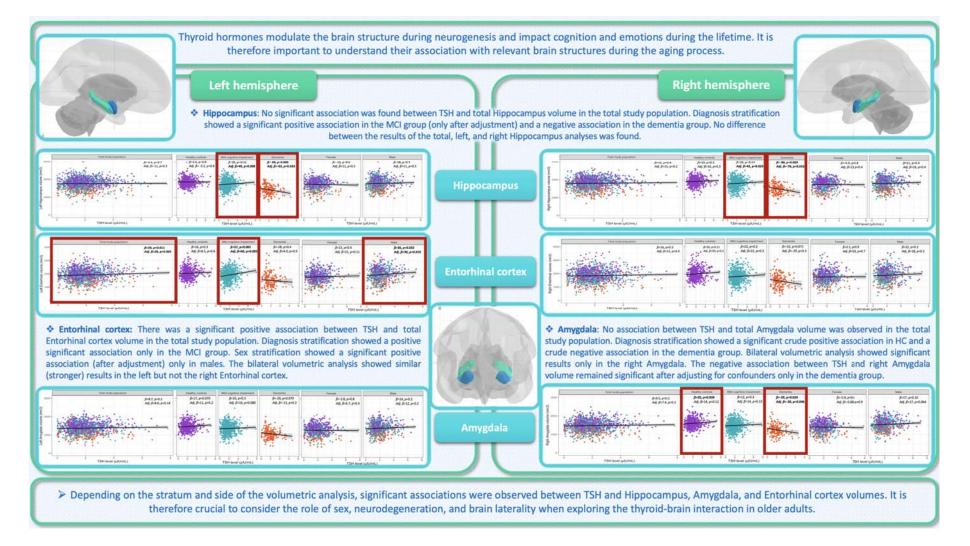
Association of Amygdala, Hippocampus, and Entorhinal cortex with thyroid function in older adults:

Stratification's value and relevance of bilateral volumetric analyses


Asma Hallab^{a,b,c,*}, for the Alzheimer's Disease Neuroimaging Initiative[#]

Affiliations

- a- Biologie Intégrative et Physiologie Neurosciences Cellulaires et Intégrées. Faculté des Sciences et Ingénierie, Sorbonne Université, Paris, France.
- b- Pathologies du sommeil. Hôpital universitaire Pitié-Salpêtrière. Faculté de Médecine, Sorbonne Université, Paris, France.
- c- Charité Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin. Institute of Public Health. Berlin, Germany.

^{*}Corresponding author: Dr. med. Dr. Asma Hallab. Charité Universitätsmedizin – Berlin. Charitéplatz 1, 10117 Berlin – Germany. asma.hallab@charite.de. https://orcid.org/0000-0002-3901-7980

Graphical abstract

Abstract

Introduction: Thyroid hormones modulate the brain structure during neurogenesis and impact cognition and emotions during the lifetime. It is, therefore, important to understand their association with relevant brain structures during the aging process.

Methods: A subset of 1348 older adults from the Alzheimer's Disease Neuroimaging Initiative (ADNI) was included. Linear regression was used to study the association between serum thyroid stimulating hormone (TSH) and the Amygdala, Hippocampus, and Entorhinal cortex volumes. Sex and neurodegeneration-related stratifications and comparative bilateral volumetric analyses were performed.

Results: Females represented 667 (49%) of included cases, and 522 (38.72%) were healthy controls (HC). A significant positive association was observed between TSH and total Hippocampus volume in mild cognitive impairment (MCI) (adj. β =92 (23, 161), *p-value*=0.009), while a negative association in dementia participants remained statistically significant (β =-177 (-295, -60), *p-value*=0.003 and adj. β =-141 (-250, -32), *p-value*=0.012). There was a significant association between TSH and total Entorhinal cortex volume in the total study population (β =44 (3.9, 85), *p-value*=0.032 and adj. β =40 (5.1, 75), *p-value*=0.025). Stratification showed significant associations only in MCI (β =80 (21, 138), *p-value*=0.007, and adj. β =83 (27, 138), *p-value*=0.003), and males (adj. β =54 (1.9, 106), *p-value*=0.042). Similar statistically significant associations were found only in the left Entorhinal cortex. The association between TSH and total Amygdala volume was positive in HC (β =37 (1.6, 73), *p-value*=0.041) and negative in dementia participants (β =-67 (-128, -6.4), *p-value*=0.030). None of those results remained statistically significant after adjusting the models. The

bilateral volumetric analysis showed significant results only in the right Amygdala and dementia group.

Conclusions: Depending on the stratum and side of the volumetric analysis, significant associations were observed between TSH and Hippocampus, Amygdala, and Entorhinal cortex volumes. It is, therefore, crucial to consider the role of sex, neurodegeneration, and laterality when exploring the thyroid-brain interaction in older adults.

Keywords: Ageing, Neurodegeneration, Psychoneuroendocrinology, Thyroid Stimulating Hormone, Magnetic Resonance Imaging, Cognitive Neurosciences.

Highlights:

- Higher TSH levels are associated with lower Hippocampus volume on both sides in the dementia group.
- Lower TSH levels are associated with lower left Entorhinal cortex volume in the mild cognitive impairment and male strata.
- Higher TSH levels are associated with lower right Amygdala volume in the dementia group.

1. Introduction

The thyroid-brain association is a multifaceted interaction that, despite starting very early

during gestational neurogenesis, remains relevant during adulthood and the aging process,

making it of interest to all age spans and medical disciplines. (1)

Physiologically, thyroid function slowly declines during aging, resulting in normally increased

thyroid stimulating hormone (TSH) levels in older adults. (2, 3) Similarly, aging is an

independent risk factor for cognitive decline. (4) The association between thyroid function

and cognitive decline in advanced ages has motivated several studies and raised various

controversies, depending on studied populations, clinical definitions of thyroid dysfunction,

and psychometric variables. (5, 6) While those studies put a particular focus on the

association between hypothyroidism and cognitive decline, particularly in older adults, a

smaller number of publications highlighted the association between lower TSH levels and

cognitive impairment in the same age group. (7-9) Furthermore, fewer studies explored the

association between thyroid function and anxiety, most of which assessed this interaction in

the context of comorbid hypothyroidism and major depressive disorders in young adults.

(10-12) Only one study on non-depressed older adults reported increased odds of anxiety in

lower TSH ranges. (13)

It is, therefore, crucial to understand the underlying mechanisms defining the association

between thyroid function and neuropsychiatric symptoms, particularly in older adults, a

high-risk group of neurocognitive and neuropsychiatric adversities. Moreover, scientific

evidence is in favor of a sex-modulated thyroid-brain interaction, and diverging effects might

be observed between males and females. (7, 13, 14) Structural brain analysis is a relevant

tool for understanding and quantifying volume loss and neurodegeneration. Limbic

structures in the medial temporal lobe (MTL), mainly the Hippocampus and Entorhinal

cortex, are particularly relevant centers for cognition and are early affected during the

neurodegenerative process and dementia. (15, 16) Furthermore, the Amygdala, another

limbic structure of the MTL, is associated with memory formation (16) and emotional

processing and plays a pivotal role in experiencing and expressing particularly survival-

relevant emotions such as fear. (17) It is also known that brain laterality has several

implications for psychomotor and cognitive outcomes, and diverse factors, such as aging,

might influence its structural and functional organization. (18)

Despite the largely discussed clinical evidence in favor of an interplay between thyroid and

cognition across different age groups, very limited data is available on the association

between thyroid function and brain structures in older adults. It is also unclear how sex and

neurodegeneration might impact this association and whether brain function laterality

might reflect structural discrepancies in the thyroid-brain interaction.

Therefore, the aim of the current study was: (A) to study the overall association between

TSH and the total volumes of the Hippocampus, Entorhinal cortex, and Amygdala; (B) to

evaluate the value of sex and neurodegeneration-dependent stratification in this

association; and (C) to highlight the relevance of a bilateral volumetric approach.

