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Abstract 
Background. Pa/ents with Gram-nega/ve bloodstream infec/ons are at risk of serious adverse 
outcomes without ac/ve treatment, but iden/fying who has an/microbial resistance (AMR) to target 
empirical treatment is challenging. 

Methods. We used XGBoost machine learning models to predict the presence of an/microbial 
resistance to seven an/bio/cs in pa/ents with Enterobacterales bloodstream infec/on. Models were 
trained using hospital and community data available at the /me blood cultures were obtained from 
Oxfordshire, UK, between 01-January-2017 and 31-December-2021. Model performance was 
compared to final microbiology results using test datasets from 01-January-2022 to 31-December-
2023 and with clinicians’ prescribing. 

Findings. 4709 infec/on episodes were used for model training and evalua/on; an/bio/c resistance 
rates ranged from 7-67%. In held-out test data, resistance predic/on performance was similar for the 
seven an/bio/cs (AUCs 0.680 [95%CI 0.641-0.720] to 0.737 [0.674-0.797]). Performance improved for 
most an/bio/cs when species data were included as model inputs (AUCs 0.723 [0.652-0.791] to 
0.827 [0.797-0.857]). In pa/ents treated with a beta-lactam, clinician prescribing led to 70% receiving 
an ac/ve beta-lactam: 44% were over-treated (broader spectrum treatment than needed), 26% 
op/mally treated (narrowest spectrum ac/ve agent), and 30% under-treated (inac/ve beta-lactam). 
Model predic/ons without species data could have led to 79% of pa/ents receiving an ac/ve beta-
lactam: 45% over-treated, 34% op/mally treated, and 21% under-treated. 

Interpreta4on. Predic/ng AMR in bloodstream infec/ons is challenging for both clinicians and 
models. Despite modest performance, machine learning models could s/ll increase the propor/on of 
pa/ents receiving ac/ve empirical treatment by up to 9% over current clinical prac/ce in an 
environment priori/sing an/microbial stewardship.  

Funding. Na/onal Ins/tute of Health Research (NIHR) Oxford Biomedical Research Centre, NIHR 
Health Protec/on Research Unit in Healthcare-associated Infec/on and An/microbial Resistance. 
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Research in context 
Evidence before this study. We searched Pubmed and Google Scholar using the terms: [an/bio/c OR 
an/microbial] AND [resistance] AND [predic/on OR machine learning OR AI OR ar/ficial intelligence] 
for ar/cles published up to 31 August 2024. References and cita/ons for ar/cles iden/fied were also 
reviewed. Several studies have shown that machine learning can poten/ally be used to predict 
an/microbial resistance (AMR) subsequently iden/fied on phenotypic an/microbial suscep/bility 
tes/ng. Most have focused either on iden/fying resistance in urinary tract infec/on, or in all samples 
received by a microbiology laboratory, which are ojen dominated by urine cultures. Only two studies 
were iden/fied focusing specifically on bloodstream infec/on, and these only inves/gated a limited 
number of an/bio/cs. Overall, predic/on performance was typically modest, e.g. area under the 
receiver opera/ng curve (AUC) values of 0.65-0.75. Most studies focus on data available in the 
community or hospital but not both. Four studies retrospec/vely compared clinical prescribing to 
model predic/ons and showed models could poten/ally reduce inappropriate an/bio/c use, but 
none focused specifically on bloodstream infec/on. External valida/on of models is uncommon, and 
most studies do not cover how models can be updated over /me or to new loca/ons. 

Added value of this study. We developed machine learning models to predict resistance to seven 
an/bio/cs (amoxicillin, co-amoxiclav, cejriaxone, piperacillin-tazobactam, ciprofloxacin, co-
trimoxazole, and gentamicin) in bloodstream infec/ons caused by Enterobacterales species. We 
focused on this clinical syndrome as it is an important cause of AMR-associated mortality. We used 
data from Oxfordshire, UK, between January 2017 and December 2023 for model training and 
evalua/on (4709 infec/on episodes in 4243 pa/ents). In held-out test data, predic/ve performance 
was similar for the seven an/bio/cs (AUCs 0.680 [95%CI 0.641-0.720] to 0.737 [0.674-0.797]). 
Performance improved for most an/bio/cs when species data were included as model inputs (AUCs 
0.723 [0.652-0.791] to 0.827 [0.797-0.857]). AMR iden/fied in recent microbiology results was the 
most important predictor of resistance. Model performance was rela/vely consistent over /me. AMR 
predic/on was also challenging for clinicians: their implied sensi/vity for detec/ng resistance, i.e., the 
propor/on of pa/ents treated with a beta-lactam with resistance receiving ac/ve treatment was 97% 
for amoxicillin, 29% for co-amoxiclav, 19% for cejriaxone, and 6% for piperacillin-tazobactam. In 
pa/ents treated with a beta-lactam, clinician prescribing led to 70% receiving an ac/ve beta-lactam: 
44% were over-treated (broader spectrum treatment than needed), 26% op/mally treated 
(narrowest spectrum ac/ve agent), and 30% under-treated (inac/ve beta-lactam). Model predic/ons 
without species informa/on could have led to 79% of pa/ents receiving an ac/ve beta-lactam: 45% 
over-treated, 34% op/mally treated, and 21% under-treated. 

Implica4ons of all the available evidence. Despite considering a wide range of input features, 
including hospital and some community data, model performance was broadly consistent with what 
has been described previously for similar tasks. This suggests there is a poten/al ceiling on the 
performance of machine learning in this context. However, despite modest performance, machine 
learning models could s/ll increase the propor/on of pa/ents receiving ac/ve treatment by up to 9% 
over current clinical prac/ce in an environment priori/sing an/microbial stewardship. 
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Introduc3on 
Ac/ve and /mely an/bio/c treatment of severe bacterial infec/ons poten/ally saves lives and 
improves pa/ent outcomes.[1] However, it can take up to 24-48 hours or more to obtain microbiology 
results to guide treatment, and many important infec/ons may remain culture nega/ve.[2] Therefore, 
substan/al reliance is placed on an/bio/c guidelines that are designed to maximise ac/ve empirical 
treatment of infec/ons before microbiology results are available, while also minimising overuse of 
broad-spectrum an/bio/cs to avoid driving an/microbial resistance (AMR).  

