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ABSTRACT

This paper presents a novel approach to improving text-based cancer data classification by integrating
BERTopic clustering with Support Vector Machine (SVM) classifiers, combined with the Explainable
Inconsistency Algorithm (EIA). The proposed method leverages advanced preprocessing techniques,
including Node2Vec embeddings, to enhance both clustering and classification performance. Through
the introduction of EIA, we automatically identify and eliminate outliers and discordant data points,
thus improving classification accuracy and providing valuable insights into underlying data relation-
ships. A key innovation in this work is the use of recommender systems for mapping clusters to labels,
which improves label assignment through collaborative filtering techniques. Our experimental results
show a significant increase in both accuracy and F1-score after addressing data inconsistencies, with
improvements validated through statistical tests, including t-tests. This paper contributes a robust,
explainable, and scalable framework for cancer data analysis, offering potential applications in other
domains requiring high-precision text classification. Future work will focus on extending the EIA to
other biomedical datasets, optimizing hyperparameters, and deploying the framework in real-time
clinical decision-support systems.

Keywords BERTopic · Support Vector Machine (SVM) · Explainable Inconsistency Algorithm (EIA) · Cancer Data
Classification · Node2Vec · Recommender Systems · XAI

1 Introduction

In machine learning and data science, integrating multiple approaches can overcome the inherent limitations of any
single method, leveraging the strengths of each to improve overall performance. This paper proposes a dual-perspective
model to address classification challenges by decoupling distinct sets of features and employing different algorithms:
one with labeled data (supervised learning) and the other without labels (unsupervised clustering). By using clustering
techniques, we aim to detect, minimize, and mitigate bias, outliers, noise, or inconsistencies, all of which are commonly
embedded within the labels [Hellström et al., 2020, He et al., 2002, Wang et al., 2019, Naseem et al., 2023a, Feldmann
et al., 2015]. In this context, we use these terms interchangeably to describe discrepancies in taxonomic perspectives,
whether in statistics, machine learning, or requirements engineering.

This research integrates a Large Language Model (LLM), specifically BERT, with a traditional machine learning
algorithm to introduce a new dimension of analysis. We have chosen Support Vector Machines (SVM) as our traditional
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Inconsistency detection

machine learning model, which is widely recognized for its effectiveness in high-dimensional spaces and its versatility
in handling various data types through the selection of kernel functions [Cervantes et al., 2020]. Despite its robustness,
SVM faces challenges with scalability and kernel selection, particularly when working with massive datasets, which
can result in prohibitive training times and complexity in preprocessing [Wen, 2023].

To complement SVM, we employ BERT (Bidirectional Encoder Representations from Transformers), which has
revolutionized natural language processing by offering a bidirectional context analysis, allowing it to understand the
meaning of words based on their surrounding text [Devlin et al., 2019]. This makes BERT especially effective at
capturing subtle semantic relationships in the data [González-Carvajal and Garrido-Merchán, 2023]. However, LLMs
like BERT also present challenges, such as susceptibility to overfitting and the potential for suboptimal generalization
when fine-tuning using cross-entropy loss [Liu et al., 2017, Naseem et al., 2023a].

To address these challenges, we employ BERTopic [Grootendorst, 2022] for clustering the semantic-rich embeddings
produced by BERT. BERTopic distinguishes itself as a sophisticated topic modeling technique that combines clustering
with a class-based variation of TF-IDF to generate coherent and meaningful topic representations [Samsir et al., 2023].
By incorporating BERTopic, we not only add a new perspective to the traditional machine learning approach but also
provide interpretability by linking clusters to associated terms, which helps explain the inconsistencies between the two
models.

In addition to BERT’s semantic strengths, we utilize knowledge graphs and Node2Vec embeddings [Grover and
Leskovec, 2016] to enhance feature engineering for SVM. Knowledge graphs and Node2Vec provide a structural and
relational view of the data, capturing connections between entities, while also offering scalability and robustness for
tasks requiring graph-based learning [Palumbo et al., 2018, Wang et al., 2021]. This dual perspective allows us to
leverage both linguistic and structural insights for more comprehensive data analysis.

