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Abstract 

Large-scale population biobanks rely on volunteer participants, which may introduce biases that 
compromise the external validity of epidemiological studies. We characterized the volunteer 
participant bias for the All of Us Research Program cohort and developed a set of inverse 
probability (IP) weights that can be used to mitigate this bias. The All of Us cohort is older, more 
female, more educated, more likely to be covered by health insurance, less White, less likely to 
drink or smoke, and less healthy compared to the US population. IP weights developed via 
comparison of a nationally representative database eliminated the observed biases for all 
demographic and lifestyle characteristics and reduced the observed disease prevalence 
differences. IP weights also impact genetic associations with type 2 diabetes across diverse 
ancestry cohorts. We provide our IP weights as a community resource to increase the 
representativeness and external validity of the All of Us cohort.  
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Introduction 

The aim of epidemiological studies is to study the risk and occurrence of disease in whole 
populations, and to do this, studies rely on samples that are intended to be representative of a 
larger target population. Representative sampling of study participants ensures that results 
derived from samples are externally valid, i.e. that they apply to the target population. The All of 
Us Research Program is a study that aims to build a large and diverse sample of the US 
population.1,2 The All of Us program collects participant data on demographics, social 
determinants of health, genetic factors, and health outcomes.2-4 The participants that make up the 
All of Us cohort are volunteers, and because of this, the cohort is not nationally representative. 
Due to the lack of representativeness of the All of Us cohort, and the potential for volunteer 
participation bias, results of epidemiological studies of the All of Us cohort may not be externally 
valid with respect to the US population.5,6 

This problem has been well outlined in other large population biobank studies,5,6 most notably 
the UK Biobank (UKBB).7 The UKBB cohort was built similarly to the All of Us program, by 
recruiting volunteers to contribute data, and thus is not nationally representative.8 Schoeler et. al. 
addressed the issue of national representativeness within the UKBB using inverse probability 
(IP) weighting.9 Using the IP weighting method, they were able to weight a sample of the UKBB 
such that it better matched the UK population and demographic makeup. They further showed 
that the participation bias in the UKBB affected downstream genomic studies on UKBB 
individuals. 

The extent of participation bias in the All of Us participant cohort, and the extent to which it 
reflects the US population, have not yet been systematically measured. The first aim of this study 
was to evaluate the representativeness and potential participation bias in the All of Us cohort by 
quantifying differences between All of Us participants and the US population for a variety of 
demographic, social, lifestyle, and health-related characteristics. The second aim of this study 
was to develop and apply IP weights to increase the representativeness of the All of Us 
participant cohort, thereby supporting the external validity of epidemiological studies of the 
cohort. The third aim of the study was to apply IP weights to genome-wide association studies 
(GWAS) of All of Us participants to evaluate how they may change genetic associations within 
and between ancestry groups. 
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Results 

Sample Makeup 

For a nationally representative sample to compare the All of Us cohort against, we used data 
from the 2017 – March 2020 National Health and Nutrition Examination Survey (NHANES) run 
by the Centers for Disease Control (CDC).10 We started with a total NHANES sample of 
n=15,560 participants, with data for nine demographic, social, and lifestyle characteristics 
common with All of Us participant data (Supplementary Figure 1). After exclusion of 
NHANES individuals with missing data among these nine variables, and restricting the age 
range, we ended with a final sample of n=7,430 participants. For the All of Us dataset, we started 
with an initial cohort of n=379,454 participants, with data for at least one of the nine 
demographic, social, and lifestyle variables (Supplementary Figure 2). After exclusion of All of 
Us participants with missing data among the nine variables, and restricting the age range, we 
ended with a final sample of n=312,210. Details on the study cohort construction, and the 
harmonization of variables between the NHANES and All of Us cohorts, can be found in 
Methods section and Supplementary Table 1. 

