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Abstract
Background. Patients with Gram-negative bloodstream infections are at risk of serious adverse

outcomes without active treatment, but identifying who has antimicrobial resistance (AMR) to target
empirical treatment is challenging.

Methods. We used XGBoost machine learning models to predict the presence of antimicrobial
resistance to seven antibiotics in patients with Enterobacterales bloodstream infection. Models were
trained using hospital and community data available at the time blood cultures were obtained from
Oxfordshire, UK, between 01-January-2017 and 31-December-2021. Model performance was
compared to final microbiology results using test datasets from 01-January-2022 to 31-December-
2023 and with clinicians’ prescribing.

Findings. 4709 infection episodes were used for model training and evaluation; antibiotic resistance
rates ranged from 7-67%. In held-out test data, resistance prediction performance was similar for the
seven antibiotics (AUCs 0.680 [95%Cl 0.641-0.720] to 0.737 [0.674-0.797]). Performance improved for
most antibiotics when species data were included as model inputs (AUCs 0.723 [0.652-0.791] to
0.827 [0.797-0.857]). In patients treated with a beta-lactam, clinician prescribing led to 70% receiving
an active beta-lactam: 44% were over-treated (broader spectrum treatment than needed), 26%
optimally treated (narrowest spectrum active agent), and 30% under-treated (inactive beta-lactam).
Model predictions without species data could have led to 79% of patients receiving an active beta-
lactam: 45% over-treated, 34% optimally treated, and 21% under-treated.

Interpretation. Predicting AMR in bloodstream infections is challenging for both clinicians and
models. Despite modest performance, machine learning models could still increase the proportion of
patients receiving active empirical treatment by up to 9% over current clinical practice in an
environment prioritising antimicrobial stewardship.

Funding. National Institute of Health Research (NIHR) Oxford Biomedical Research Centre, NIHR
Health Protection Research Unit in Healthcare-associated Infection and Antimicrobial Resistance.
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Research in context

Evidence before this study. We searched Pubmed and Google Scholar using the terms: [antibiotic OR
antimicrobial] AND [resistance] AND [prediction OR machine learning OR Al OR artificial intelligence]
for articles published up to 31 August 2024. References and citations for articles identified were also
reviewed. Several studies have shown that machine learning can potentially be used to predict
antimicrobial resistance (AMR) subsequently identified on phenotypic antimicrobial susceptibility
testing. Most have focused either on identifying resistance in urinary tract infection, or in all samples
received by a microbiology laboratory, which are often dominated by urine cultures. Only two studies
were identified focusing specifically on bloodstream infection, and these only investigated a limited
number of antibiotics. Overall, prediction performance was typically modest, e.g. area under the
receiver operating curve (AUC) values of 0.65-0.75. Most studies focus on data available in the
community or hospital but not both. Four studies retrospectively compared clinical prescribing to
model predictions and showed models could potentially reduce inappropriate antibiotic use, but
none focused specifically on bloodstream infection. External validation of models is uncommon, and
most studies do not cover how models can be updated over time or to new locations.

Added value of this study. We developed machine learning models to predict resistance to seven
antibiotics (amoxicillin, co-amoxiclav, ceftriaxone, piperacillin-tazobactam, ciprofloxacin, co-
trimoxazole, and gentamicin) in bloodstream infections caused by Enterobacterales species. We
focused on this clinical syndrome as it is an important cause of AMR-associated mortality. We used
data from Oxfordshire, UK, between January 2017 and December 2023 for model training and
evaluation (4709 infection episodes in 4243 patients). In held-out test data, predictive performance
was similar for the seven antibiotics (AUCs 0.680 [95%CI 0.641-0.720] to 0.737 [0.674-0.797]).
Performance improved for most antibiotics when species data were included as model inputs (AUCs
0.723 [0.652-0.791] to 0.827 [0.797-0.857]). AMR identified in recent microbiology results was the
most important predictor of resistance. Model performance was relatively consistent over time. AMR
prediction was also challenging for clinicians: their implied sensitivity for detecting resistance, i.e., the
proportion of patients treated with a beta-lactam with resistance receiving active treatment was 97%
for amoxicillin, 29% for co-amoxiclav, 19% for ceftriaxone, and 6% for piperacillin-tazobactam. In
patients treated with a beta-lactam, clinician prescribing led to 70% receiving an active beta-lactam:
44% were over-treated (broader spectrum treatment than needed), 26% optimally treated
(narrowest spectrum active agent), and 30% under-treated (inactive beta-lactam). Model predictions
without species information could have led to 79% of patients receiving an active beta-lactam: 45%
over-treated, 34% optimally treated, and 21% under-treated.

Implications of all the available evidence. Despite considering a wide range of input features,
including hospital and some community data, model performance was broadly consistent with what
has been described previously for similar tasks. This suggests there is a potential ceiling on the
performance of machine learning in this context. However, despite modest performance, machine
learning models could still increase the proportion of patients receiving active treatment by up to 9%
over current clinical practice in an environment prioritising antimicrobial stewardship.
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Introduction

Active and timely antibiotic treatment of severe bacterial infections potentially saves lives and
improves patient outcomes.[1] However, it can take up to 24-48 hours or more to obtain microbiology
results to guide treatment, and many important infections may remain culture negative.[2] Therefore,
substantial reliance is placed on antibiotic guidelines that are designed to maximise active empirical
treatment of infections before microbiology results are available, while also minimising overuse of
broad-spectrum antibiotics to avoid driving antimicrobial resistance (AMR).

