58 This was further 

supported by a clinical trial reporting CYP2D6 inhibition to be associated with up to 4.56 fold increase of 

solanidine levels, indicating compromised xenobiotic metabolism. Therefore, additional studies used solanidine 

as a biomarker to identify “poor metabolizers”. 56,58,59 Based on our findings regarding the association of rs2413667 

and the odds of missingness of solanidine in tandem with previous studies examining solanidine and CYP2D6 

metabolism, rs2413667 may be utilized as a new pharmacogenomic marker to identify poor metabolizers (or 

conversely rapid metabolizers) of drugs 60 and could be utilized in identifying and developing personalized 

nutritional interventions. 61 This may also be true for all the reported SNPs and metabolites in this study. The 

rs2413667 SNP is also in proximity of the eQTL region of SMDT1 and based on our mediation analysis, this eQTL 

has a significant mediation effect of 3.2%. The SMDT1 encoded protein from this gene partakes in forming a 

calcium uniporter complex in the mitochondria. In line with the protein function, solanidine and solanine toxicity 

are characterized by the disruption of calcium transport in mitochondria.55 Therefore, rs2413667 may affect 

solanidine metabolism through its influence on SMDT1 expression.  

 

Four pleiotropy patterns characterized the total 55 associations (Fig. 3). First, the odds of missingness of 13 

metabolites was associated with multiple loci in different genes, as was the case, e.g., for 3-decenoylcarnitine. 

Second, five loci illustrated pleiotropy and were associated with the odds of missingness of multiple metabolites, 

usually belonging to similar metabolic pathways. A noteworthy case of this was rs4149056, which was associated 

with the odds of missingness of five metabolite measures—three of which were steroid metabolites. Third, we 

observed three instances where multiple SNPs within the same gene were associated with the odds of missingness 

of corresponding metabolites. For example, three SNPs in PYROXD2 were associated with the odds of missingness 

of N2-acetyl,N6,N6-dimethyllysine. Fourth, the remaining associations were exclusively single SNP-metabolite 

associations. Taken together, our findings indicate considerable genetic pleiotropy regarding the odds of missing 

metabolite measures, which, however, converge on common metabolic pathways. 

 

An important consideration for this study is the interpretation of results originating from a non-traditional 

phenotype—missingness of metabolites. Missingness of a metabolite measurement can be caused by either a 
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technical issue, i.e. failure of metabolite identification in the spectral data due to a deconvolution issue, or the 

metabolite concentration being below the limit of detection, or real missingness, i.e. the metabolite concentration 

is null. It can be expected that failure of metabolite detection in the spectral data due to a deconvolution issue is to 

an extent random and unlikely to be caused by genetics. However, it is extremely difficult to distinguish between 

a metabolite measure being below the limit of detection and a metabolite truly being absent, such as the case of 

dopamine 4-sulphate. The SNP rs67110785 is found to be associated with missingness of dopamine 4-sulphate 

measures and is located in close proximity to the tyrosine hydroxylase (TH) encoding gene—a rate limiting 

enzyme in the synthesis of dopamine.62 The same SNP is also an eQTL for TH in the Genotype-Tissue Expression 

(GTEx) database. At face value, TH deficiency would lead to missingness of dopamine 4-sulphate; however, TH 

deficiency also leads to severe neurological problems that were not reported by any of the participants. Dopamine 

4-sulphate is produced from dopamine by the enzyme sulfotransferase family 1A member 3 (SULT1A3), which 

also produces dopamine 3-sulphate.63 When plotting the levels of dopamine 4-sulphate against dopamine 3-

sulphate in the NEO study, it was clear that the individuals with missing values of dopamine 4-sulphate had low 

levels of dopamine 3-sulphate and could thus not be TH or SULT1A3 deficiency (Extended Data Fig. 2B and 

Extended Data Fig. 3B). Missingness of dopamine 4-sulphate is therefore likely due to the measures being below 

the limit of detection, probably caused by lower levels of dopamine, rather than its absence.  

 

Although the exact mechanism through which these SNPs would induce missingness of metabolites remains to be 

fully elucidated, findings from previous studies related to IEM and poor metabolism, as well as our eQTL and 

pQTL analyses supports the hypothesis that genetic factors influence the probability of metabolites absence. Future 

studies are needed for deeper investigation of the underlying biological pathway of the missingness of the reported 

metabolites. A limitation of our study is the relatively small samples sizes used in the GWAS. However, by using 

two studies and a meta-analysis approach, we found strong associations between the genetic variants and 

missingness, despite the sample size limitation, and were able to replicate our findings. A second potential 

limitation was using different blood sample collection methods, with serum used in NEO and plasma in the 

Rhineland study. The differing blood sampling methodology could have influenced the levels and detection of 

some metabolites and may explain some of the disparity in the total measured metabolites between the two studies. 