 

All of Us is different from the US population 

We found that the All of Us participant cohort differed substantially from the US population. 
Compared to participants from the nationally representative NHANES cohort, All of Us 
participants differed for all nine characteristics considered here. All of Us participants are older, 
more female, more educated, more US born, less married, more likely to be covered by health 
insurance, smoke less frequently, and drink less alcohol than the US population. The differences 
between the nationally representative NHANES sample and the All of Us cohort can be seen in 
Table 1. 
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Table 1. All of Us and NHANES participant comparison 
Characteristic  All of Us SD/n NHANES SD/n Delta 

n 312,210 7,430 
 Age 53.91 15.55 46.99 16.31 6.92 

Race White 56.22% 
17551

8 62.90% 2451 -6.68% 
Black 18.52% 57827 11.35% 2041 7.17% 

Hispanic/Latino 19.15% 59774 16.13% 1698 3.02% 
Asian 3.65% 11397 5.57% 875 -1.92% 
Other 2.46% 7694 4.06% 365 -1.60% 

Gender Male 36.75% 
11474

9 48.86% 3634 -12.11% 

Female 63.25% 
19746

1 51.14% 3796 12.11% 

Birthplace Born in US 84.26% 
26307

5 81.11% 5278 3.15% 
Other 15.74% 49135 18.89% 2152 -3.15% 

Highest Grade Less than 9th Grade 3.16% 9854 3.25% 520 -0.09% 
9-11th Grade 5.71% 17831 6.82% 778 -1.11% 

High school graduate/GED or 
equivalent 18.53% 57841 26.93% 1802 -8.40% 

Some college or AA degree 26.22% 81874 30.80% 2478 -4.58% 

College graduate or above 46.38% 
14481

0 32.22% 1852 14.16% 

Marital Status Married/Living with Partner 52.09% 
16264

0 62.93% 4355 -10.84% 
Widowed/Divorced/Separated 21.48% 67073 17.04% 1536 4.44% 

Never Married 26.42% 82497 20.03% 1539 6.39% 
Covered by 

Health 
Insurance No 6.72% 20979 13.72% 1255 -7.00% 

Yes 93.28% 
29123

1 86.28% 6175 7.00% 

Smoking Habits Never smoked 61.81% 
19296

8 57.17% 4321 4.64% 
Former smoker 21.88% 68325 25.31% 1682 -3.43% 

Sometimes smokes 5.19% 16193 4.01% 321 1.18% 
Daily smoker 11.12% 34724 13.51% 1106 -2.39% 

Alcohol Habits Never drank 10.04% 31345 6.47% 666 3.57% 
Less than yearly 15.66% 48879 15.16% 1393 0.50% 
Monthly or less 30.86% 96356 31.74% 2388 -0.88% 

Two to four times a month 19.66% 61376 22.54% 1477 -2.88% 
Twice or more a week 23.78% 74254 24.09% 1506 -0.31% 
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Inverse probability (IP) weights for All of Us 

To calculate IP weights for All of Us participants, we developed a LASSO regression model that 
predicts the All of Us participation probability based on the nine harmonized variables for the All 
of Us cohort and the NHANES cohort. The IP weights model also included all possible two-way 
interactions between the nine variables. Using the participation probabilities predicted from this 
model, we derived IP weights for All of Us participants, with a range of values from 0.01 to 
28.74. Participants with characteristics that are overrepresented in the All of Us cohort compared 
to the US population are assigned lower IP weights, whereas participants with underrepresented 
characteristics are assigned higher IP weights. The process of variable selection for the LASSO 
regression IP weight model can be found in Supplementary Figure 3, and Figure 1A shows the 
distribution of the normalized IP weights derived for All of Us individuals. To evaluate the 
performance of IP weights, we first tested if the weights reduced the effect of the nine participant 
variables on cohort participation within a univariate regression model. Figure 1B shows that the 
effects of all variables became non-significant when IP weights are included in the model, 
showing that the weighting was effective. We found that IP weighting of the All of Us cohort 
effectively recovered US population means and proportions for all variables included in the 
model. Figure 1C shows the effect of IP weighting on age, race and ethnicity, gender, and 
education, and the effect of IP weighting on the other variables included in the IP weight model 
can be seen in Supplementary Table 2 and Supplementary Figure 4.  