2. Methods

The study was conceptualized and reported according to STrengthening the Reporting of

7

OBservational studies in Epidemiology (STROBE) guidelines. (19)

2.1. Study population

The Alzheimer's Disease Neuroimaging Initiative (ADNI) is a non-interventional longitudinal cohort initiated by the principal investigator Dr. Michael Weiner and funded by the National Institute on Aging (National Institutes of Health Grant U19 AG024904). The main objective of this cohort was to understand dementia and related risks. Healthy older adults, as well as those with cognitive impairment, were eligible. The recruitment of study participants took place in several centers across the United States of America and Canada. Neurocognitive, neuroimaging, and biological biomarkers were collected during recurrent study visits. Participants gave written consent. The study was performed according to the declaration of Helsinki, and ethical approvals were obtained from each local recruitment center's IRB. Details and protocols can be found at https://adni.loni.usc.edu.

2.2. Thyroid function

TSH is a relevant biomarker of central thyroid function and was measured in fasting blood at baseline and reported in μ IU/mL. Methods and data selection were detailed in previous publications. (7, 13) In summary, complete and accurate TSH measurements were individually screened, and only the first value was retained in case of duplicate measurements. Very low indetectable values (< 0.01 μ IU/mL) were converted to 0.01 μ IU/mL in three cases. Cases with TSH values equal to or higher than 10 μ IU/mL (higher probability of overt hypothyroidism) were excluded from the analysis.

2.3. Neuroimaging and brain segmentations

ADNI participants underwent cerebral 1.5 or/and 3 Tesla magnetic resonance imaging (MRI) scans, depending on the study phase (ADNI 1 versus ADNI go, 2, and 3). Owing to variations in protocols and techniques used in each ADNI phase and recruitment center, details exceed

the frame of this work, and protocols are published at https://adni.loni.usc.edu/data- samples/adni-data/neuroimaging/mri/. Several manuscripts described technical details of neuroimaging methods applied in different ADNI phases. (20, 21) For the current study, volumes of interest (VOIs) were selected based on a rigorous systematic review of the literature, and the volumetric analysis of T_1 -based segmentation was performed using FreeSurfer (https://surfer.nmr.mgh.harvard.edu). Longitudinal analyses (UCSFFSX51_11_08_19) for ADNI 1, go, and 2, and (UCSFFSX6_07_06_23) for ADNI 3 were used. Total Hippocampus volume was calculated as the sum of the volume of the left Hippocampus and right Hippocampus, total Entorhinal cortex volume as the sum of the volume of the left Entorhinal cortex and right Entorhinal cortex, and total Amygdala volume as the sum of the volume of the left Amygdala and right Amygdala. The total intracranial volume (ICV) was also reported and introduced to the multivariable regression models to adjust for anatomical variations. All volumes are measured in mm³.

2.4. Neuropsychological assessments

The cognitive status was mainly assessed using the total score of the Alzheimer's Disease Assessment Scale – 13 items (ADAS₁₃), in addition to total scores of Mini-Mental State Examination (MMSE), Clinical Dementia Rating scale – Sum of Boxes (CDR-SB), and Functional Activities Questionnaire (FAQ). Depression symptoms were assessed using the total score of the Geriatric Depression Scale (GDS). Anxiety symptoms were reported by study partners in the Neuropsychiatry Inventory Questionnaire (NPI-Q).

9

2.5. Inclusion criteria

Cases with missing TSH measurements (n=159), relevant VOIs (n=869 Hippocampus and n=4 Entorhinal cortex), main diagnosis at baseline (n=17), demographical data (n=4 missing age), ADAS₁₃ total score (n=9), GDS total score (n=3), anxiety item in NPI-Q (n=10), biometric information for the BMI (n=3), or probably erroneous weight or height measurements (n=2), TSH \geq 10 IU/mL (n=2) were removed allowing the inclusion of 1,348 cases.

2.6. Statistical analysis

RStudio version 2024.04.1-748 was applied for the analysis and visualization of the data. Values were presented as medians with interquartile ranges (IQR) or numbers with percentages (%) in continuous or count data, correspondingly. The associations between VOI volumes and TSH levels were assessed using linear regression analyses, where the VOI volume (mm 3), as a continuous value, was the predicted variable, and continuous TSH levels (μ IU/mL) as the predicting variable. A crude model was initially presented, and then the model was adjusted for relevant confounding factors:

- Hippocampus and Entorhinal cortex-related adjusted models: Age + sex + ADAS₁₃ total score (points) + educational level (years) + APOE ε4 status ("None", "one", or "two alleles") + cognition-related main diagnosis ("Healthy controls (HC)", "Mild Cognitive Impairment (MCI)", and "Dementia") + ICV (mm³) + GDS total score (points).
- Amygdala-related adjusted models: Age + sex + ADAS₁₃ total score (points) + educational level (years) + APOE ε4 status ("None", "one", or "two alleles") + cognition-related main diagnosis ("HC", MCI", and "Dementia") + ICV (mm³) + GDS total score (points) + Anxiety (binary).

The same strategy was followed after stratifying for sex ("Male" and "Female") and cognition-related main diagnosis ("HC", "MCI", and "Dementia"). Adjusted models were

adapted correspondingly after removing sex or main diagnosis when exploring the corresponding stratum. The total volume analyses were performed first; then, the analyses were performed with VOIs corresponding to the bilateral structures, each independently. Results were presented as regression coefficient (β), 95% confidence interval (CI), and the p-value. The significance level of the two-sided p-value was set at 0.05. No correction for multiple testing was needed, as the current VOI analyses were based on peelable hypotheses driven by significant neurocognitive results in previously published studies from a larger subset of the same data, (7, 13) and no random search for statistical significance was followed during this work.

3. Results

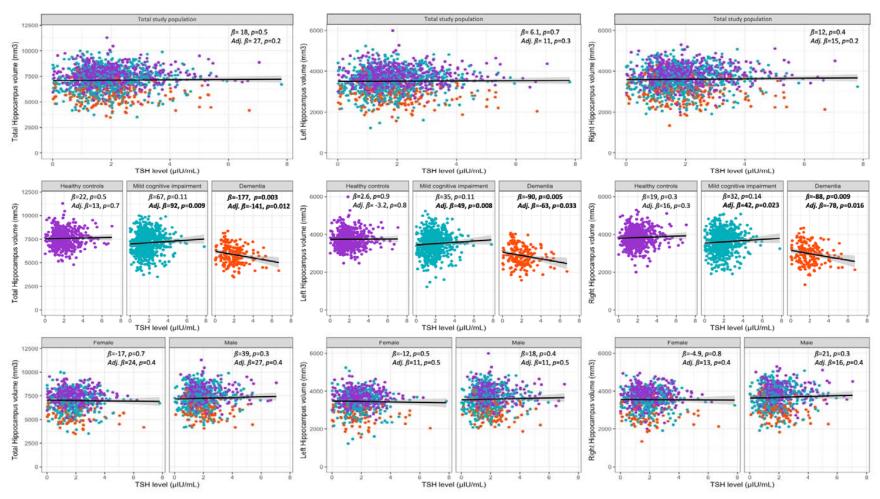
3.1. Description of the study population

In addition to 522 (38.72 %) older HC, the study included 641 (47.55 %) with MCI and 185 (13.72 %) with dementia. Females represented 667 (49%) of the total population. The median serum TSH level was 1.74 μ IU/mL (1.18 - 2.45). Detailed information on the study population and cognition-related subgroups are summarized in Table 1.