However, we did find a very strong correlation between the loci-metabolites effect estimates from the NEO and 

Rhineland study. Additionally, high correlations were previously reported for metabolite measurements from 

serum and plasma samples collected from the same individuals.64 Therefore, the choice of blood sampling type 

may have a limited impact on the overall metabolite profiles and our findings. A third limitation was the nature of 

the untargeted platforms. These platforms can be prone to missing data due to systematic errors.12,13 We accounted 

for this limitation by excluding metabolites outside the missingness limits (<10% or >90% missingness) to avoid 

the inclusion of metabolites that were simply missing due to systematic errors as much as possible. Future targeted 

metabolomics studies that measure the absolute concentrations of our reported metabolites can aid in replicating 

our findings. Finally, our study included populations from European ancestry only and, therefore, further studies 

are required to investigate metabolite missingness in different populations and ethnicities.  

 

In summary, we identified 55 associations between genetic variants and the odds of missingness of numerous 

metabolites, 42 of which were completely novel associations. These associations involved 24 SNP-metabolite 

pairs related to fatty acid beta oxidation and kidney function. In addition, two pleiotropic SNPs were notable for 
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their associations with metabolites partaking in steroid and bile acid metabolism, as well as metabolism of dietary 

and xenobiotic metabolites. Our results provide novel insights into the role of genetics in determining the absence 

of certain metabolites, with potential implications for the identification of both “poor metabolizers” and IEM. 

Indeed, the novel genetic variants reported here could have potential value in future etiological and prediction 

studies, especially in the fields of metabolomics, nutritional epidemiology, pharmacogenomics, and IEM disorders.   
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Online Methods  

Study Populations  

We included 594 and 4,165 individuals of European ancestry from the Netherlands Epidemiology of Obesity 

(NEO) study and the Rhineland Study, respectively, who had both genetic and metabolomics data. NEO is a 

population-based, prospective cohort study, initiated in 2008. All participants recruited in this study gave written 

informed consent and the Medical Ethical Committee of the Leiden University Medical Center (LUMC) approved 

the study design. A detailed description of the study design and data collection can be found elsewhere.65 Briefly, 

men and women aged between 45 and 65 years with a self-reported body mass index (BMI) of 27 kg/m2 or higher 

living in the greater area of Leiden (in the west of the Netherlands) were eligible to participate in NEO. Participants 

were invited for a baseline visit at the NEO center in the LUMC after an overnight fast. At the baseline visit, 

fasting blood samples were drawn. The Rhineland Study is an ongoing prospective population-based cohort study 

in Bonn, Germany. People aged 30 years or above who lived in two geographically defined areas in Bonn were 

invited to participate with the only exclusion criterium being insufficient command of the German language to 

provide informed consent. These participants underwent deep phenotyping to obtain whole-blood, genetic, 

imaging, socio-demographic, and clinical data. 

 

Metabolomics Measurements and Missingness Inclusion Criteria 

Metabolites were measured on the Metabolon HD4 platform in the fasting state serum samples (N= 594) from 

NEO and fasting state plasma samples (N= 4,165) from the Rhineland Study. Details on the metabolomics pipeline 

have been described elsewhere.11 In brief, the Metabolon HD4 platform employs an untargeted measurement 

approach that utilizes ultra-performance liquid chromatography (UPLC) tandem mass spectrometry (MS/MS) 

combined with a positive ion mode electrospray ionization, RP/UPLC/-MS/MS combined with a negative ion 

mode electrospray, and HILIC/UPLC-MS/MS combined with a negative ion mode electrospray ionization. In total, 

1,365 metabolites were measured in NEO and 1,077 were measured in the Rhineland Study. Of these, 847 and 467 

were endogenous in NEO and the Rhineland Study, respectively. Based on the pathway annotations by Metabolon, 

these endogenous metabolites spanned 10 pathway groups: amino acids, cofactors and vitamins, lipids, energy, 

nucleotides, peptides, carbohydrate, and partially characterized molecules. In addition, it included measurements 

of 222 and 321 xenobiotic metabolites as well as 296 and 289 unannotated metabolites from NEO and the 

Rhineland Study, respectively. 

