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ABSTRACT

Multimorbidity, the co-occurrence of two or more chronic conditions within an individual, is a major and escalating global
health challenge, complicating treatment regimens, straining healthcare resources, and worsening patient outcomes. The
complex interplay of shared genetic predispositions, biological pathways, and socioeconomic factors underpins its development,
but clinical and research efforts have largely focused on managing diseases in isolation. Understanding multimorbidity
trajectories—the accumulation and interaction of chronic diseases over time—is essential to improving preventive strategies
and optimizing personalized care. Here, we introduce ForeSITE (Forecasting Susceptibility to Illness with Transformer
Embeddings), a novel, transformer-based framework that harnesses advanced machine learning to predict multimorbidity
progression. By analyzing longitudinal data from 480,000 participants in the UK Biobank, ForeSITE identifies distinct patterns
in the co-occurrence and timing of diseases. Our temporal disease network provides insights into how certain diseases might
share common genetic, environmental, or socioeconomic factors, offering more specific guidance for earlier detection and
more effective disease management.

Introduction
Precision medicine, with its focus on tailoring treatments to individual patients, has revolutionized modern healthcare by
integrating diverse health data sources. These data include biobanks like the UK Biobank, which offer comprehensive
longitudinal datasets, as well as electronic health records (EHRs), genomics, proteomics, metabolomics, and lifestyle data.
This vast and diverse data enables insights into disease progression and the underlying biological mechanisms. For example,
the UK Biobank’s detailed genetic and clinical data facilitates associations between genetic variants and complex conditions,
such as asthma and Alzheimer’s disease, while considering modifiable risk factors like diet and physical activity. However,
while precision medicine has enabled targeted therapies for individual diseases, a major challenge remains in predicting and
managing multimorbidity—the development of multiple chronic conditions over a patient’s lifetime. Current approaches tend to
treat diseases in isolation, missing critical insights into how conditions develop together. To address this, our research leverages
advanced machine learning models, specifically transformer-based language models1, to predict multimorbidity trajectories,
offering a more comprehensive understanding of disease interactions and progression over time. Using data from 480,000
participants in the UK Biobank, we aim to forecast disease progression across the full spectrum of health outcomes. For
example, through patient stratification, we can identify individuals who experienced childhood asthma and are at increased
risk of developing eczema within 5 years, allergic rhinitis in 10 years, and later adult conditions like osteoporosis or anxiety
disorders within 20 years. By pinpointing these high-risk patients early, clinicians could intervene sooner, potentially delaying
disease onset or slowing progression. This kind of stratification offers a clear path toward more proactive and personalized care,
making treatment not only more effective but also more efficient. Ultimately, this approach holds the potential to transform
standard care practices by aligning interventions with patients’ individual health profiles and risks.

Multimorbidity, characterized by the simultaneous presence of two or more chronic conditions within an individual, is an
escalating global challenge that poses complex questions about how diseases interact and evolve over time2. Beyond merely
identifying which diseases tend to co-occur, a deeper understanding of when these conditions develop in relation to one another
is critical. Temporal analysis focuses on the specific timing and sequence of disease onset, providing insights into how the
occurrence of one condition might influence the development of another. Longitudinal analysis, on the other hand, examines
how these diseases progress and interact over the long term within individuals, allowing researchers to track health changes
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across extended periods. Our research leverages large language models (LLMs) to study and predict disease trajectories,
combining both temporal and longitudinal aspects. By using data from biobanks like the UK Biobank, LLMs enable us to
model the timing and progression of multiple conditions, offering a more comprehensive understanding of how multimorbidity
evolves. This dual approach helps inform how healthcare interventions can be better timed to prevent or mitigate the impact of
multimorbidity. Addressing these challenges is particularly critical for socioeconomically disadvantaged populations, who
often experience earlier onset of multimorbidity and face worse outcomes, such as reduced mobility, diminished quality of
life, and increased mortality3, 4. By leveraging these insights, we aim to guide the development of more effective healthcare
strategies that account for both the complexity and timing of disease development in multimorbidity.