Table 1: Characteristics of the study population

Characteristics	Overall N = 1,348 ¹	Healthy controls N = 522 ¹	Mild Cognitive Impairment $N = 641^{1}$	Dementia N = 185¹
Age (years)	72 (67 - 77)	70 (67 - 76)	72 (66 - 77)	75 (70 - 80)
Sex	<i>,</i> = (<i>,</i> , , , ,	, , (, , , , , ,	72 (00 77)	, = (, = ==,
Female	667 (49%)	304 (58%)	288 (45%)	75 (41%)
Male	681 (51%)	218 (42%)	353 (55%)	110 (59%)
Racial profile	002 (02/0)		222 (2272)	(5575)
White	1,166 (86%)	420 (80%)	580 (90%)	166 (90%)
Black	114 (8.5%)	67 (13%)	37 (5.8%)	10 (5.4%)
Other	68 (5.0%)	35 (6.7%)	24 (3.7%)	9 (4.9%)
Marital status	,	,	,	,
Currently married	1,012 (75%)	367 (70%)	482 (75%)	163 (88%)
Currently not married or unknown	336 (25%)	155 (30%)	159 (25%)	22 (12%)
Housing situation	,	,	,	,
House or apartment	1,276 (95%)	494 (95%)	607 (95%)	175 (95%)
Retirement or nursing institution	49 (3.6%)	20 (3.8%)	22 (3.4%)	7 (3.8%)
Other	23 (1.7%)	8 (1.5%)	12 (1.9%)	3 (1.6%)
APOE ε4 status	()	- (,	(_:=.:,	
0 allele	670 (56%)	311 (69%)	309 (53%)	50 (29%)
1 allele	422 (35%)	125 (28%)	215 (37%)	82 (48%)
2 alleles	113 (9.4%)	16 (3.5%)	59 (10%)	38 (22%)
Missing value	143	70	58	82 (48%) 38 (22%) 15
ADAS ₁₃ total score (points)	12 (8 - 19)	8 (5 - 12)	14 (10 - 19)	30 (24 - 36)
MMSE total score (points)	29.00 (26.00 - 30.00)	29.00 (28.00 - 30.00)	28.00 (27.00 - 29.00)	23.00 (21.00 - 25.00)
FAQ total score (points)	0.0 (0.0 - 4.0)	0.0 (0.0 - 0.0)	1.0 (0.0 - 4.0)	13.0 (8.0 - 18.3)
Missing value	5	0	4	30 (24 - 36) 23.00 (21.00 - 25.00) 13.0 (8.0 - 18.3) 1 4.50 (3.50 - 5.00) 1.00 (1.00 - 3.00) 51 (28%)
CDR-SB total score (points)	0.50 (0.00 - 2.00)	0.00 (0.00 - 0.00)	1.00 (0.50 - 2.00)	4.50 (3.50 - 5.00)
GDS total score (points)	1.00 (0.00 - 2.00)	0.00 (0.00 - 1.00)	1.00 (1.00 - 3.00)	1.00 (1.00 - 3.00)
Anxiety (informant-perceived)	166 (12%)	16 (3.1%)	99 (15%)	51 (28%)
ВМІ	26.6 (24.2 - 30.0)	26.9 (24.3 - 30.4)	26.6 (24.5 - 30.0)	25.4 (22.8 - 28.3)
TSH (μIU/mL)	1.74 (1.18 - 2.45)	1.78 (1.22 - 2.50)	1.68 (1.16 - 2.40)	1.76 (1.10 - 2.49)
Hippocampus total volume (mm³)	7,192 (6,395 - 7,856)	7,599 (6,990 - 8,128)	7,164 (6,383 - 7,783)	5,835 (5,224 - 6,555)
Entorhinal total volume (mm³)	3,761 (3,255 - 4,280)	3,989 (3,594 - 4,456)	3,720 (3,248 - 4,247)	2,945 (2,437 - 3,480)
Amygdala total volume (mm³)	2,851 (2,523 - 3,201)	3,057 (2,726 - 3,300)	2,824 (2,510 - 3,164)	2,327 (1,954 - 2,594)
ICV (mm³)	1,480,040 (1,377,036 - 1,592,153)	1,459,980 (1,351,713 - 1,574,350)	1,501,270 (1,398,670 - 1,602,620)	1,470,461 (1,369,610 - 1,615,680)

¹ Median (IQR); n (%)


ADAS₁₃: Alzheimer's Disease Assessment scale – 13 items, **APOE**: Apolipoprotein, **BMI**: Body Mass Index, **CDR-SB**: Clinical Dementia Rating – Sum of Boxes, **FAQ**: Functional Activities Questionnaire, **GDS**: Geriatric Depression Scale, **ICV**: Intracranial volume, **MMSE**: Mini Mental Status Examination, **TSH**: Thyroid Stimulating Hormone.

3.2. Hippocampus and thyroid function

There was no association between serum TSH levels and total Hippocampus volume in the total study population ($\beta_{Total\ Hippocampus-Total\ population}$ = 18 (-39, 74), p-value= 0.5 & adj. $\beta_{Total\ Hippocampus-Total\ population}$ = 27 (-16, 70), p-value= 0.2).

After diagnosis stratification, significant associations were observed in cases with dementia $(\beta_{Total\ Hippocampus-Dementia}=-177\ (-295,\ -60),\ p-value=0.003)$, but not in HC or those with MCI. After adjusting for confounders, a significant positive association was observed between serum TSH levels and total Hippocampus volume in MCI participants (adj. $\beta_{Total\ Hippocampus-MCI}=92\ (23,161),\ p-value=0.009)$. The negative association observed in participants with dementia remained statistically significant after adjustment for confounders (adj. $\beta_{Total\ Hippocampus-Dementia}=-141\ (-250,\ -32),\ p-value=0.012)$.

The bilateral volumetric analysis showed similar results to those observed in the total Hippocampus volume in both left and right Hippocampi. Sex stratification did not show any significant difference between males and females. All details are visualized and summarized in Figure 1 and Supplementary Tables 1, 2, and 3.

Figure 1: Crude and adjusted linear regression models on the association between TSH levels and Hippocampus volume, with sex and neurodegeneration-related stratifications and bilateral volumetric analyses.

3.3. Entorhinal cortex and thyroid function

There was a significant association between serum TSH levels and total Entorhinal cortex volume in the total study population ($\beta_{Total\ Entorhinal\ Cortex-Total\ population}$ = 44 (3.9, 85), *p-value* = 0.032 & adj. $\beta_{Total\ Entorhinal\ Cortex-Total\ population}$ = 40 (5.1, 75), *p-value* = 0.025).

The diagnosis stratification showed significant associations between thyroid function and total Entorhinal cortex volume only in MCI participants ($\beta_{Total\ Entorhinal\ Cortex-MCI}$ = 80 (21, 138), p-value= 0.007 & adj. $\beta_{Total\ Entorhinal\ Cortex-MCI}$ = 83 (27, 138), p-value= 0.003). After sex stratification, results remained statistically significant only in males (adj. $\beta_{Total\ Entorhinal\ Cortex-MCI}$ = 54 (1.9, 106), p-value= 0.042).

In the bilateral volumetric analyses, stronger statistically significant associations were found in the same strata of the left Entorhinal cortex but not the right one. Details are visualized in Figure 2 and Supplementary Tables 4, 5, and 6.

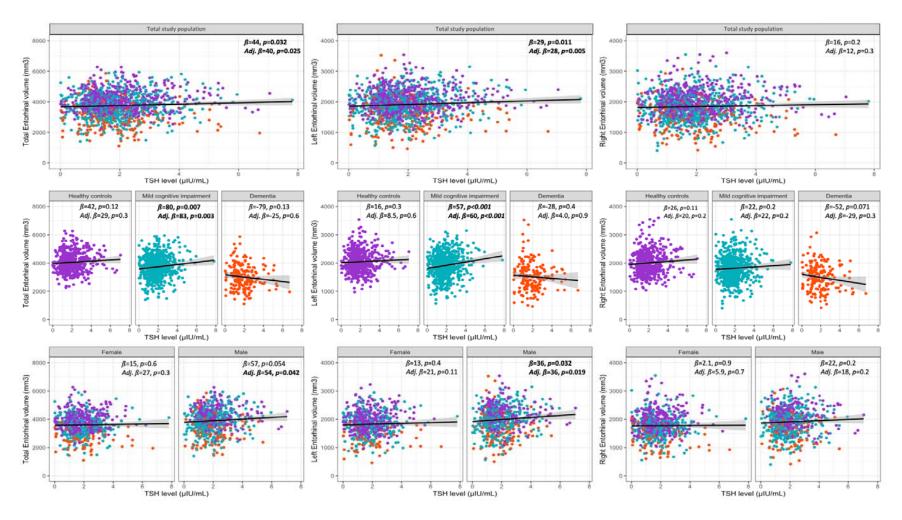


Figure 2: Crude and adjusted linear regression models on the association between TSH levels and Entorhinal cortex volume, with sex and neurodegeneration-related stratifications and bilateral volumetric analyses.