Population-level antibiotic recommendations can be refined for individual patients, e.g. considering
previous resistance or prior antibiotic exposure. However, this does not happen consistently, e.g. due
to limited time available to retrieve earlier results or variable prescriber experience. Therefore,
several previous studies have evaluated whether combining electronic healthcare record (EHR) data
with predictive algorithms could improve detection of AMR and hence lead to better targeted
prescribing (Table 1).[3-18] These studies typically focus on patients with positive microbiology and
use machine learning to predict resistance to key antibiotics. Most previous studies focus on urinary
tract infections or all infections (likely dominated by urine cultures), in part due to availability of large
datasets for model training.[5—-18] Only a minority focus specifically on bloodstream infection despite
its clinical importance.[3,4] Several data types have been shown to be potentially informative,
including a history of isolates with AMR, population AMR rates, previous personal antimicrobial
exposure, past medical history and demographics. Data are typically obtained from a single hospital
or community setting, but occasionally from a whole healthcare network.

In previous studies predictive performance for detecting AMR has been relatively modest, e.g. area
under the receiver operating curve (AUC) values for important pathogen-antibiotic combinations of
around 0.65-0.75, but varying between drugs and settings. If species identification is included as a
model input performance improves, e.g. AUCs of 0.80-0.88.[8,17] However species is unknown when
starting empirical treatment. Most studies use test data from the same setting either randomly
chosen from the same period or from shortly after the training period, limiting generalisability over
geographic locations and time. Within the 16 previous studies identified, only two externally
validated their findings using data from a different area/hospital.[14,15] Most approaches do not
address how to update models over time. Four studies retrospectively compared their model
performance to clinical decision making, showing models could potentially reduce inappropriate
antibiotic treatments.[5,9,10,15] Taken together, alongside technical barriers to interfacing with EHR
systems and implementing models in healthcare settings, to date uptake of such predictions into
clinical practice has been very limited.

Here we apply machine learning predictions to an important, but only partially studied patient group
at particular risk poor outcomes from AMR, those with Enterobacterales bloodstream infection.[19]
Our models are designed to be used in patients with suspected bloodstream infection where
Enterobacterales are the most probable cause, e.g. infections with urinary or intra-abdominal focus.
We use a comprehensive input feature set addressing potential limitations of some earlier studies, by
combining data from hospital EHRs with community microbiology results. We also evaluate how
performance changes over time and test approaches for updating models over time as new data
emerges. We describe how good clinicians are at detecting AMR and compare the performance of
our models to actual prescribing and simulate the impact that a prediction system might have on the
number of patients receiving active antibiotic treatment, and the wider impact on use of broad-
spectrum antibiotics.
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Methods

Study design and population

We used data from Oxford University Hospitals (OUH), four teaching hospitals collectively providing
1100 beds, serving 750,000 residents in Oxfordshire, ~1% of the UK population. The hospital’s
microbiology laboratory also provides nearly all community testing for the region. Deidentified data
were obtained from Infections in Oxfordshire Research Database (IORD), which has approvals from
the South Central-Oxford C Research Ethics Committee (19/SC/0403), the Health Research Authority
and the Confidentiality Advisory Group (19/CAG/0144) as a deidentified database without individual
consent.

We included all patients aged 216 years with a positive blood culture containing a single
Enterobacterales species between 01-January-2017 and 31-December-2023. Polymicrobial blood
cultures were excluded as these potentially contained non-Enterobacterales species. Patients were
included once per positive blood culture episode, i.e. including the first positive blood culture with an
Enterobacterales species per 14-day period.

Antimicrobial resistance prediction

We predicted antimicrobial susceptibility results for intravenous treatments for bloodstream infection
that were commonly used in our institution with resistance rates >5%, i.e. amoxicillin, co-amoxiclav
(amoxicillin-clavulanate), ceftriaxone, piperacillin-tazobactam, co-trimoxazole (trimethoprim-
sulfamethoxazole), and ciprofloxacin. Predictions were not made for meropenem as resistance rates
were <1%. Predicted results were binary, i.e. susceptible (including intermediate/dose-dependent
susceptible) or resistant. During the study period, hospital empirical antibiotic guidelines
recommended co-amoxiclav with or without additional single dose gentamicin for treatment of
suspected sepsis of an unknown, urinary, or intra-abdominal source.

We made predictions at two time points, firstly at the time the blood culture was obtained and
secondly when the species was identified. Input features included patient demographics,
comorbidities, previous hospital-prescribed antibiotics, current clinical syndrome, previous specific
AMR infections, the hour of day the blood culture was taken, counts of recent laboratory blood tests,
previous hospital and community microbiology results including numbers of samples taken, number
culture positive, and presence of antibiotic resistance to specific antibiotics, patient height and
weight, previous hospital exposure, previous hospital-based procedures, current specialty, and counts
of recent vital signs (Table S1). We also included recent population-level rates of AMR. The species-
level analysis additionally included the species identified and any history of AMR in previous isolates
of the same species. Overall, there were 152 features in the baseline model, and 182 in the species
model.

Model architecture, data partitioning and evaluation

We fitted separate XGBoost models for each antibiotic, aiming to predict subsequently identified
phenotypic resistance. We used a temporal training-test split to mimic real-world implementation
(training: 01-January-2017 to 31-December-2021; testing 01-January-2022 to 31-December-2022
(Test dataset 1)), reporting performance in the test dataset (details in supplement).

Model updating

We used additional test data (Test dataset 2: 01-January-2023 to 31-December-2023) to evaluate if
performance changed over time and different approaches for updating models. Three approaches
were evaluated, in the first no further model training was undertaken, i.e. the model was based only
on data from 2017-2021. In the second we retrained the model from scratch using all available data,
i.e. from 2017-2022 inclusive. In the final approach we used on online-training method, where the
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trained model from the 2017-2021 was updated with data from 2022, using an inbuilt method
available within XGBoost.