By integrating SVM’s mathematical precision with the relational insights from knowledge graphs and the linguistic
depth of BERT, we create a twin machine learning pipeline that captures different viewpoints on the classification
of data instances. Instances where the models diverge in their classifications are labeled as “inconsistent,” and we
hypothesize that eliminating these inconsistencies will lead to improved predictive performance, which will be reflected
in our evaluation metrics.

1.1 Objectives

• Automatic multi-perspective inconsistency detection and classification refinement through the design of a
dual-algorithmic pipeline, combining classification with clustering.

• Provide explanations for predictions using LLM-based clustering techniques.

• Ensure flexibility to incorporate any machine learning model or LLM into the framework.

• Feature refinement to improve classification performance.

A key feature of our methodology is the strategic removal of inconsistent data, followed by a comprehensive evaluation
of its impact on performance metrics. Figure 1 presents the overall system architecture. The process begins with
dataset preprocessing, including subject-verb-object (SVO) extraction and knowledge graph construction using tools
like SpaCy1, NetworkX2, and Pyviz3. Node2Vec embeddings [Grover and Leskovec, 2016] are then generated, feeding
into a classification model. Simultaneously, BERTopic clustering is applied, with the resulting clusters mapped to
human annotations. This cluster-label mapping is incorporated into a recommender system using integer programming,
allowing for the identification and removal of inconsistent nodes, ultimately leading to refined classification results
validated through statistical testing.

2 Related Work

Several combinations of machine learning (ML) algorithms with BERT have been explored to improve classification
performance.

Kassner and Schütze [2020] introduced BERT-kNN, an approach designed to enhance BERT’s performance in open-
domain question answering (QA) by incorporating a k-nearest-neighbor (kNN) search component. This method
significantly improves recall of facts encountered during training without requiring additional training for the BERT

1https://spacy.io/
2https://networkx.github.io/
3https://pyviz.org/
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Inconsistency detection

Figure 1: System flowchart overview.

model. BERT-kNN excels at identifying the correct categories of responses and retrieving factually accurate answers,
especially for rare facts.

Liu et al. [2020] proposed K-BERT, a language representation model that integrates knowledge graphs (KGs) into
BERT to incorporate domain-specific knowledge. K-BERT mitigates the issue of knowledge noise, which can lead
to deviations in meaning when excessive domain knowledge is incorporated. It achieves this through soft-position
and visible matrix mechanisms, enabling effective knowledge injection without compromising the original sentence’s
context.

Both of these works sequentially amalgamate their models, meaning the output of the first algorithm is passed as input
to the next.

Building on this, Lin et al. [2022] introduced BertGCN, a model that combines the benefits of large-scale pretraining
with transductive learning for text classification. By constructing a heterogeneous graph and representing documents
as nodes using BERT embeddings, BertGCN leverages BERT’s comprehensive language understanding and graph
convolution networks (GCNs) to propagate label influence, improving performance on text classification tasks. This
model introduces a parallel approach by interpolating the results from GCN and BERT using a weighting factor λ,
adding another dimension to model integration.

In a different direction, Naseem et al. [2023b] introduced two novel methodologies that integrate knowledge graph-
based language models with nearest-neighbor models (kNN) and graph neural networks (GNNs). Their first approach
leverages semantic and category information from neighboring instances via kNN, while the second approach uses
GNNs to harness feature information from neighboring nodes in a graph. Empirical evaluations demonstrate that
combining K-BERT with GNNs significantly improves relation extraction and classification tasks, particularly in the
biomedical field. Additionally, they refined the GAT model by sequencing it with K-BERT to further enhance text
classification performance.

While these approaches are innovative, none explicitly explore the idea of leveraging two decoupled perspectives on a
single problem, a concept we seek to address in this work.