3.4. Amygdala and thyroid function

There was no significant association between serum TSH levels and the total Amygdala volume in the total study population.

While there was a positive association between thyroid function and total Amygdala volume in HC ($\mathcal{B}_{Total\ Amygdala-HC}$ = 37 (1.6, 73), p-value= 0.041), this association was negative in participants with dementia ($\mathcal{B}_{Total\ Amygdala-Dementia}$ = -67 (-128, -6.4), p-value= 0.030). None of those results remained statistically significant after adjusting the models for relevant confounders.

The bilateral volumetric analysis showed similar significant results in crude models only in the right Amygdala but not in the left one. The association remained statistically significant after adjusting for confounders in participants with dementia ($\beta_{Right\ Amygdala\ Dementia}$ = -39 (-72, -5.2), p-value= 0.024 & adj. $\beta_{Right\ Amygdala\ Dementia}$ = -30 (-59, -0.56), p-value= 0.046). No significant associations were observed in sex strata.

The associations are visualized and summarized in Figure 3 and Supplementary Tables 7, 8, and

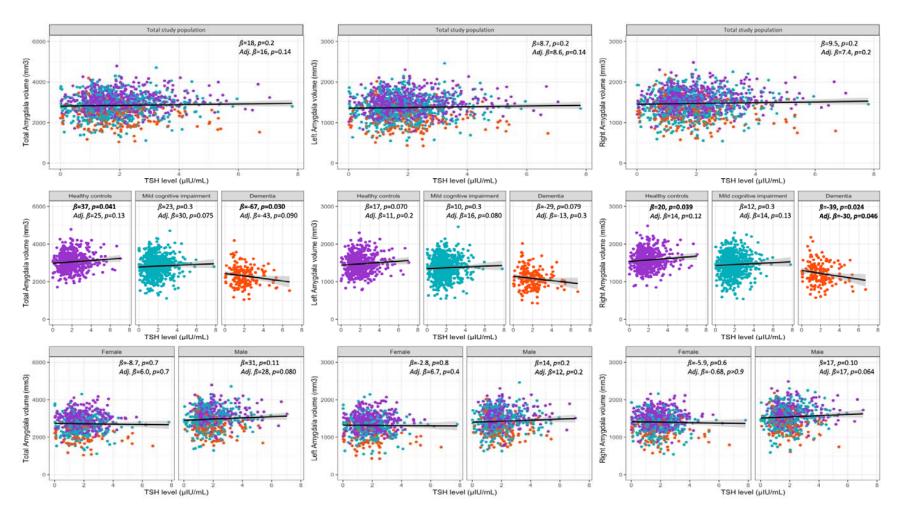


Figure 3: Crude and adjusted linear regression models on the association between TSH levels and Amygdala volume, with sex and neurodegeneration-related stratifications and bilateral volumetric analyses.

4. Discussion

The study explored the association between thyroid function and the volumes of three major limbic structures in older adults. The main outcome was the significant association between thyroid function and the Amygdala, Hippocampus, and Entorhinal cortex, depending on the studied sex- or neurodegeneration-related stratum. The bilateral VOI analyses highlighted the importance of exploring this association in left and right brain structures independently.

4.1. Thyroid and Hippocampus

A very limited number of published data studied the association between thyroid function and hippocampus volume, particularly in older adults. In a study including 62 premenopausal women with newly diagnosed Grave's disease and hyperthyroidism, volumes of both hippocampi were significantly smaller compared to healthy controls. After treatment and correction of the hyperthyroidism, hippocampi volumes (right and left) increased significantly in size. There was also no correlation (Spearman) between hormone levels, particularly TSH, and hippocampi volumes. Patients with normal and pathological TSH levels did not show significant differences in hippocampi volumes during the follow-up. (22) In another study, adolescents with a history of congenital hypothyroidism showed smaller hippocampal volumes, particularly on the left side, compared to healthy controls. Furthermore, they neither showed a proportionated increase in hippocampal size with age compared to the control group nor a typical lateralization of cognitive functions. (23) On a longitudinal course, older adults with Alzheimer's dementia but not healthy or MCI controls showed a significant association between lower TSH levels and annual hippocampal volume loss, particularly on the left side. (24)

In contrast with the longitudinal analysis, the association between TSH and bilateral

hippocampus volumes was not statistically significant in the cross-sectional analysis at

baseline. (24) In another study, newly diagnosed adults with subclinical or overt

hypothyroidism presented with lower hippocampal subfield volumes, particularly on the

right side, compared to HC. (25) Similarly, lower right hippocampal volumes were observed

in adults with hypothyroidism compared to those without. (26) In a different population,

antipsychotic-naïve patients with first-episode psychosis, high TSH levels were significantly

correlated with lower total hippocampal volume at baseline. (27)

The results of published data are in favor of lower Hippocampus volume in both hyper- and

hypothyroidism. Depending on the study design and the underlying population, both the left

and/or right hippocampus might be affected. In contrast with previously published data, the

majority of included cases in this study had TSH levels within the clinically normal range

(IQR: 1.18 - 2.45 μIU/mL), and the two cases with eventual overt hypothyroidism were

excluded. The three cases with very low TSH levels were converted to the lowest measurable

value (0.01 μIU/mL) for the analysis.

In the current study, there were no relevant differences in the observed significance of the

results between the right and left Hippocampi; significant associations were only observed

in MCI participants after model adjustment and in participants with dementia, with and

without model adjustment. The paradoxical difference between the observed positive

association in the MCI group (higher TSH = higher Hippocampus volume) and the negative

one in the dementia group (higher TSH = lower Hippocampus volume) remains unexplained.

Rodent studies have shown an association between thyroid hormones and gene expression in the Hippocampus, (28) their impact on neurogenesis and synaptic plasticity, (29, 30) as well as on defining white matter volume. (31)

4.2. Thyroid and Entorhinal cortex

Reviewing published data yielded no study exploring the association between thyroid function and the Entorhinal cortex in human subjects, particularly in older adults.

In the bilateral volumetric analysis of the Entorhinal cortex, the statistically significant results observed in the total study population remained significant only on the left side. Moreover, diagnosis stratification showed significant results only in the MCI group, while sex stratification showed significant results only in males.

The Entorhinal cortex, specifically the medial-lateral part, is the particular nest of grid cells coding in a complex computational architecture for spatial navigation and memory. (32, 33) In addition to those highly specific space cells, microglial integrity of the right Amygdala-Hippocampus-Entorhinal cortex was also associated with spatial learning in rodents. (34) The left Entorhinal cortex, in contrast, was found to be rather associated with verbal memory. (35)

Although the association between thyroid hormones and the Entorhinal cortex was rarely studied, a few rodent studies are available. One mechanism explaining the association of hypothyroidism with cognitive impairment is associated with the regulation of the Calcium-dependent calmodulin kinase II (CaMKII), a molecule present in the Entorhinal cortex and involved in learning and memory, by impairing the iodine-related phosphorylation. (36) The dysregulation of thyroid hormone signaling in the Entorhinal cortex is also linked to the risk of amyloid-ß toxicity observed in Alzheimer's disease. (37) Furthermore, developmental

hypothyroidism in rodents is associated with an impairment of the Entorhinal-Dentate gyrus

neural pathway. (38)

4.3. Thyroid and cognition

The Hippocampus and Entorhinal cortex are critical brain structures that play a pivotal role

in encoding and consolidating different areas of memory and learning. According to Braak

staging, they are the first structures affected by tau and amyloid deposition and

consequently by neurodegeneration during the aging process, specifically during Alzheimer's

dementia. (15)

A previous study including non-depressed healthy and MCI ADNI participants showed a

significant association between lower TSH levels and worse cognitive performance in older

males but not females. (7) Moreover, lower TSH levels predicted higher odds of being

diagnosed with MCI at baseline. (7) Those previous observations go along with the current

results, specifically, the significant positive associations between TSH levels and Entorhinal

cortex volumes found in MCI and male strata.