The challenge posed by multimorbidity is particularly pronounced in the elderly population, where it emerges as a pervasive and
complex dilemma in healthcare. Managing multiple chronic conditions simultaneously introduces challenges such as balancing
conflicting treatments, addressing medication interactions, and coordinating care across different specialists5. Although often
conflated with “comorbidity”, these terms describe distinct phenomena. Comorbidity, introduced by Feinstein in 1970, refers to
the presence of a primary disease alongside one or more secondary conditions6. This focus on a main condition can appeal to
specialists treating specific diseases but often results in a segmented approach within healthcare systems7. As a result, care
becomes fragmented, which is particularly harmful for patients managing multiple chronic illnesses7. The interaction between
multiple coexisting conditions often complicates treatment decisions, underscoring the need for a more holistic and integrated
approach8, 9. By prioritizing the broader concept of multimorbidity, healthcare providers can examine the interconnections
between all concurrent conditions, rather than addressing each in isolation. In this work, we focus on multimorbidity as a central
area of inquiry. This integrated perspective offers a comprehensive view of individual health outcomes, without prioritizing any
single disease over others, thereby better capturing the complexity of real-world patient experiences.

Investigating the longitudinal trajectory and patterns of multimorbidity in health and well-being is crucial, especially given the
aging global population10. By analyzing the prevalence, progression, and interplay of various medical conditions, researchers
can identify key risk factors and develop more effective strategies for preventing and treating diseases11, 12. Multimorbidity
facilitates the identification of these risk factors by uncovering patterns of disease co-occurrence, tracing how multiple conditions
evolve over time, and highlighting shared genetic, lifestyle, or environmental factors that contribute to the development of
multiple diseases across the lifespan. Numerous studies have examined trends and characteristics of multimorbidity, but
most have been limited to analyzing a relatively small set (fewer than 100) of diseases, such as cardiovascular diseases,
myocardial infarction, and depression. Common methods, such as factor analysis and cluster analysis, are often employed
to investigate multimorbidity patterns13–18, while other approaches aim to summarize the non-random correlations among
individual diseases19–21. However, many of these studies tend to overlook critical temporal details, focusing primarily on
directionality without accounting for the timing between key clinical events such as birth, disease onset, or mortality. Therefore,
it is essential to evaluate the intervals between illnesses within populations and to understand how different health conditions
are related over time.

In this work, we introduce ForeSITE, a framework based on a GPT-style model, to predict diagnostic events for 479,769
individuals in the UK Biobank, which includes time-stamped data of first diagnoses from hospital inpatient records. This
comprehensive dataset offers a unique opportunity to study multimorbidity by examining the temporal sequence of disease
onset across a large population. Using this framework, we present a methodology to extract temporal relationships among
1,129 disease entities. Our algorithm demonstrates superior performance compared to state-of-the-art language models in
predicting the onset of a comprehensive range of phenotypes. Additionally, we construct a disease temporal network based on
associations derived from ForeSITE and compare it with a static human disease network from the UK Biobank. ForeSITE
offers a general-purpose approach for diagnostic event prediction and can be applied to other biobanks that include dated
health-related data.

Methods

Overview of multimorbidity trajectories modeling
We extracted individual diagnostic events from the UK Biobank and processed them into sequences of ICD-10 codes based
on the time of their first occurrences. This dataset allowed us to develop ForeSITE, a GPT-style model designed to predict
individuals’ subsequent diagnostic events based on their patient histories. To conduct an in-depth analysis of multimorbidity
trajectories, we constructed a disease network in which the edges represent the temporal duration between one disease and
the next. The overall strategy of our work is illustrated in Figure 1. This network provides invaluable insights into the
evolving patterns and relationships among various diseases, contributing to a more comprehensive view of the dynamics of
multimorbidity.
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Figure 1: Overview of modeling multimorbidity trajectories. A series of patient diagnostic sequences was extracted from the
UK Biobank, encompassing both birth and diagnostic events, with corresponding time durations between diagnoses highlighted
in violet in the upper plot. A subsequent network analysis of these clinical events provides insight into the temporal trajectories
of diseases, illustrating the evolving patterns and interconnections of various medical conditions over time.