Figure 2 illustrates the architecture of several combined approaches involving BERT and different algorithms. On
the left, we see BERT-kNN, where BERT feeds its output into a k-nearest-neighbor (kNN) classifier. The second
block demonstrates K-BERT, where knowledge graphs (KG) are integrated into BERT to enhance its knowledge
representation capabilities. In the third block, BertGCN combines BERT with Graph Convolutional Networks (GCN)
through interpolation. Finally, the last block represents an integration of GAT and K-BERT, where BERT’s linguistic
capabilities are combined with the graph attention network (GAT) to refine classification tasks, especially in NLP and
biomedical contexts.
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Figure 2: Combined BERT and Algorithmic Approaches.

3 Methodology

This study was conducted using a mixed methods approach which can be defined as enhancing a classifier using
BERTopic insights on a text-based dataset. BERTopic generates clusters based on a large language model (LLM)
[Grootendorst, 2022] which has a different insight from a traditional machine learning approach like Support Vector
Machines (SVM). This combination suggests a comprehensive and potentially more insightful analysis of text data.

In the rest of this section we delve into a detailed explanation of the methodology employed with Figure 3 offering an
overall visual representation of the procedural steps. Further insights into these steps are provided later in the section
for a more comprehensive understanding.

Figure 3: Overall workflow diagram of the methodology.

3.1 Data Collection and Preprocessing

The study utilized a curated dataset comprising a labeled cancer dataset4 with the corresponding text description from
Kaggle for classification. The preprocessing phase of this study was particularly rigorous involving several key steps
to ensure standardized text representations. Initially the dataset underwent tokenization, a process of breaking down
text into smaller units or tokens facilitating easier analysis and processing. Following this, stop-word removal was
implemented, a crucial step that involved eliminating commonly used words that offer little to no value in terms of
context or meaning, thereby streamlining the dataset. Lastly, lemmatization was applied. This process involves reducing
words to their base or dictionary form aiding in the consolidation of different forms of a word into a single standard
form. Each of these preprocessing steps played a vital role in preparing the dataset for effective classification, ensuring
a higher level of accuracy and reliability in the study’s findings.

4https://www.kaggle.com/datasets/falgunipatel19/biomedical-text-publication-classification
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3.2 BERTopic Clustering

BERTopic was used to cluster the data based on its own approach which is depicted in Figure 4. Documents are
embedded into a vector space using the Sentence-BERT (SBERT) framework. This technique transforms sentences
and paragraphs into dense vector representations using pre-trained language models fine-tuned for semantic similarity
[Grootendorst, 2022].

For document clustering, Grootendorst [2022] addresses the challenge of high-dimensional data space where traditional
distance measures become less effective. To overcome this, Grootendorst [2022] reduces the dimensionality of
embeddings using UMAP (Uniform Manifold Approximation and Projection) which preserves both local and global
features in lower dimensions and is adaptable to various language model dimensions [McInnes et al., 2018]. The reduced
embeddings are then clustered using HDBSCAN (Hierarchical Density-Based Spatial Clustering of Applications with
Noise) [McInnes and Healy, 2017]. HDBSCAN enhances the traditional DBSCAN algorithm into a hierarchical
clustering model effectively differentiating between relevant clusters and outliers.

Allaoui et al. [2020] found that dimensionality reduction with UMAP improves the efficiency and accuracy of clustering
algorithms like k-Means and HDBSCAN.

Figure 4: Steps to create BERTopic topic representations.5

In this paper, when employing BERTopic there are two approaches that can be adopted. The first approach is to confine
BERTopic to create as many clusters as the actual labels present in the dataset. The second approach allows BERTopic
the freedom to generate any number of clusters based on its analysis of the data.

3.3 Embeddings

In this paper, to derive the embeddings from the text data, the steps are shown in Figure 5.

Figure 5: Steps to generate Embeddings.

3.3.1 Subject-Verb-Object (SVO) Extraction

In order to construct a knowledge graph, we need to get the subjects, verbs, and objects of the sentences. Utilizing
Spacy6, we can effectively identify these grammatical components. Spacy’s dependency parser allows us to parse
sentences and recognize their syntactic structure making it possible to isolate the subject, verb, and object in each
sentence. This is achieved by analyzing the grammatical relationships between words and identifying their respective
roles.