 

Most of missingness for endogenous metabolites measured by the metabolon platform occurs in less than 10% of 

the measured population. These cases are commonly due to systematic or random errors in measurements. On the 

other hand, for xenobiotic metabolites most missing values are found in 90% of the population as these metabolites 

depend on specific external exposures (i.e., medication use, nicotine exposure etc.). Therefore, we included 

metabolites with a moderate number of missing values by excluding metabolites that had a missingness percentage 

that was either below 10% or above 90% within each study. The rationale for this approach was to exclude 

metabolites with a high probability of having missing values due to systematic and random errors (<10%), are 

truly missing (>90%), or other unknown causes. Accordingly, we selected 341 and 425 metabolites in NEO and 

the Rhineland Study, respectively. 
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Genotyping and imputation 

In NEO, DNA was extracted from 6,671 venous blood samples obtained from the antecubital vein. Genotyping 

was performed in the Centre National de Génotypage (Evry Cedex, France), using Illumina HumanCoreExome-

24 BeadChip (Illumina Inc., San Diego, California, United States of America). The detailed quality control process 

has been described previously.66 Genotypes were imputed to the Haplotype Reference Consortium (HRC) release 

1.1.67 In the Rhineland Study, 4,165 DNA samples isolated from buffy coats extracted from blood samples were 

genotyped using the Illumina Omni-2.5 exome array and processed with GenomeStudio (version 2.0.5). Quality 

control was performed using PLINK (version 1.9). SNPs were excluded based on poor genotyping rate (< 99%) 

or Hardy-Weinberg Equilibrium (p < 1×10-6). Additionally, participants with poor quality DNA samples were 

excluded, on account of a poor call rate (<95%) (N=41), abnormal heterozygosity (N=69), cryptic relatedness 

(N=261), or a sex mismatch (N=28). To account for variation in the population structure, which may otherwise 

cause systematic differences in allele frequencies.68 We used EIGENSTRAT (version 16000). EIGENSTRAT uses 

principal component analysis to detect and correct for population structure, which resulted in the exclusion of an 

additional 164 participants from non-European descent. Finally, imputation was performed with IMPUTE (version 

2),69 using the 1000 Genomes version 3 phase 5 as the reference panel.70  

 

Genome-wide Association Analyses 

In NEO, we performed the GWAS of missing metabolites using the SNPTEST v2 software, employing logistic 

regression analysis under an additive model. In the Rhineland Study, the GWAS was performed using the 

REGENIE software (v2.2),71 fitting a firth logistic regression model to the data. REGENIE computation is 

composed of two steps. Step 1 uses a subset of genetic markers to fit a whole genome regression model that 

captures the phenotype variance attributable to genetic effects. In step 2, a larger set of imputed SNPs are used in 

order to test for their association with the different phenotypes conditional upon the prediction from step 1 and 

using a leave one chromosome out scheme. Genotyped SNPs were pruned using a linkage disequilibrium (LD) r²-

threshold of 0.9 with a window size of 1,000 and a step size of 100 markers. 

 

Overall, we included 21,243,072 and 49,953,404 imputed SNPs in the GWAS analysis in NEO and the Rhineland 

Study, respectively. These analyses were restricted to SNPs with an imputation quality > 0.3 and minor allele 

frequency (MAF) > 0.01. The missing metabolites were adjusted for age, sex, fasting status and five genetic 

principal components in the NEO study, and age, sex, fasting status and the first ten genetic principal components 

in the Rhineland Study. Genome-wide significance level was set at p < 5×10-8. However, because of the large 

number of outcome variables (i.e., missing metabolites), we corrected for multiple testing using the method of Li 

& Ji,72 which estimates the effective number of independent tests. Accordingly, we estimated the effective number 

of independent tests to be 315 and 313 in NEO and the Rhineland Study, resulting in a metabolome-wide 

significance level of p < 1.58×10-10 (≈ 5×10-8/315) and p < 1.59×10-10 (≈ 5×10-8/313), respectively.  
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Meta-analysis of GWAS 

For the GWAS meta-analysis, we selected and used 7,310,783 SNPs which had MAF > 0.01 in the Rhineland 

Study, as it had the larger sample size between the two studies. We then harmonized the SNPs with the overlapping 

6,610,552/7,310,783 SNPs in the NEO study that had a MAF > 0.01. Meta-analysis was performed employing an 

inverse variance-weighted fixed-effects model using METAL.73 Identification of allele flips and applying genomic 

control was performed using METAL as well for each cohort prior to performing the meta-analysis. The 

metabolome-wide significance level for the meta-analysis was set at p < 1.59×10-10, which was the more stringent 

cut-off used in the Rhineland Study.  