Sequential diagnoses data cohort
The UK Biobank (UKBB) is a substantial longitudinal dataset, containing health information for approximately half a million
individuals in the United Kingdom, providing a robust foundation for studies into disease pathogenesis. We extracted specific
health-related outcomes from this dataset, marked by the “first occurrence” of any 3-character ICD-10 code. This process
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yielded diagnostic codes and their corresponding first recording dates for each individual, sourced from various records such as
primary care, hospital inpatient data, death registers, and self-reported medical conditions.
Out of 481,151 diagnostic sequences, we retained 479,769 individuals with valid, time-stamped first occurrences of diseases
and corresponding birth dates. Figure 2 visually represents an example of these dated diagnostic records. To illustrate the
temporal progression between disease onset, we crafted nine unique time codes (Table 1) and converted the historical data of
1,129 disease entities into sequential diagnostic codes paired with corresponding time intervals. The UKBB anonymized and
encrypted the data before release for analysis. We then partitioned this sequential diagnoses data into training (80%), validation
(10%), and testing (10%) sets, ensuring no overlap between patients across the training and validation sets. The testing set was
reserved solely for evaluating the performance across different models. In our prediction framework, we developed the model
to forecast both the timing of the next diagnostic event and the ensuing phenotype code, providing insights into the complexities
of disease development and progression.

Table 1: Time codes designed for UK Biobank sequential diagnoses data

Parameter Setting

T1 <2 weeks

T2 2 weeks – 1 month

T3 1 – 3 months

T4 3 – 6 months

T5 6 months – 1 year

T6 1 – 2 years

T7 2 – 5 years

T8 5 – 10 years

T9 >10 years

ForeSITE framework
For diagnostic event prediction, we utilized a GPT-style model fine-tuned on BioMedLM22, as shown in Figure 3. ForeSITE is
an autoregressive, decoder-only Transformer model with a customized vocabulary that accommodates all 3-character ICD-10
codes. The specific configurations and adjustments applied to this model are detailed in Table 2. This tailored approach
leverages contemporary language processing techniques to enhance the model’s precision in predicting diagnostic sequences in
clinical settings.

Table 2: GPT-2 model architecture settings

Parameter Setting

Hidden Size 768

Layers 12

Attention Heads 12

Vocab Size 30,044

Sequence Length 1024
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Figure 3: ForeSITE framework overview. A GPT-style architecture adapted for analyzing patient diagnostic sequences. The
model was fine-tuned using BioMedLM22, incorporating detailed descriptions for each phenotype code and corresponding
3-character ICD-10 codes. This approach enhances the model’s accuracy in interpreting complex medical data.
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Phenotype prediction
As illustrated in Figure 3, each occurrence of a time code or phenotype code in an individual’s diagnostic timeline triggers
a prediction. A prediction is considered correct if it exactly matches the corresponding ground truth event. To achieve this,
we employed four distinct sequence models: a long short-term memory (LSTM) network23, 24, a recurrent neural network
(RNN)25, a GPT-style model26, 27, and the fine-tuned BioMedLM22. These models were trained using PyTorch in Python28

for computational efficiency. For evaluation, we performed a comparative analysis using top-k precision metrics to assess the
models’ ability to predict diagnostic timelines accurately.