Popula/on-level an/bio/c recommenda/ons can be refined for individual pa/ents, e.g. considering 
previous resistance or prior an/bio/c exposure. However, this does not happen consistently, e.g. due 
to limited /me available to retrieve earlier results or variable prescriber experience. Therefore, 
several previous studies have evaluated whether combining electronic healthcare record (EHR) data 
with predic/ve algorithms could improve detec/on of AMR and hence lead to bemer targeted 
prescribing (Table 1).[3–18] These studies typically focus on pa/ents with posi/ve microbiology and 
use machine learning to predict resistance to key an/bio/cs. Most previous studies focus on urinary 
tract infec/ons or all infec/ons (likely dominated by urine cultures), in part due to availability of large 
datasets for model training.[5–18] Only a minority focus specifically on bloodstream infec/on despite 
its clinical importance.[3,4] Several data types have been shown to be poten/ally informa/ve, 
including a history of isolates with AMR, popula/on AMR rates, previous personal an/microbial 
exposure, past medical history and demographics. Data are typically obtained from a single hospital 
or community seong, but occasionally from a whole healthcare network.  

In previous studies predic/ve performance for detec/ng AMR has been rela/vely modest, e.g. area 
under the receiver opera/ng curve (AUC) values for important pathogen-an/bio/c combina/ons of 
around 0.65-0.75, but varying between drugs and seongs. If species iden/fica/on is included as a 
model input performance improves, e.g. AUCs of 0.80-0.88.[8,17] However species is unknown when 
star/ng empirical treatment. Most studies use test data from the same seong either randomly 
chosen from the same period or from shortly ajer the training period, limi/ng generalisability over 
geographic loca/ons and /me. Within the 16 previous studies iden/fied, only two externally 
validated their findings using data from a different area/hospital.[14,15] Most approaches do not 
address how to update models over /me. Four studies retrospec/vely compared their model 
performance to clinical decision making, showing models could poten/ally reduce inappropriate 
an/bio/c treatments.[5,9,10,15] Taken together, alongside technical barriers to interfacing with EHR 
systems and implemen/ng models in healthcare seongs, to date uptake of such predic/ons into 
clinical prac/ce has been very limited.  

Here we apply machine learning predic/ons to an important, but only par/ally studied pa/ent group 
at par/cular risk poor outcomes from AMR, those with Enterobacterales bloodstream infec/on.[19] 
Our models are designed to be used in pa/ents with suspected bloodstream infec/on where 
Enterobacterales are the most probable cause, e.g. infec/ons with urinary or intra-abdominal focus. 
We use a comprehensive input feature set addressing poten/al limita/ons of some earlier studies, by 
combining data from hospital EHRs with community microbiology results. We also evaluate how 
performance changes over /me and test approaches for upda/ng models over /me as new data 
emerges. We describe how good clinicians are at detec/ng AMR and compare the performance of 
our models to actual prescribing and simulate the impact that a predic/on system might have on the 
number of pa/ents receiving ac/ve an/bio/c treatment, and the wider impact on use of broad-
spectrum an/bio/cs. 
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Methods 
Study design and popula0on 
We used data from Oxford University Hospitals (OUH), four teaching hospitals collec/vely providing 
1100 beds, serving 750,000 residents in Oxfordshire, ~1% of the UK popula/on. The hospital’s 
microbiology laboratory also provides nearly all community tes/ng for the region. Deiden/fied data 
were obtained from Infec/ons in Oxfordshire Research Database (IORD), which has approvals from 
the South Central-Oxford C Research Ethics Commimee (19/SC/0403), the Health Research Authority 
and the Confiden/ality Advisory Group (19/CAG/0144) as a deiden/fied database without individual 
consent.  

We included all pa/ents aged ≥16 years with a posi/ve blood culture containing a single 
Enterobacterales species between 01-January-2017 and 31-December-2023. Polymicrobial blood 
cultures were excluded as these poten/ally contained non-Enterobacterales species. Pa/ents were 
included once per posi/ve blood culture episode, i.e. including the first posi/ve blood culture with an 
Enterobacterales species per 14-day period. 

An0microbial resistance predic0on 
We predicted an/microbial suscep/bility results for intravenous treatments for bloodstream infec/on 
that were commonly used in our ins/tu/on with resistance rates >5%, i.e. amoxicillin, co-amoxiclav 
(amoxicillin-clavulanate), cejriaxone, piperacillin-tazobactam, co-trimoxazole (trimethoprim-
sulfamethoxazole), and ciprofloxacin. Predic/ons were not made for meropenem as resistance rates 
were <1%. Predicted results were binary, i.e. suscep/ble (including intermediate/dose-dependent 
suscep/ble) or resistant. During the study period, hospital empirical an/bio/c guidelines 
recommended co-amoxiclav with or without addi/onal single dose gentamicin for treatment of 
suspected sepsis of an unknown, urinary, or intra-abdominal source. 

We made predic/ons at two /me points, firstly at the /me the blood culture was obtained and 
secondly when the species was iden/fied. Input features included pa/ent demographics, 
comorbidi/es, previous hospital-prescribed an/bio/cs, current clinical syndrome, previous specific 
AMR infec/ons, the hour of day the blood culture was taken, counts of recent laboratory blood tests, 
previous hospital and community microbiology results including numbers of samples taken, number 
culture posi/ve, and presence of an/bio/c resistance to specific an/bio/cs, pa/ent height and 
weight, previous hospital exposure, previous hospital-based procedures, current specialty, and counts 
of recent vital signs (Table S1). We also included recent popula/on-level rates of AMR. The species-
level analysis addi/onally included the species iden/fied and any history of AMR in previous isolates 
of the same species. Overall, there were 152 features in the baseline model, and 182 in the species 
model. 

Model architecture, data par00oning and evalua0on 
We fimed separate XGBoost models for each an/bio/c, aiming to predict subsequently iden/fied 
phenotypic resistance. We used a temporal training-test split to mimic real-world implementa/on 
(training: 01-January-2017 to 31-December-2021; tes/ng 01-January-2022 to 31-December-2022 
(Test dataset 1)), repor/ng performance in the test dataset (details in supplement).  

Model upda0ng 
We used addi/onal test data (Test dataset 2: 01-January-2023 to 31-December-2023) to evaluate if 
performance changed over /me and different approaches for upda/ng models. Three approaches 
were evaluated, in the first no further model training was undertaken, i.e. the model was based only 
on data from 2017-2021. In the second we retrained the model from scratch using all available data, 
i.e. from 2017-2022 inclusive. In the final approach we used on online-training method, where the 
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trained model from the 2017-2021 was updated with data from 2022, using an inbuilt method 
available within XGBoost.  