5https://maartengr.github.io/BERTopic/algorithm/algorithm.html
6A free open-source library designed for advanced Natural Language Processing (NLP) tasks, accessible through Python. It is

capable of comprehending and analyzing texts of varying sizes [JUGRAN et al., 2021]
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3.3.2 Knowledge Graph Construction

Once the Subject-Verb-Object (SVO) triples are extracted, they become the foundational elements for constructing
the knowledge graph. In this graph, the subjects and objects are represented as nodes, while the verbs act as the edges
connecting these nodes. This configuration effectively illustrates the relationships and interactions between different
entities within the text. The creation of a knowledge graph from these SVO triples facilitates a visual and relational
representation of the data enhancing our understanding of complex information networks within the text.

Figures 6 and 7 illustrate a sample knowledge graph that has been visualized using the NetworkX7 and PyViz8 libraries
respectively.

Figure 6: Example of a constructed knowledge graph using NetworkX.

Figure 7: Example of a constructed knowledge graph using PyViz.

3.3.3 Node2Vec Embedding Generation

In the node2vec algorithm, continuous feature representations of nodes in networks are learned by mapping nodes
to a low-dimensional space. This mapping aims to maximize the likelihood of preserving network neighborhoods of
nodes. The algorithm introduces a flexible notion of a node’s network neighborhood and employs a biased random walk
procedure to explore these neighborhoods effectively. This flexibility allows node2vec to organize nodes based on their

7A Python package for the creation and study of complex networks, offering extensive tools for network analysis and visualization.
8A Python library for creating interactive network visualizations. It’s built on top of the popular graph library NetworkX and uses

JavaScript libraries like Vis. js for rendering interactive visualizations in the browser.
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network roles and/or communities they belong to, adapting to various network structures and enabling more accurate
representations [Grover and Leskovec, 2016].

The node2vec algorithm consists of the following steps:

1. Preprocess the graph to modify weights based on the parameters p and q, which control the random walk
strategy.

2. Initialize an empty list of walks.
3. For each node in the graph, perform r random walks of length l, appending each walk to the list of walks.
4. Use Stochastic Gradient Descent (SGD) to optimize the feature representations of nodes based on the collected

walks [Grover and Leskovec, 2016].

Table 1: Node2Vec parameters considered for our case.
Parameter Value

p 0.5
q 2
r 5
l 10

The random walks start at a node and iteratively choose the next node in the walk based on the transition probabilities
that are preprocessed based on the neighborhood structure. This method efficiently samples diverse neighborhoods and
return walks which are then used to learn feature representations [Grover and Leskovec, 2016].

Figure 8 depicts the random walk procedure in the algorithm.

Figure 8: Illustration of the random walk procedure in node2vec.9

3.4 Inconsistency Detection

The next step is the innovative part of this paper which attempts to employ the results from BERTopic perspective to
enhance the accuracy and F1-score of the classifier by removing the inconsistent data. Figure 9 illustrates the overall
steps of the Inconsistency Detection Algorithm.

3.4.1 Mapping BERTopic Clusters to the Real Labels

The clusters generated by BERTopic are mapped to ’real’ or ground-truth labels. This step is crucial as it aligns the
clusters found in an unsupervised manner with known categories which is necessary for supervised learning tasks or to
validate the clustering process.

As discussed in the "BERTopic Clustering" section, we have two distinct strategies. In the first strategy, the number of
clusters generated by BERTopic equals the number of classes in our dataset. In the second strategy, BERTopic can
create a diverse number of clusters. In this scenario, several clusters may correspond to a single class. Here, the main
task is to identify which cluster corresponds to which class. We refer to this task as the ’optimization process’.

Two approaches were utilized as the optimization process:

• Class-to-Cluster Frequency Assignment: This approach involves assigning a class to the cluster where that
class is most frequently observed. It’s a straightforward method that relies on the predominant presence of a
class within a cluster for assignment.