Comparison with clinical decision making

To compare our models with clinical practice, we combined both test datasets and considered
patients initially treated with a beta-lactam antibiotic. Beta-lactams were the most commonly used
antibiotics in our institution and facilitated establishing a hierarchy of antibiotic choices. We included
patients empirically treated with amoxicillin, co-amoxiclav, ceftriaxone, piperacillin-tazobactam, or a
carbapenem (mostly meropenem; a small number receiving empirical ertapenem), in order of
increasing spectrum of coverage. The most common adjunctive antibiotic in our setting was single
dose gentamicin, however we exclude it here from our main analysis considering only the beta-
lactam given, as we have previously shown gentamicin does not rescue patients with beta-lactam (co-
amoxiclav) resistance from associated increases in mortality in Escherichia coli bloodstream
infection.[20] We excluded from the clinical comparison neutropenic patients, patients not started on
antibiotics, and blood cultures missing one or more susceptibility results for the beta-lactams listed
above. No patient allergy data were available.

To compare clinical practice and models predictions, we evaluate the number of patients who are i)
optimally treated, i.e. received the least broad-spectrum beta-lactam to which their blood culture
isolate is sensitive, ii) under-treated, given a beta-lactam with resistance present, and iii) over-
treated, given an active beta-lactam, but one that was of a broader spectrum than was necessary. We
also describe the relative usage rates of each antibiotic.

We evaluated 4 strategies for applying our machine learning predictions without species information,
tuning the prediction thresholds using the training data to: 1) match total antibiotic use to total
clinician antibiotic use, but distributing it between patients more optimally, 2) match total use to
population antibiotic susceptibility rates, 3) to match rates of over-treatment by clinicians, while
aiming to increase active treatment, and 4) to see how much our models could reduce over-
treatment if the default antibiotic policy was switched from using co-amoxiclav to ceftriaxone first-
line (details in Supplement). Thresholds were then applied in the combined test data and
performance summarised.

Results

Between 01-January-2017 and 31-December-2023, 252,849 blood cultures were obtained. 24,228
(9.6%) were culture positive, including 6983 (2.8%) with an Enterobacterales species. After removing
polymicrobial infections and de-duplicating repeat positive samples within 14 days, there were 4752
infection episodes in 4273 patients, a further 43 blood cultures were excluded because antimicrobial
susceptibility testing was not performed, leaving 4709 infection episodes in 4243 patients for model
training and evaluation (Figure 1). The median (IQR) patient age was 74 (60-84) years, and 2611 (55%)
episodes were in male patients. The median (IQR) Charlson co-morbidity score was 1 (0-3). 3631
(77%) of positive blood cultures were community onset (i.e. within <48 hours of hospital admission).

The most commonly isolated species were E. coli (3094, 66%), Klebsiella pneumoniae (545, 12%),
Proteus mirabilis (203, 4%), Enterobacter cloacae (177, 4%), and K. oxytoca (153, 3%). Across all
species 3107/4664 (67%) were resistant to amoxicillin, 1905/4666 (41%) to co-amoxiclav, 526/4677
(11%) to ceftriaxone, 341/4691 (7%) to piperacillin-tazobactam, 461/4685 (10%) to gentamicin,
1011/4593 (22%) to co-trimoxazole, and 584/4701 (12%) to ciprofloxacin (denominator varies as not
all samples were tested for all antibiotics). Resistance to meropenem was uncommon, 7/4689
(<0.2%).
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The most frequently prescribed empirical antibiotics given within 4 hours of obtaining the blood
cultures were co-amoxiclav alone (1194, 25%), no antibiotics (883, 19%), co-amoxiclav + gentamicin
(761, 16%), ceftriaxone alone (236, 5%), and piperacillin-tazobactam alone (109, 2%); 82 (2%) patients
received a carbapenem with or without another antimicrobial.

Model performance at baseline

In held-out test data from 2022 (Test dataset 1), predictive performance was broadly similar for the
seven antibiotics, AUCs ranging from 0.680 [95%Cl 0.641-0.720] for amoxicillin to 0.737 [0.674 -
0.797] for ceftriaxone (Table 2; Table S4 for training data performance). Jointly optimising sensitivity
and specificity, sensitivity ranged from 40.7% (32.7-49.6%) for co-trimoxazole to 62.2% (57.8-66.6%)
for amoxicillin, while specificity ranged from 66.4% (60.2-72.3%) for amoxicillin to 91.5% (89.2-93.7%)
for co-trimoxazole. Positive predictive values (PPVs) and negative predictive values (NPVs), which are
influenced by differences in resistance prevalence, ranged from 19.8% (14.2-26.3%) to 78.0% (73.9-
81.9%) and 47.9% (42.6-53.7) to 94.2% (92.2-96.0%), respectively. Alternative values for
sensitivity/specificity/PPV/NPV could be obtained by varying the threshold chosen for identifying
resistance (e.g. prioritising sensitivity, Table S5).

Model performance following species identification

Performance improved for most antibiotics when species data were included as inputs to the
prediction models, i.e., mimicking the point during laboratory work-up of a blood culture when the
species is first identified, but susceptibility results remain pending. For example, AUCs increased for
amoxicillin (0.680 [95%Cl 0.641-0.720] to 0.827 [0.797-0.857]) and co-amoxiclav (0.684 [0.642-0.722]
to 0.771 [0.734-0.805]). Performance increases were also seen for other antibiotics, but with minimal
improvement for piperacillin-tazobactam (Table 3, Table S6 for training dataset).