 

Definition of Genomic Risk Loci 

To identify genomic regions associated with missing metabolites, a single dataset was created by identifying the 

minimum p-value for each SNP across all meta-GWAS summary statistics of missing metabolites (6). This dataset 

was LD-clumped (r2 < 0.6) using the Functional Mapping and Annotation (FUMA) platform74 with the 1000 

Genomes Phase 3 European reference panel to account for the LD structure. We further represented those clumped 

SNPs by lead SNPs, which are a subset of the independent significant SNPs that are in approximate LD with each 

other at r2 > 0.1. Finally, we identified associated genomic risk loci by merging any physically overlapping lead 

SNPs (LD blocks < 250 kb apart).   

 

Novel Associations 

To identify novel GWAS hits, we used curated metabolome GWAS databases such as mGWAS-Explorer75 and 

PhenoScanner.76 We further manually verified whether our lead SNPs were previously identified in metabolomic-

based GWAS studies10 as metabolome quantitative trait locus (mQTLs).  

 

Identifying Candidate Genes  

We aimed to identify candidate genes tagged by the lead SNPs that may influence the probability of missingness 

of certain metabolites. To achieve this, we first used the “prioritization of candidate causal genes at molecular 

QTLs” (ProGeM) framework.77 This framework implements a two-step approach (bottom-up and top-down) to 

identify putative causal genes. In the bottom-up approach, the three closest protein-coding genes within 500 kb of 

the lead SNP are selected, while the top-down approach uses curated gene function databases (e.g., Gene Ontology 

(GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), Mouse Genome Informatics (MGI) and Orphanet) to 

identify biologically relevant genes that are present within 500 kb of the lead SNPs. We used Variant Effect 

Predictor (VEP)78 to search for the closest protein coding genes with the lead SNP and also calculated the impact 

factor score of the lead SNPs based on its function as either missense, start loss or stop gain. ProGEM also assesses 

whether the lead SNPs are eQTL using the GTEX v7 database.79 The genes that were identified through top-down 

and bottom-up approach, were prioritized as candidate genes.  

 

PheWAS 
We performed a phenome-wide association study (PheWAS) using the disgenet2r package to check which lead 

SNPs had previously been reported to be associated with any other clinical or disease outcomes, as contained in 

the disease-gene association database (DisGeNET). The package ranks the associations using Variant Disease 

Association (VDA) scores ranging from 0 to 1, where a higher score represents stronger evidence of a SNP 

association with a disease outcome. Only lead SNPs with a score > 0.7 were reported.  
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RNA sequencing data in the Rhineland Study 

Total RNA was isolated from 3,384 whole blood samples, stored, and stabilized in PAXgene Blood RNA tubes 

(PreAnalytix/Qiagen) using PAXgene Blood miRNA Kit in accordance with the manufacturer’s instructions and 

following the semi-automatic purification protocol (PreAnalytix/Qiagen). RNA integrity and quantity were 

assessed using the Tapestation 4200 system (Agilent). After using 750 ng of total RNA to generate next generation-

sequencing libraries for total RNA sequencing (TruSeq stranded total RNA kit,Illumina), a Ribo-Zero Globin 

reduction was performed. Libraries were quantified using Qubit HS dsDNA assay (Invitrogen) and clustered at 

250 pM concentrations on a NovaSeq6000 instrument using NovaSeq S2 v1 chemistry (Illumina) in XP mode for 

the first batch of 3,000 samples and NovaSeq S4 v1.5 chemistry for the last batch of 384 samples and sequenced 

paired-end 2*50 cycles. Sequencing data was demultiplexed and converted into fastq format using bcl2fastq2 

v2.20. We performed the quality control check on raw sequencing reads using FastQC v0.11.9 and we filtered low-

quality score reads using Trimmomatic v.0.39. Next, we used STAR v2.7.1 aligner to align the sequencing reads 

to the human reference genome GRCh38.p13 and to generate the gene count matrix through “STAR –quantMode 

GeneCounts” using the human gene annotation version GRCh38.101. Genes with overall mean expression greater 

than 15 reads and expressed in at least 5% of the participants were selected for further analysis. Finally, we used 

the “varianceStabilizingTransformation” function from DESeq2 v1.30.1 to normalize and transform the raw 

counts. 