Comparison with clinical decision making 
To compare our models with clinical prac/ce, we combined both test datasets and considered 
pa/ents ini/ally treated with a beta-lactam an/bio/c. Beta-lactams were the most commonly used 
an/bio/cs in our ins/tu/on and facilitated establishing a hierarchy of an/bio/c choices. We included 
pa/ents empirically treated with amoxicillin, co-amoxiclav, cejriaxone, piperacillin-tazobactam, or a 
carbapenem (mostly meropenem; a small number receiving empirical ertapenem), in order of 
increasing spectrum of coverage. The most common adjunc/ve an/bio/c in our seong was single 
dose gentamicin, however we exclude it here from our main analysis considering only the beta-
lactam given, as we have previously shown gentamicin does not rescue pa/ents with beta-lactam (co-
amoxiclav) resistance from associated increases in mortality in Escherichia coli bloodstream 
infec/on.[20] We excluded from the clinical comparison neutropenic pa/ents, pa/ents not started on 
an/bio/cs, and blood cultures missing one or more suscep/bility results for the beta-lactams listed 
above. No pa/ent allergy data were available. 

To compare clinical prac/ce and models predic/ons, we evaluate the number of pa/ents who are i) 
op/mally treated, i.e. received the least broad-spectrum beta-lactam to which their blood culture 
isolate is sensi/ve, ii) under-treated, given a beta-lactam with resistance present, and iii) over-
treated, given an ac/ve beta-lactam, but one that was of a broader spectrum than was necessary. We 
also describe the rela/ve usage rates of each an/bio/c.  

We evaluated 4 strategies for applying our machine learning predic/ons without species informa/on, 
tuning the predic/on thresholds using the training data to: 1) match total an/bio/c use to total 
clinician an/bio/c use, but distribu/ng it between pa/ents more op/mally, 2) match total use to 
popula/on an/bio/c suscep/bility rates, 3) to match rates of over-treatment by clinicians, while 
aiming to increase ac/ve treatment, and 4) to see how much our models could reduce over-
treatment if the default an/bio/c policy was switched from using co-amoxiclav to cejriaxone first-
line (details in Supplement). Thresholds were then applied in the combined test data and 
performance summarised. 

 

Results 
Between 01-January-2017 and 31-December-2023, 252,849 blood cultures were obtained. 24,228 
(9.6%) were culture posi/ve, including 6983 (2.8%) with an Enterobacterales species. Ajer removing 
polymicrobial infec/ons and de-duplica/ng repeat posi/ve samples within 14 days, there were 4752 
infec/on episodes in 4273 pa/ents, a further 43 blood cultures were excluded because an/microbial 
suscep/bility tes/ng was not performed, leaving 4709 infec/on episodes in 4243 pa/ents for model 
training and evalua/on (Figure 1). The median (IQR) pa/ent age was 74 (60-84) years, and 2611 (55%) 
episodes were in male pa/ents. The median (IQR) Charlson co-morbidity score was 1 (0-3). 3631 
(77%) of posi/ve blood cultures were community onset (i.e. within <48 hours of hospital admission). 

The most commonly isolated species were E. coli (3094, 66%), Klebsiella pneumoniae (545, 12%), 
Proteus mirabilis (203, 4%), Enterobacter cloacae (177, 4%), and K. oxytoca (153, 3%). Across all 
species 3107/4664 (67%) were resistant to amoxicillin, 1905/4666 (41%) to co-amoxiclav, 526/4677 
(11%) to cejriaxone, 341/4691 (7%) to piperacillin-tazobactam, 461/4685 (10%) to gentamicin, 
1011/4593 (22%) to co-trimoxazole, and 584/4701 (12%) to ciprofloxacin (denominator varies as not 
all samples were tested for all an/bio/cs). Resistance to meropenem was uncommon, 7/4689 
(<0.2%). 
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The most frequently prescribed empirical an/bio/cs given within 4 hours of obtaining the blood 
cultures were co-amoxiclav alone (1194, 25%), no an/bio/cs (883, 19%), co-amoxiclav + gentamicin 
(761, 16%), cejriaxone alone (236, 5%), and piperacillin-tazobactam alone (109, 2%); 82 (2%) pa/ents 
received a carbapenem with or without another an/microbial. 

Model performance at baseline 
In held-out test data from 2022 (Test dataset 1), predic/ve performance was broadly similar for the 
seven an/bio/cs, AUCs ranging from 0.680 [95%CI 0.641-0.720] for amoxicillin to 0.737 [0.674 - 
0.797] for cejriaxone (Table 2; Table S4 for training data performance). Jointly op/mising sensi/vity 
and specificity, sensi/vity ranged from 40.7% (32.7-49.6%) for co-trimoxazole to 62.2% (57.8-66.6%) 
for amoxicillin, while specificity ranged from 66.4% (60.2-72.3%) for amoxicillin to 91.5% (89.2-93.7%) 
for co-trimoxazole. Posi/ve predic/ve values (PPVs) and nega/ve predic/ve values (NPVs), which are 
influenced by differences in resistance prevalence, ranged from 19.8% (14.2-26.3%) to 78.0% (73.9-
81.9%) and 47.9% (42.6-53.7) to 94.2% (92.2-96.0%), respec/vely. Alterna/ve values for 
sensi/vity/specificity/PPV/NPV could be obtained by varying the threshold chosen for iden/fying 
resistance (e.g. priori/sing sensi/vity, Table S5). 

Model performance following species iden0fica0on 
Performance improved for most an/bio/cs when species data were included as inputs to the 
predic/on models, i.e., mimicking the point during laboratory work-up of a blood culture when the 
species is first iden/fied, but suscep/bility results remain pending. For example, AUCs increased for 
amoxicillin (0.680 [95%CI 0.641-0.720] to 0.827 [0.797-0.857]) and co-amoxiclav (0.684 [0.642-0.722] 
to 0.771 [0.734-0.805]). Performance increases were also seen for other an/bio/cs, but with minimal 
improvement for piperacillin-tazobactam (Table 3, Table S6 for training dataset).  