4.4. Thyroid and amygdala

In the previously cited study on premenopausal women with Grave's disease, amygdala

volumes were significantly lower in affected women than in the control group (-10.4% for

the left and -13.3% for the right Amygdala, both p_{t-test} <0.001). After treatment, both

increased significantly in size (+6.7% for the left and +11.1 for the right Amygdala, both p_t .

test<0.001). (22) Similarly to the Hippocampi volumes, no significant correlation was found

between TSH and Amygdalae volumes. The only significant (negative) correlations in this

population were observed between TSH receptor antibodies (TRAb) levels, on one side, and

both Amygdala volumes and the right Hippocampus, on the other side. (22) In a different study, the administration of Levothyroxine (L- T_4) to patients with bipolar disorder during a depressive episode was significantly associated with decreased metabolic activity in the right Amygdala and Hippocampus. (39)

4.5. Thyroid and anxiety

The amygdala plays a pivotal role in emotional processing, fear learning, empathy, and memory formation. (17, 40, 41) Dysfunction in Amygdalae is particularly associated with psychiatric disorders such as stress and affective disorders. (42-45)

A previous study including non-depressed healthy and cognitively impaired ADNI participants found a significant association between lower TSH levels and higher odds of informant-perceived anxiety. (13) After sex stratification, this association was only significant in older males but not females. (13) In the current study, cases with a total score of GDS higher than four points were included. The GDS was thus adjusted for in the regression models. Similarly, both cases with and without anxiety, as perceived and reported by their study partner, were eligible. In the regression models, where Amygdala volume was included as an outcome, anxiety was also adjusted for. It is, thus, important to mention that in the study on premenopausal women with Grave's disease, no significant association between the level of anxiety and the volumes of the (right and left) Amygdalae was observed. (22)

The association between thyroid function and Amygdala volume was statistically significant only on the right side, particularly in older participants with dementia. The right Amygdala is known to be particularly involved in fear processing. (46) In young children, higher serum cortisol levels measured following a frustration task showed a significant association with

lower right Amygdala volume, (47) which might be related to a chronic bilateral interplay

between the right Amygdala and stress-related hormones. Furthermore, pathological

connectivity patterns observed in the right Amygdala predicted suicidal risk in veterans. (48)

In female patients, the severity of childhood abuse was negatively correlated with the right

Amygdala volume, which was lower in those with posttraumatic stress disorder compared to

HC. (49) Those studies are in favor of an association between Amygdala and stress.

Furthermore, in rodent studies, adult-onset hypothyroidism was associated with increased

fear memory. (50) This association was explained by an enhanced Amygdala sensitivity to

released mineralocorticoids and glucocorticoids mediated by an upregulation of

corresponding receptor expression. (50) Moreover, thyroid hormones affect the expression

of anxiety-related genes in the Amygdala. (51)

4.6. Strengths

The high number of included older participants, the sex and neurodegeneration

stratification, and the bilateral volumetric analyses, are the main strengths of this study. This

is the first study exploring the association between TSH and Entorhinal cortex and Amygdala

volumes in older adults. The association related to both brain structures was of certain

complexity since it showed dependence on the neurodegeneration state, sex, and the

explored side of the brain. These particularities were detailed in the current analyses and

opened the doors to further investigations aiming at a better understanding of the

24

underlying mechanisms.

4.7. Limitations

The first limitation of the study is associated with the lack of free triiodothyronine (FT3) and free Thyroxine (FT4) measurements at baseline. While both hormones reflect peripheral thyroid function, the study's main exposure was TSH as a biomarker for central thyroid function. The study included cases without extremely pathological TSH levels. Furthermore, TSH is negatively associated with FT₃ and FT₄ values and reflects therefore their variations, even within normal ranges. The second limitation is associated with the relatively high number of participants without data on VOI, which had to be excluded from the current analyses. Technical challenges and anatomical variations during neurodegeneration might explain this deficit. The third limitation is associated with the study design, seeing that cross-sectional analyses do not allow drawing a causal inference from the observed associations. Further longitudinal studies are needed.

5. Conclusions

The significant association between thyroid function and brain structures in older adults highlights the importance of the body-brain interaction during aging and the role of TSH in understanding the underlying process of cognition and emotions. The bilateral volumetric analysis showed lateralization in the association between thyroid function and different structures of MTL, as TSH levels predicted significant volume changes in the left Entorhinal cortex and right Amygdala. Furthermore, the degenerative remodeling observed in MCI and dementia might predispose to higher affinities between brain structures and TSH. Males and females might present further discrepancies in observed results, and the role of sex has to be taken into account when studying neurosciences in a hormonal context. Particularly in older adults, thyroid-brain interaction might be of complexity requiring multidisciplinary approaches, different strategies, and stratified analyses.

Declarations

Data availability: All data used in the manuscript is available at https://adni.loni.usc.edu.

Declaration of conflict of interest: the authors declare they have no conflict of interest.

Declaration of funding: AH did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sector. Data collection and sharing for ADNI project was

funded by the Alzheimer's Disease Neuroimaging Initiative (ADNI; National Institutes of

Health Grant U19 AG024904). ADNI is made possible with funding from the NIH and private

sector support detailed at https://adni.loni.usc.edu/about/.

content/uploads/how to apply/ADNI Acknowledgement List.pdf.

Author contributions: AH has full access to all of the data and takes responsibility for the integrity of the data and the accuracy of the analysis, visualization, drafting, and editing of the manuscript.

*Data used in preparation of this article were obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. A complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-

Acknowledgments: "Data collection and sharing for the Alzheimer's Disease Neuroimaging Initiative (ADNI) is funded by the National Institute on Aging (National Institutes of Health Grant U19 AG024904). The grantee organization is the Northern California Institute for Research and Education. In the past, ADNI has also received funding from the National Institute of Biomedical Imaging and Bioengineering, the Canadian Institutes of Health Research, and private sector contributions through the Foundation for the National

Institutes of Health (FNIH) including generous contributions from the following: AbbVie,

Alzheimer's Association; Alzheimer's Drug Discovery Foundation; Araclon Biotech; BioClinica,

Inc.; Biogen; Bristol-Myers Squibb Company; CereSpir, Inc.; Cogstate; Eisai Inc.; Elan

Pharmaceuticals, Inc.; Eli Lilly and Company; EuroImmun; F. Hoffmann-La Roche Ltd and its

affiliated company Genentech, Inc.; Fujirebio; GE Healthcare; IXICO Ltd.; Janssen Alzheimer

Immunotherapy Research & Development, LLC.; Johnson & Johnson Pharmaceutical

Research & Development LLC.; Lumosity; Lundbeck; Merck & Co., Inc.; Meso Scale

Diagnostics, LLC.; NeuroRx Research; Neurotrack Technologies; Novartis Pharmaceuticals

Corporation; Pfizer Inc.; Piramal Imaging; Servier; Takeda Pharmaceutical Company; and

Transition Therapeutics."

Captions:

Figures

Figure 1: Crude and adjusted linear regression models on the association between TSH

levels and Hippocampus volume, with sex and neurodegeneration-related stratifications and

bilateral volumetric analyses.