The inclusion of interaction terms in the All of Us participation regression model allowed us to 
accommodate the correlation structure in the data when estimating IP weights. This can be seen 
when participation bias is quantified as the difference between the pairwise correlation 
coefficients (��.�) for participant variables calculated using the NHANES or the All of Us cohorts 
[����� � ���������.�	 
 ���������.�	] (Figure 1D). We found IP weighting systematically 

reduced the differences in correlation coefficients (�����) between pairs of variables in NHANES 

versus All of Us.  
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Figure 1. Inverse probability (IP) weights for the All of Us cohort. (A) Distribution of normalized IP weights 
developed for All of Us participants. (B) Beta coefficients of auxiliary variables prior to and after applying IP 
weights to univariate LASSO regression models. (C) Participant means and proportions for age, race and ethnicity, 
education, and sex for the NHANES (green), All of Us unweighted (blue), and All of Us weighted (orange) cohorts. 
Correlation coefficients between participant variables included in the model. (D) Correlation coefficients for all 
pairs of variables are shown for NHANES (squares), All of Us unweighted (circle), and All of Us weighted 
(triangle). Purple color indicates differences in correlation coefficients between NHANES and All of Us >0.05 prior 
to IP weighting.  
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Next, we found that disease prevalence estimates for the All of Us cohort were brought closer to 
US population estimates after IP weighting. We compared US population prevalence values for 
15 disease categories, taken from the 2019 Global Burden of Disease Study (GBD2019)11, to the 
prevalences within the All of Us cohort. Figure 2 shows disease prevalence estimates from 
GBD2019 (considered nationally representative) compared to prevalence estimates from 
unweighted and weighted versions of the All of Us cohort. We found that the All of Us cohort 
showed a higher prevalence than the US population for 11 out 15 disease categories, and IP 
weighting brought these prevalence values closer to that of the US population. Nevertheless, the 
weighted All of Us cohort disease prevalence values remain higher than US population estimates 
for 9 of the disease categories. IP weighting brings All of Us cohort prevalence values in line 
with US population estimates for diabetes mellitus and blindness and vision loss. The same 
patterns can be seen when males and females are analyzed separately (Supplementary Figures 5 
and 6).  

 

Figure 2. Disease prevalence for All of Us cohort and the US population. Disease prevalence estimates for 15 
broad disease categories are shown for the US population, estimated from GBD2019 data (green stars), the 
unweighted All of Us cohort (blue circles), and the weighted All of Us cohort (orange circles). 

 

Type 2 diabetes genome-wide association analysis (GWAS) 

We found that the diabetes mellitus prevalence estimate for the All of Us cohort was moved 
closer to the US population estimate using IP weighting and thus sought to evaluate the effect of 
IP weighting on genetic associations with type 2 diabetes. The unweighted prevalence of type 2 
diabetes within the All of Us cohort is 23.2%, and the weighted prevalence is 19.7%, closer to the 
US population prevalence estimate of 16.1%. We also analyzed how IP weighting affected type 2 
diabetes disparities between African and European ancestry groups (Supplementary Table 3). In 
the unweighted All of Us cohort, the African ancestry group of participants (30.0%) has 11.1% 
higher type 2 diabetes prevalence than the European ancestry group (18.9%). This disparity was 
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reduced by nearly half (to 6.0%) in the weighted All of Us cohort (African=23.8% and 
European=17.8%).  

We performed GWAS for type 2 diabetes of unweighted and weighted, African and European 
ancestry cohorts to evaluate the impact of All of Us participant IP weighting on genetic 
associations within and between ancestry groups. The unweighted African ancestry GWAS 
cohort had 6,481 type 2 diabetes diagnosed cases and 15,138 controls for a total sample size of 
n=21,619. The effective sample size for the weighted African ancestry GWAS was reduced to 
neff=9,217. Type 2 diabetes genetic associations for the unweighted and weighted African 
ancestry cohorts are shown in Figure 3A, with Q-Q plots shown in Figures 3B and 3C. For the 
unweighted African ancestry GWAS, there is a single peak of 20 genome-wide significant 
variants (P<5×10-8) on chromosome 10 in the TCF7L2 gene, which encodes a transcription 
factor that regulates genes involved in lipid and glucose metabolism. There are also 20 genome-
wide significant variants in the weighted African ancestry GWAS, but they are dispersed across 
nine different chromosomes. Summary statistics from both the unweighted and weighted GWAS 
for the African ancestry cohort can be found in Supplementary Table 4. The genomic inflation 
factors (λ) were close to one for both African ancestry GWAS and changed only slightly between 
the unweighted and weighted GWAS. 