Feature importance  
The most important features for making predic/ons were rela/vely consistent across different 
an/bio/cs (Figure 2, Figures S1-S6). The /me since the last isolate with resistance to the specific 
an/bio/c modelled was the most important feature for all an/bio/cs except piperacillin-tazobactam. 
Shorter /mes contributed most strongly to a predic/on of resistance, with the importance of a 
previous resistant isolate to the same an/bio/c typically amenua/ng over 1 year (Figure 3). Other 
consistently important features included greater /me since hospital admission at blood culture 
sampling, shorter /me since a previous resistant isolate to other related an/bio/cs, increased 
hospital an/bio/c exposure (specifically for the an/bio/c of interest, related an/bio/cs, and total 
an/bio/cs), and recent blood and urine cultures being sent.  

When the species iden/fied was added as a model input, this also became an important model 
feature, par/cularly for an/bio/cs where species informa/on improved model performance the 
most, such as amoxicillin and co-amoxiclav (Figure S7-13). In some cases, the features reflected 
informa/on in the data arising from intrinsic resistance (e.g. Klebsiella spp. and amoxicillin), but in 
other cases reflected different resistance prevenances in different species.  

Model updates over 0me 
Using held-out test data from 2023 (Test Dataset 2) there was minimal evidence that model 
performance changed over /me compared to 2022 and with similar results in 2023 using the original 
model, a retrained model, and an incrementally updated model (Figure 4). Models were rela/vely 
quick to train, taking around a minute on a high-performance personal computer, such that savings in 
training /me from not upda/ng the models or from incremental upda/ng were minimal (Figure S14). 
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Comparison to clinical prac0ce 
Of the 4709 blood cultures posi/ve for an Enterobacterales species, 3198 were included in the clinical 
comparison analysis (see Figure 1 for exclusions).  

An#bio#c use by clinicians – over, under and op#mal treatment 
Of the 3198 infec/ons, 2512 (79%) received at least one ac/ve baseline an/bio/c, and 686 (21%) did 
not. Considering the beta-lactam given, 806 (25%) were op/mally treated, 974 (30%) under-treated, 
and 1418 (44%) were over-treated. Most pa/ents were treated with co-amoxiclav (2286, 71%), which 
also accounted for the greatest propor/on of pa/ents under-treated (Figure 5A). In an ideal scenario 
where all infec/ons were treated with the narrowest spectrum ac/ve an/bio/c, more pa/ents would 
have received amoxicillin, fewer co-amoxiclav and more cejriaxone, with small increases compared 
to actual prac/ce in piperacillin-tazobactam and carbapenem use too (Figure 5B). Most pa/ents given 
inac/ve treatment would have been op/mally treated with cejriaxone with a smaller number 
requiring piperacillin-tazobactam or a carbapenem (Figure 5C).  

The implied sensi/vity of clinicians for detec/ng resistance, i.e., the propor/on of pa/ents with 
resistance to a given an/bio/c receiving treatment with any ac/ve broader spectrum beta-lactam 
was 97% (2005/2064) for amoxicillin, 29% (360/1225) for co-amoxiclav, 19% (61/320) for cejriaxone, 
and 6% (11/190) for piperacillin-tazobactam. 

Strategy 1 – matching an#bio#c use 
Firstly, model performance without species informa/on was compared to clinicians by amemp/ng to 
constrain the predic/ons made to result in the same total number of prescrip/ons for each an/bio/c 
as used by clinicians. Within the combined test data, clinician prescribing resulted in 70% of pa/ents 
receiving an ac/ve beta-lactam: 44% were over-treated, 26% op/mally treated, and 30% under-
treated. Model predic/ons resulted in more pa/ents being ac/vely treated, 75%, fewer being over-
treated, 42%, fewer under-treated, 25%, and therefore more being op/mally treated, 33% (Figure 
6A). Due to differences in model fit and calibra/on between training and test data small changes in 
an/bio/c use were observed (Figure 6B, Table 4). 

Strategy 2 – matching an#bio#c use to suscep#bility rates 
Using alterna/ve predic/on thresholds that matched total an/bio/c use to suscep/bility rates, 
resulted in more pa/ents receiving op/mal treatment compared to clinician’s prescribing, 42% (cf. 
26% by clinicians) and reduced over-treatment in 29% (cf. 44%). However, overall ac/ve treatment 
was similar, 71% (cf. 70%). In a sensi/vity analysis where 20% reduc/ons in amoxicillin and co-
amoxiclav use were allowed rela/ve to suscep/bility rates, the percentage of pa/ents predicted to 
receive ac/ve treatment increased to 77%, while overtreatment at 36% remained less than that seen 
with clinician’s prescribing. 

Strategy 3 – fixing overtreatment rates, aiming for more ac#ve treatment 
If predic/on thresholds were set by matching clinician over-treatment rates, 79% of pa/ents would 
receive an ac/ve beta-lactam, 34% op/mally treated, 45% over-treated, and 21% under-treated. This 
performance was predominantly achieved by moving a subset of pa/ents treated by clinicians with 
co-amoxiclav to receive cejriaxone, with fewer given piperacillin-tazobactam or a carbapenem to 
offset this. 

Switching to ceAriaxone as first-line treatment and strategy 4 
We also compared performance to a simpler interven/on, changing first-line treatment to 
cejriaxone, i.e. switching all pa/ents receiving amoxicillin or co-amoxiclav to cejriaxone. This would 
reduce the number of under-treated pa/ents to 11%, but also cause 65% to be over-treated. Seong 
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our models to achieve the same level of ac/ve treatment allowed over-treatment to be reduced to 
59%.  

Discussion 
Machine learning models can predict resistance to commonly used an/microbials in Enterobacterales 
bloodstream infec/on with moderate accuracy. Despite considering a wide range of input features, 
including hospital and some community data, model performance was broadly consistent with what 
has been described previously for similar tasks.[3–18] This suggests there is a ceiling on the 
performance of machine learning in this context that is unlikely to be improved on without further 
data, e.g. for our models, data on community prescribing. It may also reflect intrinsic stochas/city 
where bacteria with and without AMR exist within a pa/ent’s microbiome, and cause disease with or 
without AMR with a degree of randomness.  