Feature importance

The most important features for making predictions were relatively consistent across different
antibiotics (Figure 2, Figures S1-56). The time since the last isolate with resistance to the specific
antibiotic modelled was the most important feature for all antibiotics except piperacillin-tazobactam.
Shorter times contributed most strongly to a prediction of resistance, with the importance of a
previous resistant isolate to the same antibiotic typically attenuating over 1 year (Figure 3). Other
consistently important features included greater time since hospital admission at blood culture
sampling, shorter time since a previous resistant isolate to other related antibiotics, increased
hospital antibiotic exposure (specifically for the antibiotic of interest, related antibiotics, and total
antibiotics), and recent blood and urine cultures being sent.

When the species identified was added as a model input, this also became an important model
feature, particularly for antibiotics where species information improved model performance the
most, such as amoxicillin and co-amoxiclav (Figure S7-13). In some cases, the features reflected
information in the data arising from intrinsic resistance (e.g. Klebsiella spp. and amoxicillin), but in
other cases reflected different resistance prevenances in different species.

Model updates over time

Using held-out test data from 2023 (Test Dataset 2) there was minimal evidence that model
performance changed over time compared to 2022 and with similar results in 2023 using the original
model, a retrained model, and an incrementally updated model (Figure 4). Models were relatively
quick to train, taking around a minute on a high-performance personal computer, such that savings in
training time from not updating the models or from incremental updating were minimal (Figure S14).
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Comparison to clinical practice
Of the 4709 blood cultures positive for an Enterobacterales species, 3198 were included in the clinical
comparison analysis (see Figure 1 for exclusions).

Antibiotic use by clinicians — over, under and optimal treatment

Of the 3198 infections, 2512 (79%) received at least one active baseline antibiotic, and 686 (21%) did
not. Considering the beta-lactam given, 806 (25%) were optimally treated, 974 (30%) under-treated,
and 1418 (44%) were over-treated. Most patients were treated with co-amoxiclav (2286, 71%), which
also accounted for the greatest proportion of patients under-treated (Figure 5A). In an ideal scenario
where all infections were treated with the narrowest spectrum active antibiotic, more patients would
have received amoxicillin, fewer co-amoxiclav and more ceftriaxone, with small increases compared
to actual practice in piperacillin-tazobactam and carbapenem use too (Figure 5B). Most patients given
inactive treatment would have been optimally treated with ceftriaxone with a smaller number
requiring piperacillin-tazobactam or a carbapenem (Figure 5C).

The implied sensitivity of clinicians for detecting resistance, i.e., the proportion of patients with
resistance to a given antibiotic receiving treatment with any active broader spectrum beta-lactam
was 97% (2005/2064) for amoxicillin, 29% (360/1225) for co-amoxiclav, 19% (61/320) for ceftriaxone,
and 6% (11/190) for piperacillin-tazobactam.

Strategy 1 — matching antibiotic use

Firstly, model performance without species information was compared to clinicians by attempting to
constrain the predictions made to result in the same total number of prescriptions for each antibiotic
as used by clinicians. Within the combined test data, clinician prescribing resulted in 70% of patients
receiving an active beta-lactam: 44% were over-treated, 26% optimally treated, and 30% under-
treated. Model predictions resulted in more patients being actively treated, 75%, fewer being over-
treated, 42%, fewer under-treated, 25%, and therefore more being optimally treated, 33% (Figure
6A). Due to differences in model fit and calibration between training and test data small changes in
antibiotic use were observed (Figure 6B, Table 4).

Strategy 2 — matching antibiotic use to susceptibility rates

Using alternative prediction thresholds that matched total antibiotic use to susceptibility rates,
resulted in more patients receiving optimal treatment compared to clinician’s prescribing, 42% (cf.
26% by clinicians) and reduced over-treatment in 29% (cf. 44%). However, overall active treatment
was similar, 71% (cf. 70%). In a sensitivity analysis where 20% reductions in amoxicillin and co-
amoxiclav use were allowed relative to susceptibility rates, the percentage of patients predicted to
receive active treatment increased to 77%, while overtreatment at 36% remained less than that seen
with clinician’s prescribing.

Strategy 3 — fixing overtreatment rates, aiming for more active treatment

If prediction thresholds were set by matching clinician over-treatment rates, 79% of patients would
receive an active beta-lactam, 34% optimally treated, 45% over-treated, and 21% under-treated. This
performance was predominantly achieved by moving a subset of patients treated by clinicians with
co-amoxiclav to receive ceftriaxone, with fewer given piperacillin-tazobactam or a carbapenem to
offset this.

Switching to ceftriaxone as first-line treatment and strategy 4

We also compared performance to a simpler intervention, changing first-line treatment to
ceftriaxone, i.e. switching all patients receiving amoxicillin or co-amoxiclav to ceftriaxone. This would
reduce the number of under-treated patients to 11%, but also cause 65% to be over-treated. Setting
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our models to achieve the same level of active treatment allowed over-treatment to be reduced to
59%.

Discussion

Machine learning models can predict resistance to commonly used antimicrobials in Enterobacterales
bloodstream infection with moderate accuracy. Despite considering a wide range of input features,
including hospital and some community data, model performance was broadly consistent with what
has been described previously for similar tasks.[3—18] This suggests there is a ceiling on the
performance of machine learning in this context that is unlikely to be improved on without further
data, e.g. for our models, data on community prescribing. It may also reflect intrinsic stochasticity
where bacteria with and without AMR exist within a patient’s microbiome, and cause disease with or
without AMR with a degree of randomness.