Figure 2: Crude and adjusted linear regression models on the association between TSH

levels and Entorhinal cortex volume, with sex and neurodegeneration-related stratifications

and bilateral volumetric analyses.

Figure 3: Crude and adjusted linear regression models on the association between TSH

levels and Amygdala volume, with sex and neurodegeneration-related stratifications and

28

bilateral volumetric analyses.

References:

- Salas-Lucia F. MAPPING THYROID HORMONE ACTION IN THE HUMAN BRAIN. Thyroid.
 2024.
- 2. Biondi B, Cappola AR. Subclinical hypothyroidism in older individuals. Lancet Diabetes Endocrinol. 2022;10(2):129-41.
- 3. Chaker L, Cappola AR, Mooijaart SP, Peeters RP. Clinical aspects of thyroid function during ageing. Lancet Diabetes Endocrinol. 2018;6(9):733-42.
- 4. Madole JW, Ritchie SJ, Cox SR, Buchanan CR, Hernández MV, Maniega SM, et al. Aging-Sensitive Networks Within the Human Structural Connectome Are Implicated in Late-Life Cognitive Declines. Biol Psychiatry. 2021;89(8):795-806.
- 5. Pasqualetti G, Pagano G, Rengo G, Ferrara N, Monzani F. Subclinical Hypothyroidism and Cognitive Impairment: Systematic Review and Meta-Analysis. J Clin Endocrinol Metab. 2015;100(11):4240-8.
- 6. Akintola AA, Jansen SW, van Bodegom D, van der Grond J, Westendorp RG, de Craen AJ, et al. Subclinical hypothyroidism and cognitive function in people over 60 years: a systematic review and meta-analysis. Front Aging Neurosci. 2015;7:150.
- 7. Hallab A. Sex-, and neurodegeneration-dependent effect modification in the association between thyroid function and cognitive impairment in non-depressed, non-demented elderly. medRxiv. 2024:2024.07.04.24309827.
- 8. Adams R, Oh ES, Yasar S, Lyketsos CG, Mammen JS. Endogenous and Exogenous Thyrotoxicosis and Risk of Incident Cognitive Disorders in Older Adults. JAMA Intern Med. 2023;183(12):1324-31.

- 9. Gan EH, Jagger C, Yadegarfar ME, Duncan R, Pearce SH. Changes in Serum Thyroid Function Predict Cognitive Decline in the Very Old: Longitudinal Findings from the Newcastle 85+ Study. Thyroid. 2021;31(8):1182-91.
- 10. Yang R, Du X, Li Z, Zhao X, Lyu X, Ye G, et al. Association of Subclinical Hypothyroidism With Anxiety Symptom in Young First-Episode and Drug-Naïve Patients With Major Depressive Disorder. Front Psychiatry. 2022;13:920723.
- 11. Zhou Y, Ren W, Sun Q, Yu KM, Lang X, Li Z, et al. The association of clinical correlates, metabolic parameters, and thyroid hormones with suicide attempts in first-episode and drug-naïve patients with major depressive disorder comorbid with anxiety: a large-scale cross-sectional study. Transl Psychiatry. 2021;11(1):97.
- 12. Zhao Y, Liu JC, Yu F, Yang LY, Kang CY, Yan LJ, et al. Gender differences in the association between anxiety symptoms and thyroid hormones in young patients with first-episode and drug naïve major depressive disorder. Front Psychiatry. 2023;14:1218551.
- 13. Hallab A. Sex-modulated association between thyroid stimulating hormone and informant-perceived anxiety in non-depressed older adults: prediction models and relevant cutoff value. medRxiv. 2024:2024.07.26.24311073.
- 14. Baksi S, Pradhan A. Thyroid hormone: sex-dependent role in nervous system regulation and disease. Biol Sex Differ. 2021;12(1):25.
- 15. Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 1991;82(4):239-59.
- 16. Mackay S, Reber TP, Bausch M, Boström J, Elger CE, Mormann F. Concept and location neurons in the human brain provide the 'what' and 'where' in memory formation. Nat Commun. 2024;15(1):7926.

- 17. Braem S, De Houwer J, Demanet J, Yuen KSL, Kalisch R, Brass M. Pattern Analyses Reveal Separate Experience-Based Fear Memories in the Human Right Amygdala. J Neurosci. 2017;37(34):8116-30.
- 18. Magalhães Ferreira S, Cuypers K, Hehl M. Studying lateralization changes in the aging brain. Aging (Albany NY). 2023;15(4):884-6.
- 19. von Elm E, Altman DG, Egger M, Pocock SJ, Gøtzsche PC, Vandenbroucke JP. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. The Lancet. 2007;370(9596):1453-7.
- 20. Jack CR, Jr., Barnes J, Bernstein MA, Borowski BJ, Brewer J, Clegg S, et al. Magnetic resonance imaging in Alzheimer's Disease Neuroimaging Initiative 2. Alzheimers Dement. 2015;11(7):740-56.
- 21. Jack CR, Jr., Bernstein MA, Fox NC, Thompson P, Alexander G, Harvey D, et al. The Alzheimer's Disease Neuroimaging Initiative (ADNI): MRI methods. J Magn Reson Imaging. 2008;27(4):685-91.
- 22. Holmberg M, Malmgren H, Heckemann RA, Johansson B, Klasson N, Olsson E, et al. A Longitudinal Study of Medial Temporal Lobe Volumes in Graves Disease. J Clin Endocrinol Metab. 2022;107(4):1040-52.
- 23. Wheeler SM, McLelland VC, Sheard E, McAndrews MP, Rovet JF. Hippocampal Functioning and Verbal Associative Memory in Adolescents with Congenital Hypothyroidism. Front Endocrinol (Lausanne). 2015;6:163.
- 24. Quinlan P, Horvath A, Eckerström C, Wallin A, Svensson J. Higher thyroid function is associated with accelerated hippocampal volume loss in Alzheimer's disease. Psychoneuroendocrinology. 2022;139:105710.

- 25. Zhang T, Zhao L, Chen C, Yang C, Zhang H, Su W, et al. Structural and Functional Alterations of Hippocampal Subfields in Patients With Adult-Onset Primary Hypothyroidism.

 J Clin Endocrinol Metab. 2024;109(7):1707-17.
- 26. Cooke GE, Mullally S, Correia N, O'Mara SM, Gibney J. Hippocampal volume is decreased in adults with hypothyroidism. Thyroid. 2014;24(3):433-40.
- 27. Toll A, Blanco-Hinojo L, Berge D, Manzano A, El Abidi K, Perez-Solà V, et al. Relationship between thyroid-stimulating hormone, BDNF levels, and hippocampal volume in antipsychotic-naïve first-episode psychosis patients. Front Psychiatry. 2023;14:1301714.
- 28. Bagamasbad PD, Espina JEC, Knoedler JR, Subramani A, Harden AJ, Denver RJ. Coordinated transcriptional regulation by thyroid hormone and glucocorticoid interaction in adult mouse hippocampus-derived neuronal cells. PLoS One. 2019;14(7):e0220378.
- 29. Gilbert ME, Goodman JH, Gomez J, Johnstone AFM, Ramos RL. Adult hippocampal neurogenesis is impaired by transient and moderate developmental thyroid hormone disruption. Neurotoxicology. 2017;59:9-21.
- 30. Gilbert ME, Sanchez-Huerta K, Wood C. Mild Thyroid Hormone Insufficiency During Development Compromises Activity-Dependent Neuroplasticity in the Hippocampus of Adult Male Rats. Endocrinology. 2016;157(2):774-87.
- 31. Powell MH, Nguyen HV, Gilbert M, Parekh M, Colon-Perez LM, Mareci TH, et al. Magnetic resonance imaging and volumetric analysis: novel tools to study the effects of thyroid hormone disruption on white matter development. Neurotoxicology. 2012;33(5):1322-9.
- 32. Malone TJ, Tien N-W, Ma Y, Cui L, Lyu S, Wang G, et al. A consistent map in the medial entorhinal cortex supports spatial memory. Nature Communications. 2024;15(1):1457.