Despite modest performance of machine learning models, detec/ng resistance is also a highly 
challenging task for clinicians. In our hospital group an/microbial stewardship is given a high priority, 
seeking to minimise over-use of broad-spectrum an/bio/cs to protect local needs and meet na/onal 
prescribing incen/ves.[21,22] However, this also results in a substan/al propor/on of pa/ents 
receiving inac/ve ini/al treatment, 21% overall, with 30% receiving inac/ve ini/al beta-lactam 
treatment. The implied sensi/vity of clinician detec/on of resistance was low at 29% for co-amoxiclav, 
19% for cejriaxone, and 6% for piperacillin-tazobactam. Prescrip/ons made up to 4 hours ajer blood 
culture sampling were considered, such that they are likely to represent the prac/ce of clinicians with 
a range of experiences, e.g., from 1-2 years post-gradua/on to more than 10 years, as senior reviews 
will not all have been completed for all pa/ents within the /me window chosen. However, this is 
representa/ve of those making an/bio/c prescribing decisions.  

The challenging nature of an/bio/c selec/on meant clinician’s choice of beta-lactam resulted in 30% 
of pa/ents being under-treated, 44% being over-treated and only 26% being op/mally treated. 
Several modelling approaches were able to improve on this. If total an/bio/c use was kept broadly 
similar, but redistributed, an addi/onal 5% of pa/ents received ac/ve treatment, 75% overall, and 
op/mal treatment rose to 33%. Alterna/vely, if we matched an/bio/c use to rates of an/bio/c 
suscep/bility and allowed for some over-prescribing of broader spectrum agents to offset imperfect 
model performance 79% of pa/ents could be ac/vely treated, 9% more than by clinicians, while s/ll 
only overtrea/ng 45% (similar to clinicians). A simpler approach of switching all first-line an/bio/cs to 
cejriaxone, increased ac/ve treatment to 89%, but caused 65% to be overtreated, the lamer could be 
reduced to 59% if a model rather than a guideline change was used. 

Model performance was rela/vely consistent over /me and models could be retrained rapidly if 
needed. The features contribu/ng most to predic/ons, such as infec/ons with AMR within the last 
year or an/bio/c exposures are likely to be rela/vely stable over /me. To improve overall predic/ve 
performance and facilitate an/microbial stewardship, bemer models are par/cularly needed for the 
narrower spectrum agents including amoxicillin and co-amoxiclav. Data on community use of these 
an/bio/cs and other narrow spectrum agents may help. It is unlikely that other model architectures 
would have substan/ally improved performance given the range of approaches tried in other studies 
without much bemer performance.[8,12,13,17,18]  

This study has several limita/ons. A fundamental limita/on with all studies of this kind is that the 
data are trained and tested on pa/ents known to have posi/ve blood cultures, and in our models, we 
specifically focused on pa/ents with Enterobacterales species in blood cultures. However, <10% of 
sampled pa/ents will have posi/ve blood cultures and these results are not known a priori. Hence, 
we have to assume the predictors of resistance are similar in those with and without posi/ve 
cultures, and that rates of resistance are similar too. However, this may only be par/ally true, 
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especially if AMR contributes to blood cultures being posi/ve in pa/ents with prior an/bio/c 
exposures in the community. By focusing on Enterobacterales we also did not consider infec/ons with 
other species or polymicrobial infec/ons. We did not have data available on allergies, it is possible 
that some of the model improvements in reducing over-treatment from switching cejriaxone to co-
amoxiclav may not have been possible due to penicillin allergies. However, this is less important for 
gains in the number of pa/ents receiving ac/ve treatment, where the switches were generally to 
cejriaxone. We did not have data on community an/bio/c exposures, which may have improved 
model performance. We did however have data on community microbiology samples as nearly all 
samples were sent to a single hospital laboratory. It is possible that clinician prescribing in 
Oxfordshire is unusual in the priority given to an/bio/c stewardship, but na/onal prescribing data 
suggest it is not atypical for the UK.[22] In our seong pa/ents receiving inac/ve ini/al treatment are 
typically switched to ac/ve treatment within 24-72 hours of blood cultures being obtained.[20] Our 
model was validated on two independent internal valida/on datasets, but further external valida/on 
is required before it can be deployed, for example as a decision support aid for hospital clinicians. 

In conclusion, predic/ng who will have AMR is challenging for clinicians and models alike. Despite 
rela/vely modest performance of machine learning models, these could s/ll increase the propor/on 
of pa/ents receiving ac/ve treatment by up to 9% over current clinical prac/ce in an environment 
priori/sing an/microbial stewardship.  
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Tables 
 

Publica(on Popula(on Infec(on type Predic(on 
input 
contains 
species 
informa(on 

An(bio(cs Model 
architecture 

Features Performance-AUC External 
valida(on 

Comparison 
with 
clinicians 

Ref. 

Vazquez-
Guillamet et 
al. 2017 
 

US, 2008-2015, 
single Hospital, 
1618 pa?ents 

Bloodstream 
infec?on  

Yes Piperacillin-
tazobactam (PT), 
cefepime (CE), 
meropenem (ME) 

Logis?c 
regression 
(LR), decision 
trees (DT) 

Nursing home 
residence, transfer from 
an outside hospital, 
prior an?bio?c use, 
source of infec?on, 
bacterial species 

LR: 0.68, 0.63, and 
0.83 for resistance 
to PT, CE, and ME  
DT: 0.67, 0.61, and 
0.80 for resistance 
to PT, CE, and ME 

No No  [3] 

Sousa et al. 
2019 
 

Spain, 2015-2016, 
single hospital, 
448 samples 

Gram 
nega?ve 
bacteraemia 

No β-lactamase 
produc?on 

Decision tree  Comorbidi?es, source 
of infec?on, history of 
infec?on, an?bio?c 
exposure, previous 
hospitalisa?on 

0.76 No  No [4] 

Yelin et al. 
2019 
 

Israel, 2007-2017, 
community health 
maintenance 
organiza?on, 
315,047 pa?ents 

Urinary tract 
infec?on 

No Co-trimoxazole, 
ciprofloxacin, co-
amoxiclav, 
cefuroxime, 
cephalexin, 
nitrofurantoin 

Logis?c 
regression, 
gradient-
boosted 
decision trees 

Resistance profile, 
demographics, sample 
history, drug purchase 
history, cross-resistance 

0.70 (co-amoxiclav) 
to 0.83 
(ciprofloxacin) 

No Yes [5] 

Fretzakis et 
al. 2020 
 

Greece, 2017-
2018, single 
hospital, ICU 
pa?ents, 345 
pa?ents 

All infec?ons Par?al 
(Gram stain) 