9[Grover and Leskovec, 2016]
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Figure 9: Inconsistency Detection Process.

– Calculate the frequency fij of class j in cluster ci:

fij =
Count of documents with label j in ci

Total documents in ci
– Assign class j with maximum frequency to cluster ci:

Li = argmaxjfij

• Recommender System Utilization: We leveraged recommender systems to determine the relationships
between clusters and classes. For this, we used the Python Surprise library, a tool designed for building
and analyzing recommender systems. We treated each document as an "itemID," the clusters generated by
BERTopic as "userID," and the actual labels of the documents as "rating". After training the model on these
parameters, it predicted the associations between clusters and classes with an accuracy of 86%.

– Parameter Definitions
* Documents: I = {i1, i2, . . . , im}
* Clusters: U = {u1, u2, . . . , uk}
* Ratings (labels): R = {r1, r2, . . . , rm}

– Model Training
* Train a recommender system model:

Model = train(U, I,R)

– Prediction
* Predict cluster-to-class mapping:

L̂ = predict(Model, C)

Figure 10: Mapping BERTopic clusters to the real labels using Recommender System.

Based on the results of Tables 3 and 4 in the experimental results section, we can conclude that the recommender system
results have a superior effect on the downstream classification task, improving accuracy by 34

8
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3.4.2 Classifying the Node Embeddings

Parallel to the BERTopic process, node embeddings are classified. Node embeddings are vector representations of
nodes that encapsulate their properties within a graph or network. The technique used for classification in this case was
Support Vector Machines (SVM).

3.4.3 Data Assimilation

This phase integrates the outcomes of the BERTopic clustering with node embedding classifications. In this context,
each document is treated as a distinct graph—referred to as the "graph level." Within each graph, individual words that
function as subjects, verbs, or objects are considered nodes, which constitute the "node level."

Two assimilation strategies are presented:

• The first involves enriching the BERTopic results by transitioning from a single label per document at the
graph level to multiple labels at the node level.

• The second strategy involves aggregating the labels at the node level to derive a singular label for the entire
graph, determined by the most frequent node labels within that graph.

Employing either strategy sets the stage for identifying and removing inconsistent data.

3.4.4 Finding and Removing Inconsistent Data

The innovative step outlined in the paper involves identifying and removing inconsistent data at the feature engineering
stage, following the data assimilation process. This removal is predicated on the assumption that inconsistencies
between the topic-based clusters and the network structure negatively impact the performance of classifiers. The
strategic exclusion of such discordant data ensures that the classifier operates with a dataset that is more uniform and
aligned, thereby potentially enhancing the precision and F1-score of the classification outcomes.

• Identify Inconsistent Data:
– Compare predicted labels L with actual node-level labels Ln:

Inconsistency = {i | Li ̸= Lni}

• Remove Inconsistent Data:
– Exclude inconsistent data points I from node embedding dataset D:

D′ = D − Inconsistency

3.5 Evaluation

Following the strategic exclusion of inconsistent data, the classifier is re-engaged to perform its classification tasks.
Subsequently, the performance of the classifier is rigorously assessed by measuring the "Accuracy" and "F1-score".
These metrics serve as indicators of the classifier’s predictive performance.

Accuracy reflects the proportion of total correct predictions made by the classifier out of all predictions:

Accuracy =
Number of Correct Predictions

Total Predictions
=

TP + TN

TP + TN + FP + FN

The F1-score provides a more nuanced measure, balancing the precision10 and recall11:

Precision(P ) =
TP

TP + FP

Recall(R) =
TP

TP + FN

F1-Score = 2× P ×R

P +R

10The correctness of positive predictions.
11The classifier’s ability to identify all actual positives.
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By evaluating these metrics before and after the data refinement process, we can quantify the impact of removing
inconsistent data on the classifier’s effectiveness. This evaluation not only validates the methodology but also ensures
that the model’s performance is aligned with the expected outcomes of the classifier post-improvement.