 

Gene Expression quantitative trait loci 

To functionally validate the GWAS results using gene expression data, we used a three stepped approach analysis 

conducted on the first 3,384 consecutive participants of the Rhineland Study on which genetics, gene expression 

and metabolite data were available and quality controlled (N = 2,575). First, we assessed the associations between 

the lead SNPs and the corresponding genes, selected through bottom-up and top-down approaches. We adjusted 

gene expression levels for age, sex, the first 10 principal components, red and white blood cell counts, the relative 

fractions of basophils, eosinophils, lymphocytes, monocytes and neutrophils, and batch effect and we extracted 

the residuals. Next, linear regression analysis was performed to assess the associations between the lead SNPs 

(independent variable) and the residuals of candidate genes (dependent variable). Second, we evaluated the 

relations between the residuals of gene expression data, obtained after adjustment for identical covariates as before 

(independent variable) and the significant metabolites with missing values, adjusting for metabolomics’ batch 

effect using logistic regression analysis. Third, we employed a mediation analysis using the R package lavaan 

v.06-11 to investigate which candidate genes mediated the associations between lead SNPs and missing metabolite 

with 1000 bootstrapping iterations.  

 

Protein quantitative trait analysis  

We performed a protein quantitative trait analysis by using the Phenoscanner. 76 Briefly, Phenoscanner holds 

publicly available protein quantitative trait loci (pQTLs) results from large-scale genome-wide association studies. 

We verified whether our lead SNPs associated with missing metabolites were previously identified as pQTLs. 

Accordingly, we filtered results for protein wide association studies with significant SNP-protein associations 

(p<5×10-8) with our lead SNP or a proxy SNP (r2>0.9) with our lead SNPs.  
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Network Representation of Gene-SNP-metabolite Associations 

We used the associations identified through our meta-analysis, ProGEM mapping, and PheWAS to construct a 

comprehensive interactive network. Each SNP, metabolite, gene, metabolite sub-pathway (as annotated in the 

metabolon dataset), disease or phenotype associations from DisGeNET, and pQTL associations from 

Phenoscanner were presented as “nodes” with distinct colours. The width of the “edges” connecting the SNP-

metabolites was determined according to the -log10 of the p-value of the effect estimate. Additionally, the colour 

of these edges was chosen to reflect the novelty of the association. Visualization and layout of the networks were 

created using Cytoscape version 3.10.2 and Gephi v0.10 and then exported as an interactive HTML5 using the 

sigmaExporter plugin 80 at the following URL https://tofaquih.github.io/GWASMissingMetabolites/. 
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Tables and Figures  

Table 1: Overview of the sample characteristics and general genotype assay information.  

 

Characteristic NEO Study  

(n= 594) 

Rhineland Study  

(n= 4165) 

Age: mean (sd) 55.8 (4.5) 55.5 (13.96) 

Sex: % female 
 

53% 56% 

Metabolomics Platform 
 

Metabolon-HD4 Metabolon-HD4 

N of metabolites with missing values 
 

433 340 

Blood sampling 
 

Serum Plasma 

Fasting status % 
 

100% 99.4% 

Genotyping Array 
 

Illumina HumanCoreExome-24 BeadChip Omni 2.5 Exome Array 

Genotype Imputation Panel 
 

HRC (r1.1) 1000 genome phase 3 version 5  
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Figure 1: Workflow of the GWAS and post-GWAS analyses of missing metabolite measures 
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Figure 2: Genomic loci associated with missingness of metabolites.  

 
A, Circular Manhattan plot showing both cohort-specific and meta-analysis GWAS results. B, Circular 

Manhattan plot showing regional associations of genomic locations per metabolite class. The color of the genes 

indicates whether the identified lead SNP locus is novel. Dark blue indicates lead SNP loci (r2<0.1) that were 

previously reported, and red lead SNP loci that were identified to be novel with metabolites. The p-value axis is 

truncated at p<1×10-30 for visualization purposes. All GWAS models were adjusted for age, sex, batch, fasting 

status and population substructure principal components.  
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Table 2: Novel and previously reported lead SNP-Metabolite associations using PhenoScanner 