Mul?ple Random 
forest (RF), 
mul?-layer 
perceptron 
(MLP) 

Demographics, type of 
sample, Gram stain, 
an?bio?cs, previous 
an?bio?c suscep?bility 
tes?ng 

RF: 0.70 
MLP: 0.73 

No No [6] 

Hebert et al. 
2020 
 
 

US, 2011-2016, 
single hospital, 
ICU pa?ents, 6366 
pa?ents 

Urinary tract 
infec?on 

No Cefazolin, 
cecriaxone, 
ciprofloxacin, 
cefepime, and 
piperacillin-
tazobactam 

Logis?c 
regression 

Demographics, 
comorbidity score, 
recent an?bio?c use, 
recent an?microbial 
resistance, and 
an?bio?c allergies 

0.65 (cecriaxone) to 
0.69 (cefazolin) 

No No [7] 

Lewin-
Epstein et 
al. 2020 
 

Israel, 2013-2015, 
single hospital, 
16,198 samples 

All infec?ons No and Yes Cecazidime, 
gentamicin, 
imipenem, 
ofloxacin, 

Logis?c 
regression, 
neural 
networks, 

Bacteria species, 
previous resistance, 
demographics, 
comorbidi?es, prior 

Without species: 
0.73–0.79  
With species: 0.80-
0.88 

No No [8] 
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 sulfamethoxazole-
trimethoprim 

gradient 
boosted 
decision trees 

hospitalisa?on, 
department/ward, 
previous an?bio?cs 
exposure 

Moran et al. 
2020 
 

UK, 2010-2016, 3 
hospitals, 15,695 
admissions 

Community-
associated 
bloodstream 
and urinary 
tract 
infec?ons 

No Co-amoxiclav, 
piperacillin-
tazobactam  

XGBoost Comorbidi?es, 
demographics, previous 
resistance, previous 
an?bio?cs exposure 

0.70 No Yes [9] 

Kanjilal et 
al. 2020 
 

US, 2007-2016, 2 
hospitals, 13,682 
pa?ents, female, 
18-55 years 

Urinary tract 
infec?on 

No Nitrofurantoin, co-
trimoxazole, 
ciprofloxacin, 
levofloxacin 

Logis?c 
regression, 
decision tree, 
random forest  

Demographics, 
comorbidi?es, previous 
hospitalisa?on, 
previous procedures, 
lab tests, previous 
an?bio?cs use, previous 
resistance 

Full cohort: 0.56-
0.64; limit to prior 
an?bio?c resistance 
or exposure: 0.61-
0.77 

No Yes [10] 

McGuire et 
al. 2021 
 

USA, 2012-2017, 
single hospital, 
68,472 samples 

All infec?ons No Carbapenem XGBoost Demographics, 
medica?ons, vital signs, 
prior procedures, lab 
tests, billing code, 
culture, sensi?vity 

0.846 No No [11] 

Pascual-
Sánchez et 
al. 2021 
 

Madrid, Spain, 
2004-2020, single 
hospital, 3500 
pa?ents 

All infec?ons No Mul?ple, predict 
mul?-drug 
resistance 

Logis?c 
regression, 
XGBoost, 
neural 
network, 
random forest 

Time to culture, 
previous resistance 

0.76 No No [12] 

Marmnez-
Agüero et 
al. 2022 
 
 

Madrid, Spain, 
2004-2020, single 
hospital, 3470 
pa?ents 

All infec?ons No Mul?ple agents Long short-
term memory 
network 

Clinical ?me-series data 0.67 No No [13] 

Rich et al. 
2022 
 
 

US, 2011-2019, 
mul?-centre, 
6307 pa?ents 

Urinary tract 
infec?on 

No Co-trimoxazole 
(SXT), 
nitrofurantoin (NIT), 
ciprofloxacin (CIP), 
mul?-drug 
resistance 

Boosted 
logis?c 
regression 

Demographics, zip 
code, comorbidi?es, 
previous resistance, 
previous an?bio?cs 
exposure, previous 
hospital stay 

0.58 (SXT), 0.62 
(NIT), 0.64 (CIP), 
and 0.66 (MDR) 

Yes No [14] 
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Corbin et al. 
2023 
 

US, 2009-2021, 
mul?-centre, 
8342 infec?ons 
from 6920 
pa?ents 

All infec?ons No Vancomycin, 
piperacillin/tazobac
tam, cefepime, 
cecriaxone, 
cefazolin, 
ciprofloxacin, 
ampicillin and 
meropenem 

Gradient 
boosted 
decision tree, 
random forest 

Diagnos?c codes, prior 
procedures, lab tests, 
medica?ons, 
respiratory care, 
previous resistance, 
vital signs, 
demographics, 
insurance, imaging, 
ins?tu?on  

0.61-0.73  Yes Yes [15] 

Lee et al. 
2023 
 

Korea, 2020-2021, 
single hospital, 
550 samples 

Urinary tract 
infec?on 

No Ciprofloxacin (CIP), 
extended-spectrum 
beta-lactamases 
(ESBL) 

Gradient-
boosted 
decision trees 

Demographics, medical 
device, infec?on type, 
comorbidi?es, past 
history, vital signs, lab 
tests 

0.827 for CIP 
0.811 for ESBL 

No No [16] 

Mintz et al. 
2023 
 
 

Israel, 2016-2019, 
single hospital, 
10053 samples 

All infec?ons No and Yes Ciprofloxacin Super learner Demographics, 
comorbidi?es, previous 
resistance, previous 
an?bio?cs exposure, 
department/ward 

Without species: 
0.737 
With species: 0.837 

No No [17] 

Yang et al. 
2023 
 
 

US, 2007-2016, 
two hospitals, 
101,096 samples 

Urinary tract 
infec?on (UTI) 

No Nitrofurantoin 
(NIT), co-
trimoxazole (SXT), 
ciprofloxacin (CIP), 
levofloxacin (LVX) 

TabNet, 
XGBoost 

Department/ward, 
demographics, previous 
resistance, previous 
organism, previous 
an?bio?cs exposure, 
comorbidi?es, previous 
procedures, 
colonisa?on pressure 

Complicated UTI: 
0.686 (NIT), 0.701 
(SXT), 0.811 (CIP), 
0.814 (LVX) 
 
Uncomplicated UTI: 
0.559 (NIT), 0.591 
(SXT), 0.646 (CIP), 
0.639 (LVX).  