The unweighted European ancestry GWAS cohort had 12,515 type 2 diabetes diagnosed cases 
and 53,721 controls for a total sample size of n=66,236. The effective sample size for the 
weighted European ancestry GWAS was neff=35,225. Type 2 diabetes genetic associations for the 
unweighted and weighted European ancestry cohorts are shown in Figure 3D, with Q-Q plots 
shown in Figures 3E and 3F. For the unweighted European ancestry GWAS, there are 10 peaks 
consisting of 1,149 genome-wide significant variants across 10 chromosomes, with two 
additional significant variants that don’t map to any peak. There are 594 significant variants in 
the weighted European ancestry GWAS, corresponding to six peaks across five chromosomes, 
with two additional significant variants that don’t map to any peak. Summary statistics from both 
the unweighted and weighted GWAS for the European ancestry cohort can be found in 

Supplementary Table 5. The genomic inflation factors (λ) for both European ancestry GWAS 
were close to one and slightly reduced in the weighted GWAS. 

We compared how IP weighting changed type 2 diabetes genetic associations for the African and 
European ancestry All of Us participant cohorts. Regression of unweighted and weighted GWAS 
effect size estimates (β-values), for both African and European ancestry cohorts, shows that they 
are highly correlated and that IP weighting systematically reduces variant effect sizes (Figure 4A 
and 4B). Effect sizes are reduced slightly more in the weighted African ancestry cohort (β=0.83) 
compared to the European ancestry cohort (β=0.94). Similar regressions were performed for 
variant effect size standard errors and p-values, both of which are highly correlated between 
unweighted and weighted GWAS (Supplementary Figure 7). For both ancestries, effect size 
standard errors are higher for the weighted GWAS and -log10(P-values) are lower for the 
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weighted GWAS, consistent with smaller sample sizes and smaller effect sizes in the weighted 
GWAS. 

 

 

Figure 3. Type 2 diabetes genome-wide association analysis (GWAS). (A) Miami plot comparing the results of a 
unweighted (top) and weighted (bottom) GWAS for the African ancestry cohort. (B,C) Q-Q plots for African 
ancestry unweighted and weighted GWAS. (D) Miami plot comparing the results of a unweighted (top) and 
weighted (bottom) GWAS for the European ancestry cohort. (E,F) Q-Q plots for European ancestry unweighted and 
weighted GWAS. 

 

For the African ancestry GWAS, there are only 3 out of a total of 37 (8.11%) genome-wide 
significant variants that were found in both the unweighted and weighted GWAS, and there were 
17 unique significant variants in both the unweighted and weighted GWAS (Figure 4C). All 
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three of the significant variants found in both the unweighted and weighted African ancestry 
GWAS correspond to the same chromosome 10 peak at the TCF7L2 gene. For the European 
ancestry GWAS, there are 571 out of a total of 1,176 (48.55%) genome-wide significant variants 
that were found in both the unweighted and weighted GWAS (Figure 4D). The unweighted 
European ancestry GWAS has far more unique significant variants (580, 49.32%) compared to 
the weighted GWAS (25, 2.13%). There are three genome-wide significant variants that are 
common among all four GWAS, all of which are found in a single peak on chromosome 10. 
There are 3 variants (rs34872471, rs35198068, rs7903146) that were common among all 4 
analyses, all on chromosome 10 (Figure 4E). rs34872471 and rs35198068 have been associated 
with type 2 diabetes.12-14 rs7903146 has been identified as a likely risk allele for type 2 diabetes 
in ClinVar (RCV002259421.3).15 

 

Figure 4. Comparison of African and European ancestry type 2 diabetes genome-wide association analysis 
(GWAS). (A,B) Show the effect of weighting on variant effect size estimates (Beta values) for both African and 
European ancestry GWAS. (C,D) Show the number and proportion of variants significant in unweighted and 
weighted GWAS or both, for African and European ancestry. (E) UpSet plot showing the intersection of genome-
wide significant variants between all four GWAS. 
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Discussion 

The All of Us cohort has become a valuable resource for large-scale genetic epidemiology studies 
on diverse participant cohorts.1,3,4 Nevertheless, the extent to which the All of Us participant 
cohort reflects the demographic, social, lifestyle, and health outcome characteristics of the 
broader US population has yet to be systematically evaluated. In this study, we showed that the 
All of Us cohort differs substantially from the US population owing to volunteer participant bias. 
Similar to what has been seen for the UK Biobank, All of Us participants tend to be older, more 
educated, and more female than the US population.8 However, the All of Us cohort does not have 
the same healthy volunteer bias that has been observed for other biobank cohorts.1 On the 
contrary, the All of Us cohort shows higher prevalence values for a wide variety of disease 
categories compared to the US population.1 Taken together, these findings suggest that the results 
of disease association studies conducted on the All of Us cohort may not be externally valid for 
the US population.  