Sub Pathway Metabolite Name SNP nearestGene Beta (SE) P value Novelty  HMDB* 
Androgenic Steroids 5alpha-androstan-3alpha,17alpha-diol 

monosulfate 
rs2398186 AKR1C3 0.4495 (0.0684) 5.004×10-11 Novel HMDB0000458 
rs45446698 CYP3A7 -2.3785 (0.1532) 2.441×10-54 Reported  
rs76265464 TRIM4 -2.014 (0.249) 6.07×10-16 Novel 

5alpha-androstan-3alpha,17beta-diol 
17-glucuronide 

rs1454247 TMPRSS11E -0.5275 (0.0717) 1.931×10-13 Novel 
 

Corticosteroids tetrahydrocortisol sulfate (1) rs212100 SULT2A1 0.7805 (0.0898) 3.556×10-18 Novel HMDB0000949 
rs62142080 MEMO1 0.4637 (0.0657) 1.636×10-12 Novel 

Estrogenic Steroids estrone 3-sulfate rs11045856 SLCO1B1 -0.5496 (0.0584) 4.551×10-21 Novel HMDB01425 
rs4149056 SLCO1B1 0.8336 (0.0634) 1.853×10-39 Novel 
rs45446698 CYP3A7 -1.9913 (0.2056) 3.486×10-22 Novel 

Fatty Acid Metabolism 
(Acyl Carnitine, 
Monounsaturated) 

3-decenoylcarnitine  rs211710  SLC44A5 -0.7772 (0.0612) 5.372×10-37 Novel HMDB0241067 
rs629362  C6orf201 0.4453 (0.0597) 8.92×10-14 Novel 
rs75405265 ACADM -1.3468 (0.1613) 6.778×10-17 Novel 
rs814863  SLC44A5 -0.617 (0.0883) 2.75×10-12 Novel 
rs9410 PPID 0.5561 (0.0604) 3.23×10-20 Novel 

Fatty Acid Metabolism 
(also BCAA 
Metabolism) 

butyrylglycine rs111409007 MLEC 0.4744 (0.0722) 5.008×10-11 Novel HMDB00808 
rs12829722  UNC119B 0.6893 (0.0605) 4.881×10-30 Reported  

Fatty Acid, 
Monohydroxy 

3-hydroxysebacate rs1126742 CYP4A11 -0.5556 (0.078) 1.085×10-12 Reported  HMDB0340579 

Food Component/Plant alliin rs10201159 NAT8 -0.7113 (0.0588) 1.075×10-33 Novel HMDB33592 
solanidine rs116878828 MKL1 0.582 (0.0893) 7.267×10-11 Novel HMDB03236 

rs133338  WBP2NL 0.7751 (0.0648) 5.661×10-33 Novel 
rs2413667  FAM109B 1.1182 (0.0608) 2.024×10-75 Novel 

Lysine Metabolism N2-acetyl,N6,N6-dimethyllysine rs10201159 NAT8 0.8927 (0.0986) 1.334×10-19 Novel 
 

rs11189559 PYROXD2 0.4777 (0.0743) 1.317×10-10 Novel 
rs2147896 PYROXD2 -1.2699 (0.0649) 3.051×10-85 Novel 
rs4919209 PYROXD2 0.4708 (0.0724) 8.003×10-11 Novel 

Pregnenolone Steroids 17alpha-hydroxypregnanolone 
glucuronide 

rs17713514 SLC22A8 1.5434 (0.2094) 1.717×10-13 Reported  HMDB0000363 

Primary Bile Acid 
Metabolism 

cholic acid glucuronide rs1454247 TMPRSS11E -1.038 (0.0502) 8.29×10-95 Novel HMDB0002577 
rs34976817 TMPRSS11E -0.9448 (0.0802) 4.947×10-32 Reported  
rs62317501 TMPRSS11E -0.4206 (0.0638) 4.458×10-11 Novel 

glyco-beta-muricholate rs45446698 CYP3A7 1.8743 (0.2818) 2.888×10-11 Novel HMDB0341323 
glycocholate glucuronide  rs4149056 SLCO1B1 0.4621 (0.0607) 2.718×10-14 Novel HMDB0341324 
tauro-beta-muricholate rs45446698 CYP3A7 2.0306 (0.1632) 1.526×10-35 Novel HMDB0000932 