Validated 
on 
uncomplic
ated UTI 

No [18] 

 

Table 1. Previous models for predic4ng an4bio4c resistance. Results shown are from an illustra/ve literature review. Only four studies were iden/fied that 
have made their code publicly available.[10,15,17,18] 
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An$bio$c n Resistant, 
n  

Resistant, 
% 

AUC (95%CI) at blood 
culture sampling 

Sensi$vity 
(95% CI) 

Specificity 
(95% CI) 

Posi$ve predic$ve 
value (95% CI) 

Nega$ve predic$ve 
value (95% CI) 

Amoxicillin 693 455 66 0.680 (0.641 - 0.720) 62.2 (57.8 - 66.6) 66.4 (60.2 - 72.3) 78.0 (73.9 - 81.9) 47.9 (42.6 - 53.7) 
Co-amoxiclav 699 283 40 0.684 (0.642 - 0.722) 60.4 (54.7 - 66.1) 67.8 (63.7 - 71.9) 56.1 (50.5 - 61.3) 71.6 (67.8 - 75.8) 
CeOriaxone 701 78 11 0.737 (0.674 - 0.797) 48.7 (37.5 - 60.2) 83.0 (80.1 - 85.9) 26.4 (19.2 - 34.2) 92.8 (90.6 - 94.9) 
Piperacillin-tazobactam 704 64 9 0.708 (0.643 - 0.779) 51.6 (39.6 - 63.8) 79.1 (75.8 - 82.1) 19.8 (14.2 - 26.3) 94.2 (92.2 - 96.0) 
Ciprofloxacin 706 86 12 0.726 (0.655 - 0.789) 50.0 (39.2 - 60.6) 88.2 (85.7 - 90.6) 37.1 (28.0 - 45.4) 92.7 (90.6 - 94.8) 
Co-trimoxazole 688 123 18 0.698 (0.641 - 0.754) 40.7 (32.7 - 49.6) 91.5 (89.2 - 93.7) 51.0 (41.7 - 60.5) 87.6 (84.8 - 90.3) 
Gentamicin 704 75 11 0.700 (0.625 - 0.775) 45.3 (34.2 - 57.1) 85.2 (82.6 - 88.0) 26.8 (19.4 - 35.2) 92.9 (90.6 - 94.8) 

 
Table 2. Model performance for predic4ng an4bio4c resistance at blood culture sampling in held-out test dataset 1, 01 January 2022 – 31 December 2022. 
AUC, area under the receiver opera/ng curve. Confidence intervals were generated by bootstrapping with 1000 itera/ons. 

 

An$bio$c n Resistant, 
n  

Resistant, 
% 

AUC (95%CI) with 
species informa$on 

Sensi$vity 
(95% CI) 

Specificity 
(95% CI) 

Posi$ve predic$ve 
value (95% CI) 

Nega$ve predic$ve 
value (95% CI) 

Amoxicillin 693 455 66 0.827 (0.797 - 0.857) 65.1 (60.8 - 69.9) 85.7 (81.3 - 90.0) 89.7 (86.4 - 92.8) 56.2 (51.3 - 61.5) 
Co-amoxiclav 699 283 40 0.771 (0.734 - 0.805) 67.1 (61.0 - 72.6) 72.8 (68.3 - 77.1) 62.7 (57.3 - 68.1) 76.5 (72.4 - 80.7) 
CeOriaxone 701 78 11 0.799 (0.745 - 0.846) 64.1 (53.1 - 73.9) 77.5 (74.1 - 80.9) 26.3 (19.8 - 32.4) 94.5 (92.5 - 96.3) 
Piperacillin-tazobactam 704 64 9 0.723 (0.652 - 0.791) 64.1 (51.9 - 75.4) 67.3 (63.6 - 71.1) 16.4 (12.1 - 20.8) 94.9 (92.7 - 96.8) 
Ciprofloxacin 706 86 12 0.783 (0.724 - 0.840) 47.7 (37.1 - 59.2) 92.7 (90.6 - 94.7) 47.7 (36.6 - 57.8) 92.7 (90.7 - 94.8) 
Co-trimoxazole 688 123 18 0.774 (0.726 - 0.821) 49.6 (41.3 - 58.9) 89.7 (87.2 - 92.2) 51.3 (42.6 - 60.2) 89.1 (86.6 - 91.6) 
Gentamicin 704 75 11 0.729 (0.654 - 0.794) 41.3 (29.5 - 52.6) 91.7 (89.5 - 93.9) 37.3 (26.8 - 47.4) 92.9 (90.9 - 94.8) 

 

Table 3. Model performance for predic4ng an4bio4c resistance at blood culture species iden4fica4on in held-out test dataset 1, 01 January 2022 – 31 
December 2022. AUC, area under the receiver opera/ng curve. Confidence intervals were generated by bootstrapping with 1000 itera/ons. 
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Scenario Ac+ve beta-
lactam,  

n (%) 

Under-
treated,  

n (%) 

Op+mally 
treated,  

n (%) 

Over-treated, 
n (%) 

Receiving 
amoxicillin, 

n (%) 

Receiving co-
amoxiclav,  

n (%) 

Receiving 
ce>riaxone, 

n (%) 

Receiving 
piperacillin-
tazobactam,  

n (%) 

Receiving 
carbapenem, 

n (%) 

Clinician prescribing 639 (70%) 280 (30%) 238 (26%) 401 (44%) 37 (4%) 663 (72%) 130 (14%) 79 (9%) 10 (1%) 

Model, strategy 1: 
matching clinician 
an+bio+c use 

693 (75%) 226 (25%) 305 (33%) 388 (42%) 10 (1%) 681 (74%) 164 (18%) 45 (5%) 19 (2%) 

Model, strategy 2: 
matching an+bio+c 
suscep+bility rates 

655 (71%) 264 (29%) 384 (42%) 271 (29%) 320 (35%) 238 (26%) 301 (33%) 23 (3%) 37 (4%) 

Model, strategy 2: 
matching an+bio+c 
suscep+bility rates with 
20% leeway 

705 (77%) 214 (23%) 374 (41%) 331 (36%) 258 (28%) 194 (21%) 395 (43%) 26 (3%) 46 (5%) 

Model, strategy 3: 
matching clinician over-
treatment rates 

724 (79%) 195 (21%) 309 (34%) 415 (45%) 0 (0%) 543 (59%) 356 (39%) 16 (2%) 4 (<1%) 