- 33. Navarro Schröder T, Haak KV, Zaragoza Jimenez NI, Beckmann CF, Doeller CF. Functional topography of the human entorhinal cortex. eLife. 2015;4:e06738.
- 34. Biechele G, Wind K, Blume T, Sacher C, Beyer L, Eckenweber F, et al. Microglial activation in the right amygdala-entorhinal-hippocampal complex is associated with preserved spatial learning in AppNL-G-F mice. NeuroImage. 2021;230:117707.
- 35. Yu J, Salans MA, Karunamuni R, Tibbs MD, Huynh-Le MP, Unnikrishnan S, et al. Entorhinal Cortical Volume is Associated With Verbal and Visuospatial Memory Performance in Primary Brain Tumor Patients. International Journal of Radiation Oncology*Biology*Physics. 2021;111(3, Supplement):S99-S100.
- 36. Wang Y, Hou Y, Dong J, Xu H, Gong J, Chen J. Developmental iodine deficiency and hypothyroidism reduce phosphorylation of calcium/calmodulin-dependent kinase II in the rat entorhinal cortex. Biol Trace Elem Res. 2010;137(3):353-63.
- 37. Accorroni A, Rutigliano G, Sabatini M, Frascarelli S, Borsò M, Novelli E, et al. Exogenous 3-lodothyronamine Rescues the Entorhinal Cortex from β -Amyloid Toxicity. Thyroid. 2020;30(1):147-60.
- 38. Jin T, Wang R, Peng S, Liu X, Zhang H, He X, et al. Developmental Hypothyroidism Influences the Development of the Entorhinal-Dentate Gyrus Pathway of Rat Offspring. Endocrinol Metab (Seoul). 2022;37(2):290-302.
- 39. Bauer M, Berman S, Stamm T, Plotkin M, Adli M, Pilhatsch M, et al. Levothyroxine effects on depressive symptoms and limbic glucose metabolism in bipolar disorder: a randomized, placebo-controlled positron emission tomography study. Mol Psychiatry. 2016;21(2):229-36.
- 40. Nakamura K, Inomata T, Uno A. Left Amygdala Regulates the Cerebral Reading Network During Fast Emotion Word Processing. Front Psychol. 2020;11:1.

- 41. Goerlich-Dobre KS, Lamm C, Pripfl J, Habel U, Votinov M. The left amygdala: A shared substrate of alexithymia and empathy. Neuroimage. 2015;122:20-32.
- 42. Chen S, Yin Y, Zhang Y, Jiang W, Hou Z, Yuan Y. Childhood abuse influences clinical features of major depressive disorder by modulating the functional network of the right amygdala subregions. Asian J Psychiatr. 2024;93:103946.
- 43. Damborská A, Honzírková E, Barteček R, Hořínková J, Fedorová S, Ondruš Š, et al. Altered directed functional connectivity of the right amygdala in depression: high-density EEG study. Sci Rep. 2020;10(1):4398.
- 44. Peng X, Lau WKW, Wang C, Ning L, Zhang R. Impaired left amygdala resting state functional connectivity in subthreshold depression individuals. Sci Rep. 2020;10(1):17207.
- 45. Picci G, Taylor BK, Killanin AD, Eastman JA, Frenzel MR, Wang YP, et al. Left amygdala structure mediates longitudinal associations between exposure to threat and long-term psychiatric symptomatology in youth. Hum Brain Mapp. 2022;43(13):4091-102.
- 46. Framorando D, Moses E, Legrand L, Seeck M, Pegna AJ. Rapid processing of fearful faces relies on the right amygdala: evidence from individuals undergoing unilateral temporal lobectomy. Sci Rep. 2021;11(1):426.
- 47. Fowler CH, Bogdan R, Gaffrey MS. Stress-induced cortisol response is associated with right amygdala volume in early childhood. Neurobiol Stress. 2021;14:100329.
- 48. Jagger-Rickels A, Stumps A, Rothlein D, Evans T, Lee D, McGlinchey R, et al. Aberrant connectivity in the right amygdala and right middle temporal gyrus before and after a suicide attempt: Examining markers of suicide risk. J Affect Disord. 2023;335:24-35.
- 49. Veer IM, Oei NY, van Buchem MA, Spinhoven P, Elzinga BM, Rombouts SA. Evidence for smaller right amygdala volumes in posttraumatic stress disorder following childhood trauma. Psychiatry Res. 2015;233(3):436-42.

- 50. Montero-Pedrazuela A, Fernández-Lamo I, Alieva M, Pereda-Pérez I, Venero C, Guadaño-Ferraz A. Adult-onset hypothyroidism enhances fear memory and upregulates mineralocorticoid and glucocorticoid receptors in the amygdala. PLoS One. 2011;6(10):e26582.
- 51. Shukla PK, Sittig LJ, Andrus BM, Schaffer DJ, Batra KK, Redei EE. Prenatal thyroxine treatment disparately affects peripheral and amygdala thyroid hormone levels. Psychoneuroendocrinology. 2010;35(6):791-7.

aracteristics		u. 0.u	dy partici _l	μαιτισ		Healt	hy contro	ls	Mild o	cognit	tive impai	rment		De	ementia			F	emales				Males	
	N	Beta	95% CI	p-value	N	Beta	95% CI	p-value	N	Beta	95% CI			Beta	95% CI	p-value	N	Beta	95% CI	p-value	N	Beta	95% CI	<i>p-</i> 1
Η (μIU/mL)	1,348	19	-39, 74	0.5	522	22	-47, 90	0.5	641	67	-16, 150	de mode		-177	-295, -60	0.003	667	-17	-95, 61	0.7	681	39	-42, 120	
ι ι (μιο/ιτι L)	1,540	10	-33, 74	0.3	JZZ	22	- 4 7, 30	0.3	041	07		ted mod		-1//	-233, -00	0.003	007	-1/	-93, 01	0.7	001	33	+ ∠, 1∠∪	
,	1,205	27	-16, 70	0.2	452	13	-46, 72	0.7	583	92	23, 161	0.009		-141	-250, -32	0.012	591	24	-33, 81	0.4	614	27	-37, 92	(
e (years)		-53	-60, -46	<0.001	452	-51	-62, -40	<0.001	583	-57	-67, -47	<0.001		-33	-50, -16	<0.001	591	-50	-59, -41	<0.001	614	-57	-67, -46	<0
	1,205				452				583				170											
emale Male		274	 161, 387	<0.001		<u>-</u>	- 116, 235	0.5		-	— 183, 527	<0.001		_ 113	- -195, 421	0.5								
	1,205	Z/4	101, 307	~U.UUI	452	00	110, 233	0.5	583	ررر	103, 327	-U.UU I	170	113	133, 421	0.5	591				614			
/hite		_	_			_	_			_	_			_	_			_	_			_	_	
lack			-321, 117	0.4			-350, 164	0.5			-354, 402	0.9			-1,112,464	0.4		45	-203, 293	0.7		-274	-679, 132	
ther	4.00=		-113, 353	0.3	450		-183, 446	0.4	F.C.2		-266, 487	0.6	470	49	-564, 662	0.9	F0.	171	-113, 456	0.2		100	-285, 485	
ication (years) gnosis	1,205 1,205	-13	-32, 6.4	0.2	452	-42	-70, -14	0.003	583	-5.7	-34, 23	0.7	170	45	-9.8, 99	0.11	591 591	-29	-55, -2.5	0.032	614 614	-2.5	-31, 26	
C	1,203	_	_														231	_	_		014	_	_	
CI		-288	-407, -169	<0.001														-260	-420, -100	0.002		-347	-525, -169	<
ementia			-909, -453															-449	-779, -120	0.008			1,191, -554	<
DE ε4	1,205	-93	-168, -18	0.015	452	-74	-193, 46	0.2	583	-64	-174, 46	0.3	170	4.0	-187, 195	>0.9	591	-75	-176, 26	0.14	614	-91	-202, 20	
mber) AS ₁₃ (points)	1,205	-41	-49, -34	<0.001	452		-38, -5.7	0.008	583	-57	-69, -46	<0.001	170	-17	-33, -1.7	0.030	591	-46	-56, -35	<0.001	614	-38	-49, -26	<(
S (points)	1,205		-39, 31	0.8	452		-101, 24	0.2	583	-3.5	-53, 45	0.9	170	83	-3.2, 169	0.059	591	-21	-67, 26	0.4	614	15	-38, 68	
11	1,205	18	8.2, 27	<0.001			1.9, 28	0.025	583	24	9.5, 38		170	-6.7	-34, 21	0.6	591	20	8.6, 30	<0.001	614	13	-3.8, 30	(
/ (mm³) AS 13: Alzheime			0.00, 0.00												0.00, 0.00				0.00, 0.00				0.00, 0.00	<0
ume, MCI : Milo	i Cogni	itive In	npairment,	, TSH : Th	nyroid	l Stimu	llating Ho	mone.															36	