Despite modest performance of machine learning models, detecting resistance is also a highly
challenging task for clinicians. In our hospital group antimicrobial stewardship is given a high priority,
seeking to minimise over-use of broad-spectrum antibiotics to protect local needs and meet national
prescribing incentives.[21,22] However, this also results in a substantial proportion of patients
receiving inactive initial treatment, 21% overall, with 30% receiving inactive initial beta-lactam
treatment. The implied sensitivity of clinician detection of resistance was low at 29% for co-amoxiclav,
19% for ceftriaxone, and 6% for piperacillin-tazobactam. Prescriptions made up to 4 hours after blood
culture sampling were considered, such that they are likely to represent the practice of clinicians with
a range of experiences, e.g., from 1-2 years post-graduation to more than 10 years, as senior reviews
will not all have been completed for all patients within the time window chosen. However, this is
representative of those making antibiotic prescribing decisions.

The challenging nature of antibiotic selection meant clinician’s choice of beta-lactam resulted in 30%
of patients being under-treated, 44% being over-treated and only 26% being optimally treated.
Several modelling approaches were able to improve on this. If total antibiotic use was kept broadly
similar, but redistributed, an additional 5% of patients received active treatment, 75% overall, and
optimal treatment rose to 33%. Alternatively, if we matched antibiotic use to rates of antibiotic
susceptibility and allowed for some over-prescribing of broader spectrum agents to offset imperfect
model performance 79% of patients could be actively treated, 9% more than by clinicians, while still
only overtreating 45% (similar to clinicians). A simpler approach of switching all first-line antibiotics to
ceftriaxone, increased active treatment to 89%, but caused 65% to be overtreated, the latter could be
reduced to 59% if a model rather than a guideline change was used.

Model performance was relatively consistent over time and models could be retrained rapidly if
needed. The features contributing most to predictions, such as infections with AMR within the last
year or antibiotic exposures are likely to be relatively stable over time. To improve overall predictive
performance and facilitate antimicrobial stewardship, better models are particularly needed for the
narrower spectrum agents including amoxicillin and co-amoxiclav. Data on community use of these
antibiotics and other narrow spectrum agents may help. It is unlikely that other model architectures
would have substantially improved performance given the range of approaches tried in other studies
without much better performance.[8,12,13,17,18]

This study has several limitations. A fundamental limitation with all studies of this kind is that the
data are trained and tested on patients known to have positive blood cultures, and in our models, we
specifically focused on patients with Enterobacterales species in blood cultures. However, <10% of
sampled patients will have positive blood cultures and these results are not known a priori. Hence,
we have to assume the predictors of resistance are similar in those with and without positive
cultures, and that rates of resistance are similar too. However, this may only be partially true,
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especially if AMR contributes to blood cultures being positive in patients with prior antibiotic
exposures in the community. By focusing on Enterobacterales we also did not consider infections with
other species or polymicrobial infections. We did not have data available on allergies, it is possible
that some of the model improvements in reducing over-treatment from switching ceftriaxone to co-
amoxiclav may not have been possible due to penicillin allergies. However, this is less important for
gains in the number of patients receiving active treatment, where the switches were generally to
ceftriaxone. We did not have data on community antibiotic exposures, which may have improved
model performance. We did however have data on community microbiology samples as nearly all
samples were sent to a single hospital laboratory. It is possible that clinician prescribing in
Oxfordshire is unusual in the priority given to antibiotic stewardship, but national prescribing data
suggest it is not atypical for the UK.[22] In our setting patients receiving inactive initial treatment are
typically switched to active treatment within 24-72 hours of blood cultures being obtained.[20] Our
model was validated on two independent internal validation datasets, but further external validation
is required before it can be deployed, for example as a decision support aid for hospital clinicians.

In conclusion, predicting who will have AMR is challenging for clinicians and models alike. Despite
relatively modest performance of machine learning models, these could still increase the proportion
of patients receiving active treatment by up to 9% over current clinical practice in an environment
prioritising antimicrobial stewardship.
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Tables