Progestin Steroids 5alpha-pregnan-diol disulfate rs12656482 UGT3A1 1.0108 (0.0788) 1.052×10-37 Reported  
 

rs212100 SULT2A1 0.6352 (0.0697) 8.317×10-20 Novel 
pregnanolone/allopregnanolone sulfate rs12656482 UGT3A1 0.8004 (0.0678) 3.371×10-32 Novel HMDB0062782 

rs4149056 SLCO1B1 0.4155 (0.0618) 1.834×10-11 Novel 
Purine Metabolism xanthosine rs1042391 GMPR 0.3338 (0.0467) 8.819×10-13 Reported  HMDB0000299 
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Sub Pathway Metabolite Name SNP nearestGene Beta (SE) P value Novelty  HMDB* 
Secondary Bile Acid 
Metabolism 

taurodeoxycholic acid 3-sulfate rs4149056 SLCO1B1 0.6427 (0.0784) 2.525×10-16 Novel HMDB0240734 

Tryptophan 
Metabolism 

indoleacetylglutamine rs6497506  ACSM3 0.5559 (0.0713) 6.353×10-15 Novel HMDB0013240 
rs72778603 ACSM2A -1.2624 (0.1369) 2.882×10-20 Novel 
rs7498421 ACSM5 0.6891 (0.0686) 9.52×10-24 Reported  

N-acetylkynurenine rs10188058 STAMBP 0.6201 (0.0793) 5.423×10-15 Novel HMDB0240342 
rs10201159 NAT8 1.2782 (0.0738) 3.755×10-67 Reported  
rs948445 ACY3 0.6161 (0.0677) 9.101×10-20 Reported  

Tyrosine Metabolism dopamine 4-sulfate rs17128050 GCH1 -0.6634 (0.0754) 1.447×10-18 Reported  HMDB0004148 
rs67110785 TH 0.4338 (0.0537) 6.913×10-16 Novel  

X-12410 rs4921913 NAT2 -0.6524 (0.087) 6.57×10-14 Novel 
 

X-12456 rs11045856 SLCO1B1 -0.5904 (0.0554) 1.635×10-26 Novel 
 

rs4149056 SLCO1B1 0.8525 (0.0647) 1.098×10-39 Reported  
 

rs58712885 SLCO1B1 -0.6786 (0.1035) 5.548×10-11 Novel 
 

rs974452 SLCO1C1 -0.5143 (0.0723) 1.119×10-12 Novel 
 

X-12753 rs10201159 NAT8 0.5979 (0.055) 1.729×10-27 Novel 
 

X-13658 rs61886768 CYP2C9 0.4206 (0.0598) 2.066×10-12 Novel 
 

X-18345 rs117699706 ASRGL1 -0.5411 (0.0802) 1.537×10-11 Novel 
 

X-21312 rs1165189 SLC17A3 0.477 (0.0604) 2.751×10-15 Reported  
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Figure 3: Network representation of the 41 lead SNP-metabolite associations. 

 
The network shows the associations between the 41 lead SNPs (blue diamonds) and metabolites (orange circles). The network also includes the mapped genes to each SNP (purple 
squares), assigned sub-pathway from the measurement platform (yellow rounded squares), traits and diseases associated with the SNPs from DisGeNET (green octagons), and pQTL 
associations from Phenoscanner (pink hexagons). Novel and reported associations between the SNP-metabolites are represented in red- and orange-colored lines respectively.  
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Figure 4: Summary of top ranked candidate gene identification, eQTL, and pQTL associations per identified SNP-metabolite. 

Candidate genes identified by the ProGeM positional approach (bottom-up) are highlighted in orange under the “positional” column and highlighted in yellow under the 
“functional” column based on metabolic and phenotypic relevance approach (top-down). Genes with a significant eQTL association are highlighted in green under the eQTL 
column and in blue for SNP-pQTL associations under the pQTL column.  
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Table 3: Top pQTL associations with the lead SNPs 

Metabolite Name Sub Pathway Lead SNP Nearest gene Proxy pQTL 
SNPs* 

pQTL associated trait 
(Phenoscanner) 

pQTL associated 
trait (UK biobank) 

3-decenoylcarnitine Fatty Acid Metabolism (Acyl 
Carnitine. Monounsaturated) 

rs9410 PPID rs8396 Peptidyl-prolyl cis-trans 
isomerase D 

 

- 

X-21312 
 

- rs1165189 
 

SLC17A3 
 

rs13200784, 
rs3757132 

MHC class I polypeptide-
related sequence B 

 