Network construction
Our analysis employs both a static network constructed using WGCNA (Weighted Gene Co-expression Network Analysis)
methodology29, 30 and a temporal trajectory network. In the constructed disease network, individual nodes represent specific
diseases, and an edge between two nodes is created if the likelihood of these diseases co-occurring differs significantly from
what would be expected if they occurred independently.
We quantify the association between two diseases using the phi coefficient, calculated as shown in Equation 1:

φi j =
ni j ×N −ni ×n j√

ni ×n j × (N −ni)× (N −n j)
(1)

where φi j is the phi coefficient measuring the association between diseases i and j; ni j represents the number of individuals
diagnosed with both diseases i and j; ni and n j are the numbers of individuals diagnosed with diseases i and j, respectively; and
N is the total number of individuals in the dataset.
For the temporal network analysis, we incorporated event probabilities as determined by our ForeSITE framework instead of
using static correlations in comorbidity. To determine connectivity, we introduce a threshold τ , derived from the scale-free
topology criterion21, 29, 30. Two phenotypes are deemed to have a strong association if connected by an edge, as formalized in
Equation 2:

edgei j =

{
wi j if φi j ≥ τ

0 if φi j < τ
(2)

where edgei j is the weight of the edge between diseases i and j, and wi j is the calculated weight or strength of association
between diseases i and j (e.g., set equal to φi j or derived from it).

Results
Sequential diagnoses data analysis
A total of 479,769 unique individuals were selected for our study, as detailed in Table 3. Our analysis of the UK Biobank data
illustrates a clear association between multimorbidity and age (Figure 4A). Specifically, the number of diagnosed disorders per
individual increases with age. Notably, while no patients at the age of 10 have more than five diagnostic codes, over 90% of
those aged 80 have been diagnosed with more than five diseases. The distribution of diagnostic sequence lengths within the UK
Biobank (Figure 5) reveals an average sequence length of 24.8 events (including time codes), with a maximum length of 251.
The age of onset varies considerably across different diseases. Figure 4B presents histograms of ages at first occurrence for
individuals with six specific conditions, illustrating that certain diseases, such as asthma, can manifest at any age, whereas
others, like dementia, are primarily diagnosed after age 50.
We divided our dataset into training (383,825 patients), validation (47,943 patients), and testing (47,938 patients) sets. Analysis
of key demographics—sex, age, and ethnicity—revealed that the subsets share similar characteristics. The overall study
population comprises approximately 54% women, with a predominance of elderly patients aged 65 and over (77%), and
individuals identifying as white (94%) (Table 3).

ForeSITE Performance
We predicted both time codes and diagnostic events following birth for individuals in the UK Biobank dataset. Among the
various models tested—including RNN, LSTM, GPT, and our ForeSITE model—the GPT-2 style architecture adapted from
BioMedLM demonstrated the highest predictive performance (Figure 6). Specifically, ForeSITE achieved top-1, top-10, top-20,
top-30, and top-50 accuracy scores of 25.9%, 68.18%, 74.21%, 78.21%, and 83.60%, respectively. Here, “top-k accuracy”
refers to the proportion of instances where the correct diagnosis was among the model’s top k predictions. Since multiple
subsequent diagnostic events can follow any given event, the top-1 accuracy provides insight into the most likely next disease.
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Figure 4: An overview of multimorbidity in the UK Biobank population. (A) Proportion of individuals with multimorbidity
across different age groups, showing a progressive increase with advancing age. (B) Histograms illustrating the age of first
occurrence for six distinct disorders: (1) atrial fibrillation and flutter, (2) asthma, (3) chronic obstructive pulmonary disease
(COPD), (4) dementia in Alzheimer’s disease, (5) stroke, and (6) schizophrenia.