Publication | Population Infection type | Prediction Antibiotics Model Features Performance-AUC External Comparison | Ref.
input architecture validation | with
contains clinicians
species
information
Vazquez- UsS, 2008-2015, Bloodstream Yes Piperacillin- Logistic Nursing home LR: 0.68, 0.63, and No No [3]
Guillamet et | single Hospital, infection tazobactam (PT), regression residence, transfer from | 0.83 for resistance
al. 2017 1618 patients cefepime (CE), (LR), decision an outside hospital, to PT, CE, and ME
meropenem (ME) trees (DT) prior antibiotic use, DT: 0.67,0.61, and
source of infection, 0.80 for resistance
bacterial species to PT, CE, and ME
Sousa etal. | Spain, 2015-2016, | Gram No B-lactamase Decision tree Comorbidities, source 0.76 No No [4]
2019 single hospital, negative production of infection, history of
448 samples bacteraemia infection, antibiotic
exposure, previous
hospitalisation
Yelin et al. Israel, 2007-2017, | Urinary tract No Co-trimoxazole, Logistic Resistance profile, 0.70 (co-amoxiclav) | No Yes [5]
2019 community health | infection ciprofloxacin, co- regression, demographics, sample t0 0.83
maintenance amoxiclav, gradient- history, drug purchase (ciprofloxacin)
organization, cefuroxime, boosted history, cross-resistance
315,047 patients cephalexin, decision trees
nitrofurantoin
Fretzakis et | Greece, 2017- All infections Partial Multiple Random Demographics, type of RF: 0.70 No No [6]
al. 2020 2018, single (Gram stain) forest (RF), sample, Gram stain, MLP: 0.73
hospital, ICU multi-layer antibiotics, previous
patients, 345 perceptron antibiotic susceptibility
patients (MLP) testing
Hebert etal. | US, 2011-2016, Urinary tract No Cefazolin, Logistic Demographics, 0.65 (ceftriaxone) to | No No [7]
2020 single hospital, infection ceftriaxone, regression comorbidity score, 0.69 (cefazolin)
ICU patients, 6366 ciprofloxacin, recent antibiotic use,
patients cefepime, and recent antimicrobial
piperacillin- resistance, and
tazobactam antibiotic allergies
Lewin- Israel, 2013-2015, | All infections No and Yes Ceftazidime, Logistic Bacteria species, Without species: No No [8]
Epstein et single hospital, gentamicin, regression, previous resistance, 0.73-0.79
al. 2020 16,198 samples imipenem, neural demographics, With species: 0.80-
ofloxacin, networks, comorbidities, prior 0.88
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sulfamethoxazole- gradient hospitalisation,
trimethoprim boosted department/ward,
decision trees | previous antibiotics
exposure
Moran etal. | UK, 2010-2016, 3 Community- No Co-amoxiclav, XGBoost Comorbidities, 0.70 No Yes [9]
2020 hospitals, 15,695 associated piperacillin- demographics, previous
admissions bloodstream tazobactam resistance, previous
and urinary antibiotics exposure
tract
infections
Kanjilal et Us, 2007-2016, 2 Urinary tract No Nitrofurantoin, co- Logistic Demographics, Full cohort: 0.56- No Yes [10]
al. 2020 hospitals, 13,682 infection trimoxazole, regression, comorbidities, previous | 0.64; limit to prior
patients, female, ciprofloxacin, decision tree, hospitalisation, antibiotic resistance
18-55 years levofloxacin random forest | previous procedures, or exposure: 0.61-
lab tests, previous 0.77
antibiotics use, previous
resistance
McGuire et USA, 2012-2017, All infections No Carbapenem XGBoost Demographics, 0.846 No No [11]
al. 2021 single hospital, medications, vital signs,
68,472 samples prior procedures, lab
tests, billing code,
culture, sensitivity
Pascual- Madrid, Spain, All infections No Multiple, predict Logistic Time to culture, 0.76 No No [12]
Sanchez et 2004-2020, single multi-drug regression, previous resistance
al. 2021 hospital, 3500 resistance XGBoost,
patients neural
network,
random forest
Martinez- Madrid, Spain, All infections No Multiple agents Long short- Clinical time-series data | 0.67 No No [13]
Aglero et 2004-2020, single term memory
al. 2022 hospital, 3470 network
patients
Rich et al. Us, 2011-2019, Urinary tract No Co-trimoxazole Boosted Demographics, zip 0.58 (SXT), 0.62 Yes No [14]
2022 multi-centre, infection (SXT), logistic code, comorbidities, (NIT), 0.64 (CIP),
6307 patients nitrofurantoin (NIT), | regression previous resistance, and 0.66 (MDR)

ciprofloxacin (CIP),
multi-drug
resistance

previous antibiotics
exposure, previous
hospital stay
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Corbinetal. | US, 2009-2021, All infections No Vancomycin, Gradient Diagnostic codes, prior 0.61-0.73 Yes Yes [15]
2023 multi-centre, piperacillin/tazobac | boosted procedures, lab tests,
8342 infections tam, cefepime, decision tree, medications,
from 6920 ceftriaxone, random forest | respiratory care,
patients cefazolin, previous resistance,
ciprofloxacin, vital signs,
ampicillin and demographics,
meropenem insurance, imaging,
institution
Lee et al. Korea, 2020-2021, | Urinary tract No Ciprofloxacin (CIP), Gradient- Demographics, medical | 0.827 for CIP No No [16]
2023 single hospital, infection extended-spectrum | boosted device, infection type, 0.811 for ESBL
550 samples beta-lactamases decision trees | comorbidities, past
(ESBL) history, vital signs, lab
tests
Mintz et al. Israel, 2016-2019, | All infections No and Yes Ciprofloxacin Super learner | Demographics, Without species: No No [17]
2023 single hospital, comorbidities, previous | 0.737
10053 samples resistance, previous With species: 0.837
antibiotics exposure,
department/ward
Yang et al. Us, 2007-2016, Urinary tract No Nitrofurantoin TabNet, Department/ward, Complicated UTI: Validated No [18]
2023 two hospitals, infection (UTI) (NIT), co- XGBoost demographics, previous | 0.686 (NIT), 0.701 on
101,096 samples trimoxazole (SXT), resistance, previous (SXT), 0.811 (CIP), uncomplic
ciprofloxacin (CIP), organism, previous 0.814 (LVX) ated UTI
levofloxacin (LVX) antibiotics exposure,
comorbidities, previous | Uncomplicated UTI:
procedures, 0.559 (NIT), 0.591
colonisation pressure (SXT), 0.646 (CIP),
0.639 (LVX).