- 

estrone 3-sulfate 
 

Estrogenic Steroids rs45446698 
 

CYP3A7 
 

rs45446698 DNA repair protein RAD51 
homolog 4 

 

- 

tauro-beta-muricholate Primary Bile Acid 
Metabolism 

- 

5a-Androstane-3a,17a-diol monosulfate Androgenic Steroids - 

glyco-beta-muricholate Primary Bile Acid 
Metabolism 

- 

X-12410 
 

- rs4921913 
 

NAT2 
 

rs4921915 Transferrin 
 

- 

5a-Androstane-3a,17a-diol disulfate Progestin Steroids rs212100 
 

SULT2A1 
 

rs212100 Bile salt sulfotransferase 
 

DNA repair protein RAD51 
homolog 4 

SULT2A1 
 

tetrahydrocortisol sulfate Corticosteroids 

X-18345 - rs117699706 ASRGL1 - - Isoaspartyl 
peptidase/L-
asparaginase 

N-acetylkynurenine (2) Amino acid rs948445 ACY3 - - N-acyl-aromatic-L-
amino acid 

amidohydrolase 
(carboxylate-

forming) 
xanthosine Nucleotide rs1042391 GMPR - - GMP reductase 1 

*Proxy SNPs selected based on their correlation (r2) with the lead SNP. Full results available in Supplementary Table 7. 
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Table 4: eQTL mediation of the association between the lead SNPs and missing metabolites by primary candidate genes.  

Exposure Mediator Metabolite 
Indirect effect Direct effect Total effect  Percentage of 

mediation± β estimate 
(SE) 

P value β estimate 
(SE) 

P value β estimate 
(SE) 

P value 

rs117699706 ASRGL1 X-18345 -0.030 
(0.023) 0.212 -0.30 

(0.067) 6.6×10-06 -0.333 
(0.062) 9.6×10-08 8.9% 

rs629362 ECI2 3-Decenoylcarnitine -0.015 
(0.013) 

0.259 
 

-0.236 
(0.047) 7.6×10-07 -0.252 

(0.045) 2.9×10-08 6.2% 

rs10201159 ALMS1 X-12753 
-0.025 
(0.025) 0.320 

-0.407 
(0.053) 1.8×10-14 

-0.433 
(0.046) <10×10-16 5.9% 

rs814863 ACADM 3-Decenoylcarnitine -0.011 
(0.007) 

0.172 -0.319 
(0.063) 

4.9×10-07 
 

-0.330 
(0.063) 

2.0×10-07 3.2% 

rs2413667 SMDT1 Solanidine -0.024 
(0.012) 

0.055* 
 

-0.722 
(0.050) <10×10-16 -0.746 

(0.047) <10×10-16 3.2% 

rs10201159_T ALMS1 N2-acetyl.N6.N6-
dimethyllysine 

-0.015 
(0.035) 

0.684 
 

-0.495 
(0.074) 

2.9×10-11 
 

-0.509 
(0.066) 1.3×10-14 2.9% 

rs2147896 HPS1 N2-acetyl.N6.N6-
dimethyllysine 

-0.022 
(0.007) 

0.004* 
 

-0.745 
(0.046) <10×10-16 

-0.766 
(0.046) <10×10-16 2.8% 

rs11189559_G PYROXD2 
N2-acetyl.N6.N6-

dimethyllysine 
-0.005 
(0.004) 0.176 

-0.236 
(0.049) 1.9×10-06 

-0.241 
(0.049) 1.1×10-06 2.2% 

rs211710 ACADM 3-Decenoylcarnitine -0.002 
(0.006) 

0.731 
 

-0.556 
(0.048) 

<10×10-16 -0.557 
(0.048) 

<10×10-16 0.4% 

*Indirect effect’s P value =< 0.05 
± (Indirect effect / total effect) * 100 
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Extended Data Figures 
 
Extended Data Fig. 1 Correlation between the GWAS meta-analysis independent SNP (r2<0.6)-metabolite 
effect sizes from the Rhineland Study and the NEO Study 
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Extended Data Fig. 2 Correlation and visualization of missingness of 3-decenoylcarnitine and dopamine 
4-sulphate in relation to carnitine and dopamine 3-sulphate in the NEO study 
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Extended Data Fig. 3 Correlation and visualization of missingness of 3-decenoylcarnitine and dopamine 
4-sulphate in relation to carnitine and dopamine 3-sulphate in the Rhineland Study 
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