In light of this problem, we developed a set of inverse probability (IP) weights to increase the 
population representativeness of the All of Us cohort, thereby supporting the external validity of 
epidemiological studies conducted using the database. Application of these IP weights to the All 
of Us cohort greatly reduced the observed participation bias and brought the demographic, social, 
and lifestyle characteristics in line with the US population. IP weights also moved the All of Us 
cohort disease prevalence estimates closer to those seen for the US population; although, most 
prevalence estimates for the weighted All of Us cohort remain higher than the US population. 
Comparison of weighted and unweighted All of Us cohorts for type 2 diabetes GWAS, in African 
and European ancestry cohorts, underscore the extent to which a lack of population 
representativeness can affect estimated genetic associations with disease. 

While the weights we developed are effective in reducing the participation bias in the All of Us 
cohort, there are important limitations to consider. The IP weights we developed were limited to 
matching based on nine participant characteristics that were common to, and could be 
harmonized between, the nationally representative NHANES cohort and the All of Us cohort. 
There may other variables that affect participation within the All of Us research program and are 
unaccounted for by our study. In addition, the use of LASSO regression in developing weights 
limited the size of the cohort that we could use to develop IP weights, since we could only 
include individuals with complete data. We were able to develop IP weights for 312,210 All of 
Us participants, which corresponds to 76% of the Controlled Tier Dataset version 7. Finally, 
when considering weight development, there is discussion on whether IP weighting is the best 
method to use.16 Participants with every low or very high probability participation will receive 
very high and low weights, respectively, which means that their attributes may dominate the 
weighted estimates. However, our weights tended to match that of the similar study done in the 
UKBB.9 
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In conclusion, our study reveals the extent of volunteer participant bias in the All of Us cohort, 
while providing one potential solution in the form of IP weights that can be used to mitigate this 
bias. The IP weights we develop here are made available as a community resource on the All of 
Us Researcher Workbench. Future studies of volunteer participant bias in the All of Us cohort 
could consider other participant characteristics and/or apply different weighting schemes. As the 
All of Us cohort grows over time, and as the research community continues to work on the 
valuable data therein, it will be important to provide weights of this kind as a way to increase 
confidence in the external validity of their findings. 

 

Methods 

Study Cohort Generation 

All of Us 

The All of Us Research Program is a large-scale biobank resource collecting demographic, social, 
and genetic factors for adults within the United States.1-4 The All of Us Research Program is 
comprised of volunteers from diverse backgrounds. Currently, the program stands at over 
815,000 participants, with a goal of recruiting over 1 million participants. We initially included 
all participants with demographic and survey data in the initial cohort (n=379,454). This cohort 
was built using version 7 of the All of Us Controlled Tier Dataset.  

 

National Health and Nutrition Examination Survey (NHANES) 

The National Health and Nutrition Examination Survey (NHANES) is a program run by the 
National Center for Health Statistics (NCHS), a part of the Centers for Disease Control and 
Prevention (CDC),10 to assess the health and nutritional status of adults and children within the 
United States. The survey examines a nationally representative sample of about 5,000 
participants each year. NHANES collects demographic, socioeconomic, dietary, and health-
related questions. We used the 2017 – March 2020 NHANES sample, and initially included all 
participants within the NHANES cohort (n=15,560). 