Table 1. Previous models for predicting antibiotic resistance. Results shown are from an illustrative literature review. Only four studies were identified that

have made their code publicly available.[10,15,17,18]
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Antibiotic n | Resistant, | Resistant, | AUC (95%Cl) at blood Sensitivity Specificity Positive predictive Negative predictive

n % culture sampling (95% ClI) (95% ClI) value (95% Cl) value (95% Cl)
Amoxicillin 693 455 66 | 0.680 (0.641 - 0.720) 62.2 (57.8 - 66.6) 66.4 (60.2 - 72.3) 78.0(73.9-81.9) 47.9 (42.6 - 53.7)
Co-amoxiclav 699 283 40 | 0.684(0.642 -0.722) 60.4 (54.7 - 66.1) 67.8 (63.7-71.9) 56.1 (50.5-61.3) 71.6 (67.8-75.8)
Ceftriaxone 701 78 11 | 0.737(0.674-0.797) 48.7 (37.5-60.2) 83.0(80.1-85.9) 26.4 (19.2 - 34.2) 92.8 (90.6 - 94.9)
Piperacillin-tazobactam 704 64 9 | 0.708 (0.643-0.779) 51.6 (39.6 - 63.8) 79.1 (75.8 - 82.1) 19.8 (14.2 - 26.3) 94.2 (92.2 - 96.0)
Ciprofloxacin 706 86 12 | 0.726 (0.655-0.789) | 50.0(39.2-60.6) | 88.2(85.7-90.6) 37.1(28.0-45.4) 92.7 (90.6 - 94.8)
Co-trimoxazole 688 123 18 | 0.698 (0.641 - 0.754) 40.7 (32.7 - 49.6) 91.5(89.2-93.7) 51.0 (41.7 - 60.5) 87.6 (84.8 - 90.3)
Gentamicin 704 75 11 | 0.700 (0.625 - 0.775) 45.3 (34.2-57.1) 85.2 (82.6 - 88.0) 26.8 (19.4 - 35.2) 92.9 (90.6 - 94.8)

Table 2. Model performance for predicting antibiotic resistance at blood culture sampling in held-out test dataset 1, 01 January 2022 — 31 December 2022.

AUC, area under the receiver operating curve. Confidence intervals were generated by bootstrapping with 1000 iterations.

Antibiotic n | Resistant, | Resistant, AUC (95%Cl) with Sensitivity Specificity Positive predictive Negative predictive

n % species information (95% ClI) (95% Cl) value (95% Cl) value (95% Cl)
Amoxicillin 693 455 66 | 0.827(0.797-0.857) | 65.1(60.8-69.9) | 85.7(81.3-90.0) 89.7 (86.4 - 92.8) 56.2 (51.3 - 61.5)
Co-amoxiclav 699 283 40 | 0.771(0.734-0.805) 67.1(61.0-72.6) 72.8(68.3-77.1) 62.7 (57.3-68.1) 76.5(72.4-80.7)
Ceftriaxone 701 78 11 | 0.799 (0.745 - 0.846) 64.1(53.1-73.9) 77.5(74.1-80.9) 26.3 (19.8 - 32.4) 94.5 (92.5-96.3)
Piperacillin-tazobactam 704 64 9| 0.723(0.652-0.791) 64.1(51.9-75.4) 67.3(63.6-71.1) 16.4 (12.1-20.8) 94.9 (92.7 - 96.8)
Ciprofloxacin 706 86 12 | 0.783(0.724 - 0.840) 47.7 (37.1-59.2) 92.7 (90.6 - 94.7) 47.7 (36.6 - 57.8) 92.7 (90.7 - 94.8)
Co-trimoxazole 688 123 18 | 0.774(0.726 - 0.821) 49.6 (41.3-58.9) 89.7 (87.2-92.2) 51.3 (42.6-60.2) 89.1 (86.6 - 91.6)
Gentamicin 704 75 11 | 0.729 (0.654 - 0.794) 41.3 (29.5-52.6) 91.7 (89.5-93.9) 37.3(26.8-47.4) 92.9 (90.9 - 94.8)

Table 3. Model performance for predicting antibiotic resistance at blood culture species identification in held-out test dataset 1, 01 January 2022 - 31
December 2022. AUC, area under the receiver operating curve. Confidence intervals were generated by bootstrapping with 1000 iterations.
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matching clinician active
treatment rates in
ceftriaxone first-line
comparator

Scenario Active beta- Under- Optimally | Over-treated, Receiving Receiving co- Receiving Receiving Receiving

lactam, treated, treated, n(%) | amoxicillin, amoxiclav, | ceftriaxone, piperacillin- | carbapenem,
n (%) n (%) n (%) n (%) n (%) n (%) tazobactam, n (%)
n (%)

Clinician prescribing 639 (70%) 280 (30%) 238 (26%) 401 (44%) 37 (4%) 663 (72%) 130 (14%) 79 (9%) 10 (1%)

Model, strategy 1: 693 (75%) 226 (25%) 305 (33%) 388 (42%) 10 (1%) 681 (74%) 164 (18%) 45 (5%) 19 (2%)

matching clinician

antibiotic use

Model, strategy 2: 655 (71%) 264 (29%) 384 (42%) 271 (29%) 320 (35%) 238 (26%) 301 (33%) 23 (3%) 37 (4%)

matching antibiotic

susceptibility rates

Model, strategy 2: 705 (77%) 214 (23%) 374 (41%) 331 (36%) 258 (28%) 194 (21%) 395 (43%) 26 (3%) 46 (5%)

matching antibiotic

susceptibility rates with

20% leeway

Model, strategy 3: 724 (79%) 195 (21%) 309 (34%) 415 (45%) 0 (0%) 543 (59%) 356 (39%) 16 (2%) 4 (<1%)

matching clinician over-

treatment rates

Simple comparator: 817 (89%) 102 (11%) 221 (24%) 596 (65%) 0 (0%) 0 (0%) 830 (90%) 79 (9%) 10 (1%)

switch first-line antibiotic

to ceftriaxone

Model, strategy 4: 822 (89%) 97 (11%) 282 (31%) 540 (59%) 5 (1%) 59 (6%) 836 (91%) 15 (2%) 4 (<1%)

Table 4. Comparison of model predictions to clinician prescribing in test data from 2022-2023 (n=919). Patients treated with a beta-lactam were included.
Model scenarios are described in more details in the Methods.
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Figures