Human disease co-occurrence network
We constructed a comorbidity network to represent disease co-occurrences within the UK Biobank (Figure 7). This network
consists of 301 disease nodes connected by 426 edges, offering insights into the complex relationships among different medical
conditions. Certain disease codes exhibit high connectivity; for example, hypertension (I10) is connected to multiple other
diseases, indicating its common co-occurrence with various conditions. The average node degree of 1.42 suggests a moderate
level of interconnection among diseases. Common diseases are highlighted in Supplementary Figure S2, and the line weights in
the network indicate the strength of association between diagnoses—for instance, asthma (J45) and COPD (J44) often co-occur.
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Table 3: Summary characteristics for training, validation, and testing sets

Training Set
(N=383,825)

Validation Set
(N=47,943)

Testing Set
(N=47,938)

Sex (%)

Female 207,451 (54.0) 26,299 (54.8) 26,113 (54.4)

Male 176,374 (46.0) 21,644 (45.2) 21,825 (45.6)

Age (%)

≥ 65 294,051 (77.0) 36,968 (77.1) 37,096 (77.4)

< 65 89,774 (23.0) 10,975 (22.9) 10,842 (22.6)

Ethnicity (%)

White 357,925 (93.3) 45,099 (94.0) 45,110 (94.0)

Mixed 2,173 (0.6) 298 (0.6) 303 (0.6)

Asian 6,169 (1.6) 733 (1.5) 769 (1.6)

Black 7,240 (1.9) 962 (2.0) 926 (1.9)

Chinese 1,129 (0.3) 143 (0.3) 140 (0.3)

Other 3,365 (0.9) 428 (0.9) 430 (0.9)

Unknown 1,258 (0.3) 169 (0.4) 144 (0.3)

Did not answer 789 (0.2) 111 (0.2) 116 (0.2)

Figure 5: Distribution of diagnostic sequence lengths in the UK Biobank. This histogram illustrates the distribution of
event codes among individuals in the UK Biobank. The x-axis represents the number of event codes assigned to each person,
reflecting the complexity of health-related occurrences. The y-axis denotes the number of individuals possessing a specific
count of event codes, revealing how frequently certain sequence lengths occur within the population.

Suppelmentary Figure S1 demonstrates that the co-occurrence network follows a scale-free topology, where a few nodes have
many connections while most have few. While this comorbidity network helps identify patterns of disease co-occurrence, it
does not provide insights into the temporal progression from one disorder to another.
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Figure 6: ForeSITE prediction for future diagnostic events. Comparison of top-k performance among different language
models (RNN, LSTM, GPT, and ForeSITE) in predicting future diagnostic events in the UK Biobank. The ForeSITE model
demonstrates superior performance across all top-k metrics.

Temporal human disease trajectory network
Using ForeSITE predictions, we constructed a directed temporal disease network that elucidates the complex relationships
among phenotypes over time. This network captures not only which diseases are related but also the typical time intervals
between their occurrences. By differentiating diseases closely related in time from those more distant, we gain a richer
understanding of disease progression patterns beyond simple pairwise relationships. The network is heterogeneous, comprising
directed disease networks across various time constraints, detailed in Supplementary Figures S3, S4, S5, S6, S7, S8, S9, S10.

A segment of the multimorbidity trajectory network, displaying the most likely disease trajectories for a selection of chronic
conditions, is presented in Figure 8. This graph provides an overview of connections between diseases such as chronic
obstructive pulmonary disease (COPD, J44), asthma (J45), emphysema (J43), kidney failure (N17), neuromuscular dysfunction
of the bladder (N31), hypertension (I10), osteoarthritis of the knee (M17), and sepsis (A41). For example, hypertension typically
emerges more than 15 years post-birth, with disorders associated with lipoprotein metabolism (E78) commonly appearing 1-2
years before hypertension onset. The directed temporal structure of the network uncovers detailed multimorbidity patterns,
offering crucial insights into the timing and progression of chronic diseases and their co-occurrence.

Web user interface for synthetic disease trajectories
We have developed a user-friendly web interface for ForeSITE to enhance interaction and demonstrate the model’s potential
applications. Through this platform, users can generate synthetic disease trajectories based on our GPT-style model’s predictions.
Figure 9 illustrates this feature, showcasing the generation of a synthetic patient trajectory where a diagnosis of whooping
cough (A37) occurs 1-2 years post-birth.