The conclusive phase involves conducting a t-test12 to validate that the observed improvements are statistically
significant and not due to chance. This ensures that the enhanced results are not replicable by merely randomly deleting
data.

• Calculate the t-statistic to validate performance improvement:

t =
X1 −X2√

S2
p

n

Where X1 and X2 are means of two samples, Sp is pooled standard deviation, and n is the number of samples.

4 Experimental Results

The strategic removal of inconsistent data, informed by BERTopic insights and subsequent reclassification, led to
significant improvements in key performance metrics. To ensure that these enhancements were not simply the result of
reducing data volume, we performed control experiments by randomly removing equivalent amounts of data multiple
times. This control experiment aimed to determine if similar improvements could be achieved through random exclusion.
We then applied a t-test to statistically validate the improvements achieved through our targeted approach, demonstrating
that the improvements were specifically due to the removal of inconsistent data, rather than random data reduction.

4.1 BERTopic Results

Figure 11 displays the topic words derived by BERTopic for each cluster. These topic words provide insights into the
clustering behavior and the content captured by the model.

Figure 11: BERTopic-generated topic words for each cluster.

4.2 Node Embedding Visualizations

Figure 12 shows the visualization of the node embeddings, where different colors represent the true labels of the nodes.
The nodes were represented using 20-dimensional vectors generated by Node2Vec, and PCA (Principal Component
Analysis) was used for dimensionality reduction to enable visualization.

Figure 12: TSNE visualization of node embeddings, colored by actual labels.

12A statistical test used to determine if there is a significant difference between the means of two groups.

10
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4.3 Inconsistency Detection and Evaluation

We first classified the node embeddings using a Support Vector Machine (SVM) model. Table 2 presents the baseline
accuracy and F1-score obtained before removing any inconsistent data.

Table 2: Accuracy and F1-score before removing inconsistent data.
Metric Score

Accuracy 46%
F1-Score 50%

The baseline model accuracy for this dataset was 37%, with label distribution as (2580, 2180, 2810) for each class. The
SVM model’s accuracy of 46% exceeds this baseline.

Using BERTopic, we identified and flagged inconsistent data points. Figure 13 visualizes these node embeddings, with
inconsistent data points clearly differentiated from the rest, illustrating their separation in the embedding space.

Figure 13: Visualization of node embeddings highlighting inconsistent data points.

After removing the inconsistent data points, we recalculated the accuracy and F1-score. As shown in Table 3, using the
first optimization approach, both metrics improved by approximately 10% and 7

Table 3: Metrics after removing inconsistent data using the first optimization approach.
Metric Score

Accuracy 57%
F1-Score 58%

Figure 14 illustrates a word cloud showing the frequency of terms within the inconsistent data. Larger words in the
cloud represent terms with higher frequencies, providing insight into the language characteristics of the inconsistent
dataset.

Figure 14: Word cloud depicting the term frequencies in inconsistent data.

11
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Using the second optimization approach, both accuracy and F1-score improved even more significantly, with increases
of approximately 18% and 16

Table 4: Metrics after removing inconsistent data using the second optimization approach.
Metric Score

Accuracy 91%
F1-Score 89%

While eliminating all inconsistencies yielded the highest improvements, a substantial portion of the data was removed in
the process. To address this, we introduced a hyperparameter (β) to limit the removal to only β percent of the identified
inconsistencies. With β = 0.7, the results shown in Table 5 were obtained, and only a smaller portion of the data was
removed.

Table 5: Metrics after removing β percent of the inconsistent data.
Metric Score

Accuracy 87%
F1-Score 83%

Lastly, we performed a t-test to assess the statistical significance of the improvements. The p-values from the t-test,
shown in Table 6, demonstrate that the improvements were statistically significant.

Table 6: P-values from the t-test.
Metric p-value

Accuracy 3.77× 10−59

F1-Score 4.30× 10−52

Since the p-values are lower than the alpha threshold of 0.05, we can confidently reject the null hypothesis. This
confirms that the improvements observed are statistically significant and that the Explainable Inconsistency Algorithm
was effective.