4709 blood cultures positive for an Laboratory comparison

Enterobacterales species
[ 4243 patients Training: 3283 blood cultures (2982 patients, Jan 2017 — Dec 2021) |

01 January 2017 - 31 December 2023*

Test 1: 706 blood cultures (674 patients, Jan 2022 -Dec 2022) |

Test 2: 720 blood cultures (684 patients, Jan 2023 — Dec 2023) |

Antimicrobial susceptibility data available

Amoxicillin Co-amoxiclav Ceftriaxone Piperacillin- Ciprofloxacin Co-trimoxazole Gentamicin
n=4664 n=4666 n=4677 tazobactam n=4701 n=4593 n=4685
n=4691
Amoxicillin Co-amoxiclav Ceftriaxone Piperacillin- Ciprofloxacin Co-trimoxazole Gentamicin
3107 (67%) 1905 (41%) 526 (11%) tazobactam 584 (12%) 1011 (22%) 461 (10%)
341 (7%)

Clinician comparison

Exclude: no baseline antibiotics (n=883), baseline Comparison dataset: Training: 2279 blood cultures

|| antibiotics do not include a locally common beta- 3198 positive blood (2102 patients, Jan 2017 — Dec 2021)
lactam (n=381), neutropenic (n=210), missing an cultures, 2931 Testing: 919 blood cultures
AST result for 21 beta-lactam (n=37) patients (878 patients, Jan 2022 - Dec 2023)

Figure 1. Blood cultures studied, and laboratory and clinical comparison groups. Repeat positive
cultures from the same patient within the next 14 days after a positive blood culture were excluded.
Only 7 blood cultures were resistant to meropenem, in the laboratory comparison 3 were in the
training data, 2 in test 1 and 2 in test 1; in the clinical comparison 3 meropenem resistant blood
cultures were included, 1 in the training data and 2 in the test data. Not all blood cultures had
susceptibility results reported for all antibiotics as shown. Within the 3198 blood cultures studied in
the clinical comparison, 2064 (65%) were resistant to amoxicillin, 1225 (38%) to co-amoxiclav, 320
(10%) to ceftriaxone, 190 (6%) to piperacillin-tazobactam, and 3 (<1%) to meropenem. Rates of
resistance to gentamicin, ciprofloxacin and co-trimoxazole were 318/3195 (10%), 379/3196 (12%),
and 674/3170 (21%) respectively.
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Antibiotics: Total antibiotic courses in last year h—
Micro: Time since last blood culture sent ’.-—
Micro: Time since last urine culture with Enterobacterales _*
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Micro: Count of isolates with co-amoxiclav resistance in last year ' — %
Labs: Renal function count in last 72 hours '-— &
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Labs: Blood gas count in last 72 hours ’— *o cmmm—
Micro: Urine cultures containing Enterobacterales in last year - l
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Sum of 133 other features M' .
Low

~0.2 0.0 02 04 06
SHAP value (impact on model output)

Figure 2. SHAP (SHapley Additive exPlanations) plot showing feature importance and impacts on
model output for predicting amoxicillin resistance at blood culture sampling. Positive values on the
x-axis indicate contributions towards predicting resistance, and negative values contributions towards
predicting susceptibility. Absolute x-axis values reflect the relative importance or contribution of the
feature in making a prediction. Colour indicates the value of the feature, red dots indicate higher
values and blue dot lower values. For example, the shorter the time since the last isolate with
resistance to amoxicillin the more likely a prediction of resistance. See Figures S1-S6 for other
antibiotics. Shorter times since the last urine culture with Enterobacterales were associated with
predicting susceptibility, although this might seem surprising, it needs to be interpreted considering
also having the time since a resistant isolate in the model, such that given that result, shorter times
may represent evidence of a recent susceptible isolate.
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Figure 3. SHAP (SHapley Additive exPlanations) plots showing the time since last resistant isolate
and impact on model output for predicting resistance to the same antibiotic at blood culture
sampling. Where no resistant isolate was seen in the last year, the value is set to 365, hence when
interpreting change over time values exactly equal to 365 days should be ignored. The grey histogram
indicates the relative frequency of each observation on the x-axis. The spread of blue points arises
from other features also influencing the SHAP value on the y-axis.
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Figure 4. Model performance for predicting antibiotic resistance at blood culture sampling in held-
out test dataset 1 (01 January 2022 — 31 December 2022) and 2 (01 January 2023 — 31 December
2023). For test dataset 2 three approaches to updating the model over time are presented — no
retraining, full re-training from scratch using data from 2017-2022 inclusive, incremental updating of
the original model trained using 2017-2021 data with the data from 2022. AUC, area under the
receiver operating curve. Confidence intervals were generated by bootstrapping with 1000 iterations.
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Figure 5. Clinician prescribing practice in 3198 positive blood cultures. Panel A shows the number of
infections treated with different beta-lactams, classified by whether treatment was optimal, broader
than necessary (‘over treated’), or had resistance to the beta-lactam used (‘under treated’). Panel B
displays the optimal breakdown of antibiotic use, had the narrowest spectrum active agent been used
to treat each infection. Panel C shows the distribution of optimal antibiotics by whether the actual
beta-lactam treatment given was inactive (left hand sub-panel) or active (right).
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Figure 6. Percentage of patients receiving optimal, under or over treatment (panel A), and specific
antibiotics (panel B) according to clinician prescribing and model predictions. Predictions in test
data from 2022-2023 are shown for a model constrained to match the total use of each antibiotic as
closely as possible (scenario 1) (differences in antibiotic use arise from differences between training
and test dataset model fit and calibration).
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