Discussion
As the global population ages, the increasing prevalence of multimorbidity poses a significant challenge for healthcare systems,
underscoring the need for effective management strategies for at-risk individuals2. Patients with multiple chronic conditions,
referred to as multimorbid, face a higher risk of hospitalization, which contributes substantially to healthcare costs31, 32.
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Figure 9: User interface for ForeSITE. A screenshot of the web interface allowing users to generate synthetic disease
trajectories based on ForeSITE predictions. In this example, a synthetic patient trajectory is generated with a diagnosis of
whooping cough (A37) appearing 1–2 years post-birth.

Unfortunately, existing guidelines and most disease management programs are designed to address individual diseases in
isolation, leaving multimorbidity largely unaddressed33. Furthermore, research on preventing multimorbidity remains limited.
Our work in predictive modeling of disease trajectories, based on sequential diagnoses in the UK Biobank, offers a promising
avenue for identifying patients who may benefit from earlier care interventions.

In this study, we performed an analysis of multimorbidity within the UK Biobank dataset, with a particular focus on age as a
critical factor (Figure 4). Our findings reveal a rapid increase in the number of chronic conditions per individual with advancing
age. For instance, 40% of individuals over 80 have been diagnosed with more than 20 different conditions in the UK Biobank.
Leveraging the comprehensive data available, we explored the longitudinal patterns of multimorbidity, recognizing that current
definitions and methodologies for analyzing disease co-occurrence often lack temporal precision. By developing clinically
relevant time codes, we extracted temporal disease trajectories using a GPT-style framework, enabling more accurate predictions
of individual diagnostic events. Additionally, we constructed and compared two distinct human disease networks—static and
temporal—highlighting the nuanced progression of multimorbidity. These analyses provided new insights into the sequence of
disease onset and progression, potentially revealing shared genetic, environmental, or lifestyle risk factors. These findings open
avenues for novel therapeutic and preventive interventions.

Despite the advances made, this research is not without limitations. One of the primary challenges lies in the need to
better integrate genetic risk factors into the disease trajectory modeling. While we successfully identified temporal patterns
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and co-occurrences of diseases, we did not fully incorporate critical determinants such as individual genetic predisposition,
socioeconomic status, and lifestyle factors. Future research should aim to include these variables to offer a more comprehensive
understanding of the complex progression of multimorbidity. Another limitation arises from the nature of the data itself,
specifically the reliance on Electronic Health Records (EHRs) from the UK Biobank. These records are dependent on
the documentation practices of healthcare professionals, which may vary in completeness and consistency across regions.
Consequently, the quality of the EHR data could introduce biases or gaps in the understanding of disease trajectories. Addressing
these limitations in future studies will be essential for improving the robustness and applicability of our findings, paving the
way for more personalized and effective healthcare interventions.

ForeSITE represents a tool that transcends the limitations of focusing on individual diseases. By leveraging the predictive power
of a GPT-style model, it allows for precise forecasting of future phenotypes across diverse population groups. This enables
the exploration of complex temporal relationships between diseases, uncovering intricate connections that might otherwise
remain hidden. Beyond identifying these associations, the predicted relationships form the basis for constructing a predictive
disease network, designed to anticipate the development of multimorbidity. Such a network can guide preventative strategies
and targeted interventions, adding a proactive dimension to patient care. However, while the results of ForeSITE are promising,
they should not be viewed as a comprehensive solution. Important factors such as genetic interactions, environmental exposures,
and lifestyle choices were not fully integrated into the current model. The challenge moving forward lies in incorporating these
diverse elements to achieve a more holistic understanding of disease progression. By addressing this challenge, ForeSITE has
the potential to drive the future of personalized healthcare, adapting to the unique complexities of each patient’s health journey.
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