Simple comparator: 
switch first-line an+bio+c 
to ce>riaxone 

817 (89%) 102 (11%) 221 (24%) 596 (65%) 0 (0%) 0 (0%) 830 (90%) 79 (9%) 10 (1%) 

Model, strategy 4: 
matching clinician ac+ve 
treatment rates in 
ce>riaxone first-line 
comparator 

822 (89%) 97 (11%) 282 (31%) 540 (59%) 5 (1%) 59 (6%) 836 (91%) 15 (2%) 4 (<1%) 

 

Table 4. Comparison of model predic4ons to clinician prescribing in test data from 2022-2023 (n=919). Pa/ents treated with a beta-lactam were included. 
Model scenarios are described in more details in the Methods.
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Figures 

 

Figure 1. Blood cultures studied, and laboratory and clinical comparison groups. Repeat posi/ve 
cultures from the same pa/ent within the next 14 days ajer a posi/ve blood culture were excluded. 
Only 7 blood cultures were resistant to meropenem, in the laboratory comparison 3 were in the 
training data, 2 in test 1 and 2 in test 1; in the clinical comparison 3 meropenem resistant blood 
cultures were included, 1 in the training data and 2 in the test data. Not all blood cultures had 
suscep/bility results reported for all an/bio/cs as shown. Within the 3198 blood cultures studied in 
the clinical comparison, 2064 (65%) were resistant to amoxicillin, 1225 (38%) to co-amoxiclav, 320 
(10%) to cejriaxone, 190 (6%) to piperacillin-tazobactam, and 3 (<1%) to meropenem. Rates of 
resistance to gentamicin, ciprofloxacin and co-trimoxazole were 318/3195 (10%), 379/3196 (12%), 
and 674/3170 (21%) respec/vely.  

 

4709 blood cultures positive for an 
Enterobacterales species

4243 patients
01 January 2017 – 31 December 2023*

Amoxicillin
n=4664 

Ceftriaxone
n=4677 

Ciprofloxacin
n=4701 

Co-amoxiclav
n=4666 

Co-trimoxazole
n=4593 

Gentamicin
n=4685 

Piperacillin-
tazobactam

n=4691 

Amoxicillin
3107 (67%)

Ceftriaxone
526 (11%)

Ciprofloxacin
584 (12%)

Co-amoxiclav
1905 (41%)

Co-trimoxazole
1011 (22%)

Gentamicin
461 (10%)

Piperacillin-
tazobactam

341 (7%)

Antimicrobial susceptibility data available

Resistant

Exclude: no baseline antibiotics (n=883), baseline 
antibiotics do not include a locally common beta-
lactam (n=381), neutropenic (n=210), missing an 
AST result for ≥1 beta-lactam (n=37)

Comparison dataset: 
3198 positive blood 
cultures, 2931 
patients

Clinician comparison

Training: 2279 blood cultures 
(2102 patients, Jan 2017 – Dec 2021)

Testing: 919 blood cultures 
(878 patients, Jan 2022 – Dec 2023)

Training: 3283 blood cultures (2982 patients, Jan 2017 – Dec 2021)

Test 1: 706 blood cultures (674 patients, Jan 2022 – Dec 2022)

Test 2: 720 blood cultures (684 patients, Jan 2023 – Dec 2023)

Laboratory comparison
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Figure 2. SHAP (SHapley Addi4ve exPlana4ons) plot showing feature importance and impacts on 
model output for predic4ng amoxicillin resistance at blood culture sampling. Posi/ve values on the 
x-axis indicate contribu/ons towards predic/ng resistance, and nega/ve values contribu/ons towards 
predic/ng suscep/bility. Absolute x-axis values reflect the rela/ve importance or contribu/on of the 
feature in making a predic/on. Colour indicates the value of the feature, red dots indicate higher 
values and blue dot lower values. For example, the shorter the /me since the last isolate with 
resistance to amoxicillin the more likely a predic/on of resistance. See Figures S1-S6 for other 
an/bio/cs. Shorter /mes since the last urine culture with Enterobacterales were associated with 
predic/ng suscep/bility, although this might seem surprising, it needs to be interpreted considering 
also having the /me since a resistant isolate in the model, such that given that result, shorter /mes 
may represent evidence of a recent suscep/ble isolate. 
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Figure 3. SHAP (SHapley Addi4ve exPlana4ons) plots showing the 4me since last resistant isolate 
and impact on model output for predic4ng resistance to the same an4bio4c at blood culture 
sampling. Where no resistant isolate was seen in the last year, the value is set to 365, hence when 
interpre/ng change over /me values exactly equal to 365 days should be ignored. The grey histogram 
indicates the rela/ve frequency of each observa/on on the x-axis. The spread of blue points arises 
from other features also influencing the SHAP value on the y-axis. 
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Figure 4. Model performance for predic4ng an4bio4c resistance at blood culture sampling in held-
out test dataset 1 (01 January 2022 – 31 December 2022) and 2 (01 January 2023 – 31 December 
2023). For test dataset 2 three approaches to upda/ng the model over /me are presented – no 
retraining, full re-training from scratch using data from 2017-2022 inclusive, incremental upda/ng of 
the original model trained using 2017-2021 data with the data from 2022. AUC, area under the 
receiver opera/ng curve. Confidence intervals were generated by bootstrapping with 1000 itera/ons. 
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Figure 5. Clinician prescribing prac4ce in 3198 posi4ve blood cultures. Panel A shows the number of 
infec/ons treated with different beta-lactams, classified by whether treatment was op/mal, broader 
than necessary (‘over treated’), or had resistance to the beta-lactam used (‘under treated’). Panel B 
displays the op/mal breakdown of an/bio/c use, had the narrowest spectrum ac/ve agent been used 
to treat each infec/on. Panel C shows the distribu/on of op/mal an/bio/cs by whether the actual 
beta-lactam treatment given was inac/ve (lej hand sub-panel) or ac/ve (right). 
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Figure 6. Percentage of pa4ents receiving op4mal, under or over treatment (panel A), and specific 
an4bio4cs (panel B) according to clinician prescribing and model predic4ons. Predic/ons in test 
data from 2022-2023 are shown for a model constrained to match the total use of each an/bio/c as 
closely as possible (scenario 1) (differences in an/bio/c use arise from differences between training 
and test dataset model fit and calibra/on). 
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