5 Discussion

This study set out to improve text-based cancer data classification through the combined use of BERTopic clustering
and SVM classifiers, while introducing the Explainable Inconsistency Algorithm (EIA) to gain deeper insights into
data inconsistencies. The integration of BERTopic with SVM significantly enhanced classification performance, with
the EIA playing a critical role in detecting and explaining inconsistencies. This improved the overall reliability of the
classification results.

One key innovation in this approach is the use of a recommender system for mapping clusters to labels. Employing
recommender systems for this task leverages the strengths of collaborative filtering techniques—traditionally used in
predicting user preferences—to enhance both the accuracy and efficiency of label assignments. This method addresses
several challenges inherent in clustering and labeling tasks, offering a robust and scalable solution that adapts well to
new data.

5.1 Handling Sparsity and High-Dimensional Data

Challenge: Clustering high-dimensional text data often results in sparse datasets, making it difficult to directly map
clusters to labels.

Solution: Recommender systems excel at handling sparse data by predicting missing values and discovering latent
relationships.

Mathematical Insight: By decomposing the association matrix R into lower-dimensional matrices P (user features)
and Q (item features), the latent structure of the data is revealed:
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R ≈ P ·QT

Equation for Matrix Factorization:

min
P,Q

∑
(u,i)∈K

(rui − Pu ·QT
i )

2 + λ(P 2 +Q2)

Result: The minimization reconstructs the rating matrix R, while regularizing the feature matrices P and Q, effectively
managing sparsity.

5.2 Discovering Latent Patterns

Challenge: Traditional clustering methods may fail to uncover complex relationships between clusters and labels.

Solution: Recommender systems can discover latent factors that capture hidden relationships, improving label
assignment accuracy.

Prediction Formula:

rui = Pi ·QT
u

Explanation: The predicted rating rui reflects the likelihood of cluster ui being associated with label lj , based on the
latent factors extracted through P and Q.

5.3 Scalability and Efficiency

Challenge: Large datasets with numerous clusters and labels can be computationally demanding to process.

Solution: Recommender systems are designed for scalability, making them well-suited for large-scale cluster-to-label
mapping.

Scalability Advantage: The reduced-dimensional factor matrices P and Q decrease computational complexity, making
the model efficient for large datasets.

5.4 Flexibility and Adaptability

Challenge: Static clustering methods may struggle to adapt to new data or changes in data distribution.

Solution: Recommender systems continuously update their predictions, adapting dynamically to new clusters and
labels.

Adaptation Formula: The model adapts as new data points (ui, rui) are added, maintaining relevance and accuracy
over time.

While BERTopic and SVM are well-established methods, this study’s unique contribution is the EIA’s ability to go
beyond accuracy improvements. The EIA not only enhances performance but also facilitates the automatic detection
and explanation of data inconsistencies, making it a valuable addition to the classification process.

5.5 Investigating Patterns using XAI

The algorithm identified several words marked as inconsistent, which may lead to confusion in model predictions,
particularly in cancer-related classifications. This section explores examples of why these inconsistencies arise and how
they can impact classification.

One example is the term "lung_cancer." As shown in Figure 15, "lung_cancer" is linked to both "PTEN_expression"
and "liver_cancer." This connection can confuse the model, as PTEN mutations are commonly associated with prostate
cancer, breast cancer, glioblastoma, and endometrial cancer, but less so with lung cancer.

In another case, "lung_cancer" is connected to "lesion," which is a general term for abnormal tissue. The non-specific
nature of this term weakens its discriminative power, acting like a "stop word" that may lead to classification errors
(Figure 16).
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Figure 15: Showing the connection of "lung_cancer" to "PTEN_expression" and "liver_cancer".

Figure 16: Showing connections of "lesion" in the context of cancer.
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Another inconsistency is observed with "breast_cancer." In the knowledge graph (KG), it is linked to general terms.
Although some connections may seem specific, terms like "PIK3CA" are common across multiple cancers, such as lung
and colon cancers, making it harder to assign this term uniquely to breast cancer.