 

Variable Harmonization 

To match variables between the All of Us and NHANES participant datasets, we harmonized 
common variables such that the questions and the responses used by the two databases showed a 
one-to-one correspondence. We were able to successfully harmonize nine variables common to 
the All of Us and NHANES datasets. The original and harmonized questions and answers can be 
seen in Supplementary Table 1. 
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Inverse Probability (IP) Weight Generation 

Participant Variables 

To develop weights, we initially chose eleven variables for participant characteristics that were 
common to the NHANES and All of Us cohorts. We removed height and weight measurements 
due to missingness greater than 15% within the All of Us cohort, leaving nine common variables. 
From there, we subsetted each of the cohorts such that the age ranged from 18 to 79 and removed 
participants with missing race. The final variables included in the model can be viewed in 
Supplementary Table 1. Finally, LASSO regression requires participants to have no missing 
data, yielding 7,430 complete cases within the NHANES cohort, and 312,210 complete cases 
within the All of Us cohort. The full cohort creation for All of Us and NHANES can be viewed in 
Supplementary Figures 1 and 2. The final nine participant variables included in the model 
were: age, self-identified race and ethnicity (SIRE), gender, birthplace, highest grade, marital 
status, health insurance, smoking habits, and drinking habits. Age was coded numerically, while 
all other variables were coded categorically. 

 

IP Weight Construction 

We combined the harmonized NHANES and All of Us datasets described above to construct IP 
weights for the All of Us cohort. We used a logistic LASSO regression in glmnet17 to predict the 
probability of All of Us participation for each participant based on the nine variables included in 
the model. We coded All of Us participants with 1, and NHANES participants with a 0. We 
included weights from the NHANES study. Age was included as a numeric variable, and all 
other variables were coded categorically and converted to dummy variables using 
fastDummies18. To predict weights, we included each possible two-way interaction terms among 
the dummy and continuous variables. LASSO performs variable selection to include the 
predictors that contribute the most to participation. 

Using the LASSO model described above, we predicted participation probability (��) for each 
individual participant within the All of Us cohort. Using this probability, we calculated the raw IP 

weight for each individual participant (��) using the following formula: �� �
��	�

	�
, followed by 

mean normalization of the raw IP weights. 
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IP Weight Validation 

Population Mean and Proportion Recovery 

We initially validated the performance of the IP weights by measuring the recovery of the 
nationally representative NHANES population means and proportions for the nine variables, 

with the weights applied to the All of Us cohort. Using the following formula, 
∑ ����
�

���

∑ ��
�

���

, we 

predicted weighted means and proportions for the All of Us cohort to compare against that of 
NHANES. 

To further evaluate performance, we measured if the weights developed reduced disease 
prevalence. Denny et. al. demonstrated that the All of Us cohort, unlike other prominent 
biobanks, has an overrepresentation of disease diagnosed individuals.1 Using data from the 2019 
Global Burden of Disease (2019 GBD) study,11 we found that our cohort had an 
overrepresentation of diseased individuals relative to the US population. We then found weighted 
prevalences for the same disease categories and compared them to that of the 2019 GBD. 

 

Correlation Coefficients 

To measure the reduction in participation bias, we measured the differences in correlation 
coefficients between all the nine variables in the NHANES cohort, All of Us cohort (both 
unweighted and weighted). We quantified the reduction in participation bias as the degree to 
which the All of Us weighted correlation coefficient moved closer to the NHANES correlation 
coefficient. We measured the correlation between numeric and categorical variables using point 
biserial correlation, and the correlation between categorical variables using Cramer’s V. 

 

Weighted GWAS 

To further quantify the effects of participation bias on genetic studies within the All of Us cohort, 
we conducted GWAS studies on both African and European ancestry cohorts for type 2 diabetes. 
We used the LDAK (version 5.2)19 package to conduct both unweighted and weighted GWAS 
studies for both ancestry cohorts. These models included the covariates (PC1-PC5, sex, and age). 
We obtained unweighted and weighted variant effect size estimates, standard errors, and p-values 
for all GWAS. 

To address the loss of precision when using weighting in genomic analyses, we calculated 
effective samples sizes for the European and African ancestry cohorts using the following 

formula: ���� �
∑���

�

∑�
�

�
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Data Availability 

The nationally representative database used to develop weights was the 2017 – March 2020 
National Health and Nutrition Examination Survey (NHANES). This data is free to access and 
publicly available at: 
https://wwwn.cdc.gov/nchs/nhanes/continuousnhanes/default.aspx?Cycle=2017-2020 

We used version 7 of the All of Us Controlled Tier Dataset, which can be accessed and analyzed 
from the Researcher Workbench by registered users: https://www.researchallofus.org/data-
tools/workbench/ 

 

Code Availability 

The code and data used to develop weights is available as a Workspace within the All of Us 
researcher workbench. 
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