Additionally, the term "role" appears inconsistently in the graph. The role of neutrophils in colon cancer is analogous to
the role of fibrosis in lung cancer. However, "role" is a general term that connects to both cancer types, complicating the
model’s ability to differentiate between them, as depicted in Figure 17.

Figure 17: Showing the role of neutrophils and fibrosis in cancer.

Language models like BERT are better equipped to understand context compared to traditional machine learning
algorithms. By analyzing node entailments in the graph, we can pinpoint sources of confusion that might mislead the
model.

Furthermore, we calculated the mean degree centrality of consistent and inconsistent words. The chart below illustrates
that inconsistent words exhibit much higher degree centrality:

Consistent words: 1.385× 10−3 Inconsistent words: 2.05× 10−5

This higher degree centrality suggests that inconsistent words tend to be highly connected within the graph, often acting
as hubs linking multiple terms. This high connectivity can dilute their discriminative power, leading to ambiguous
predictions. In other words, the more connected a word is, the more likely it introduces noise into the model’s
decision-making process, making it harder to assign clear labels.

By identifying and addressing these highly connected, yet non-discriminative nodes, the model’s performance can be
significantly improved by focusing on terms that offer clear, distinctive associations with specific labels.

5.6 Limitations

Despite the strengths of EIA, there are limitations. The study is subject to potential dataset biases, and SVM faces
challenges when dealing with complex datasets. Additionally, the use of Node2Vec, while effective for capturing
relationships, leads to an increased dataset size due to the generation of numerous nodes for each document. This
increase can strain computational resources and processing times, limiting scalability and efficiency in certain cases.

This study explored two distinct approaches for mapping BERTopic clusters post-Node2Vec classification. We chose
the "Confining BERTopic" approach due to its superior accuracy compared to "Let BERTopic Decide." Similarly, in
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the data assimilation segment, "Bringing Everything to Node Level" demonstrated higher accuracy than "Bringing
Everything to Graph Level," and was therefore selected for this research. These methodological decisions were crucial
in achieving the precise and reliable results presented in this paper.

6 Conclusion

This research introduces an innovative approach for improving text-based cancer data classification by integrating
BERTopic clustering with SVM classifiers and introducing the Explainable Inconsistency Algorithm (EIA). The pro-
posed methodology, which leverages advanced preprocessing techniques and Node2Vec embeddings, has demonstrated
significant improvements in both clustering and classification performance. More importantly, the study enabled
automatic identification and removal of outliers and discordant data points using explainable methods. This integration
not only enhances classification accuracy but also provides a clearer understanding of the underlying data relationships.
The statistical validation through t-tests further confirms the effectiveness of the methodology, contributing substantially
to the domain of text-based data analytics.

7 Future Work

While this study has shown promising results, several areas for future exploration could further refine and expand upon
the methods developed here:

• Integration of additional models: Future work could explore combining other machine learning classifiers,
such as Random Forests or deep learning models like Graph Neural Networks (GNNs), to evaluate whether
these approaches offer further improvements when integrated with BERTopic and EIA.

• Extension of EIA: Expanding the Explainable Inconsistency Algorithm to different data types and domains,
such as genomics or broader biomedical datasets, could enhance its applicability and effectiveness in handling
data inconsistencies across various fields.

• Optimization and scalability: Hyperparameter tuning and optimization techniques, as well as scaling up
the system for larger datasets, are key areas of focus. This could include exploring advanced parameter
optimization methods and the use of parallel processing techniques for managing the computational load.

• Real-world validation: Deploying this methodology in a real-world clinical setting, particularly in decision-
support systems, would provide valuable feedback on its performance and effectiveness in practice.

Overall, the integration of explainable machine learning techniques into cancer data classification has demonstrated
substantial potential. Future work should focus on refining the approach, expanding its scope, and applying it to more
diverse datasets and real-world applications.
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