Beta 8 6.1 5 11 5 -25	95% CI -23, 35	p-value 0.7			hy contro 95% CI -32, 37	p-value	N	Beta	itive impa 95% CI Crude mo	p-value	N	Beta	95% CI	p-value	N	Beta	95% CI	p-value	N	Beta	95% CI	p-v
5 11	·	0.7	522	2.6	22 27				Crudo ma													
5 11	·	0.7	JZZ	∠.0		0.0	641		-7.7, 78		100	-90	152 27	0.005	667	12	52 20	0.5	681	18	24 50	
					-5∠, 51	0.9	041		djusted n	0.11 nodels	185	-90	-152, -27	0.005	00/	-12	-52, 28	0.5	001	18	-24, 59	C
ב פר	-11, 34	0.3	452	-3.2	-34, 28	0.8	583	49	13, 86	0.008	170	-63	-120, -5.2	0.033	591	11	-19, 41	0.5	614	11	-22, 45	Ġ
	-29, -22	<0.001	452	-23	-29, -17	<0.001	583	-28	-33, -22	<0.001	170	-19	-28, -10	<0.001	591	-23	-28, -18	<0.001	614	-28	-34, -23	<0
5			452				583				170											,
120	— 70 108	<0.001		40	— //2 1//2	0.3		171	<u></u>	<0.001		60	102 222	0.5								9
	79, 196	<0.001		43	-43, 142	0.5		1/1	80, 202	\0.001		00	-103, 223	0.5	591				614			
_	_															_	_			_	_	
-136	-198, -73	<0.001																				<0
	-433, -194	<0.001														-194	-368, -20	0.029		-412	-579, -246	
	_		452				583	_	_		170		_		591		_		614		_	
	<u>-</u> -144 85	0.6		-12	-147 123	0.9		32	-168 232	0.8		-267	-683 149	0.2		37	<u>-</u> 94 168	0.6		-108	-320 103	(
47	-75, 169	0.5			•	0.7				0.6		43	-281, 366	0.8		90	-60, 241	0.2				>
5 -5.2	-15, 4.9	0.3	452	-19	-34, -4.8	0.009	583	-0.56	-16, 15	>0.9	170	17	-11, 46	0.2	591	-15		0.039	614	1.9	-13, 17	(
5 -42	-81, -2.5	0.037	452	-28	-91, 34	0.4	583	-31	-89, 28	0.3	170	-6.2	-107, 94	>0.9	591	-19	-72, 35	0.5	614	-53	-111, 4.6	0.
5 -22	-2718	<0.001	452	-12	-20, -3.1	0.008	583	-29	-3623	<0.001	170	-14	-22, -5.5	0.001	591	-26	-3120	<0.001	614	-20	-26, -14	<0
					· ·																	
					·																·	>
				7.6				10									3.3, 15		614	6.3		ر مر
)isassa 1	0.00, 0.00	Scalo	452 12 itam	0.00	0.00, 0.00	SU.UUI	D D IV	0.00	v.Mass.In	0.002	1/U	0.00	0.00, 0.00	CO.UUI	ric Do	0.00	ion Scale	UC · ⊔	014 althu 1	Contro	0.00, 0.00	<0.
5 5 5															-136 -198, -73 <0.001 -313 -433, -194 <0.001 452	591	This color Thi	The color of the	Second Column Second Colum	198	The color of the	-136

aracteristics			y participa			ıı c alı	thy contro	/13	IVIII	a cogr	nitive impa	mmeni		$\boldsymbol{\nu}$	ementia				emales				Males	
	N	Beta	95% CI	p-value	N		95% CI	p-value		Beta	95% CI	p-value	N	Beta	95% CI	p-value	N	Beta	95% CI	p-value	N	Beta	95% CI	p-
U (ull I/ml)	1 2/10	. 12	10 /11	0.4		10	17 EE	0.2	6/1	วา	Crude mo		100	00	152 22	0.000	667	4.0	16 26		601	21	21 64	
H (μIU/mL)	1,348	12	-18, 41	0.4	522	19	-17, 55	0.3	641	32	-11, 76 Adjusted n	0.14 nodels	192	-08	-153, -22	0.009	00/	-4.9	-46, 36	0.8	681	21	-21, 64	
H (µIU/mL)	1,205	15	-7.9, 39	0.2	452	16	-15, 47	0.3	583	42	5.7, 79	0.023	170	-78	-142, -15	0.016	591	13	-18, 44	0.4	614	16	-19, 51	
e (years)	1,205	-28	-31, -24	<0.001	452		-34, -22			-29	-35, -24							-27	-32, -22	<0.001		-29	-34, -23	<(
κ	1,205				452				583				170											
emale		_	_	0.004		_	_			_	_	0.004		_	_									
Male	1 205	135	74, 196	<0.001		10	-83, 104	0.8		184	93, 275	<0.001		53	-127, 233	0.6	E 0.1				614			
gnosis IC	1,205	_	_														591	_	_		014	_	_	
1C1		-152	-217, -88	<0.001														-151	-238, -64	<0.001		-171	-267, -75	<(
Dementia			-491, -245															-255	-435, -76	0.005			-632, -289	
cial profile	1,205				452				583				170				591				614			
Vhite		_	_			_	_			_	_			_	_			_	_			_	_	
Black		-72	-191, 46	0.2		-81 102	-219, 56	0.2		-7.5	-207, 192	>0.9			-518, 403	0.8		7.6	-127, 142	>0.9		-165	-383, 52	
other ucation (years)	1,205	74 -7.8	-52, 199 -18, 2.7	0.3 0.14	452	102	-66, 270 -38, -7.9	0.2 0.003	583	54 -5.1	-146, 253 -20, 10	0.6 0.5	170	6.2 27	-352, 365 -4.6, 59	>0.9 0.093	591	81 -14	-74, 236 -28, 0.15	0.3 0.052	614	107 -4.4	-100, 314 -20, 11	
OE ε4																								
mber)	1,205	-51	-92, -11	0.013	452	-45	-109, 18	0.2	583	-33	-91, 25	0.3	170	10	-101, 122	0.9	591	-57	-112, -1.7	0.043	614	-38	-97, 22	
AS ₁₃ (points)	1,205	-19	-23, -15	<0.001	452		-19, -1.6		583	-28	-34, -22	<0.001		-3.7	-13, 5.5	0.4	591	-20	-26, -15	<0.001		-18	-24, -11	<(
S (points)	1,205	-0.20	-19, 19	>0.9	452		-59, 7.4		583	-1.1	-27, 25	>0.9	170	61	10, 111		591	-14	-39, 12		614	15	-14, 43	ا
// (mm ³)	1,205	9.1	4.1, 14	<0.001			0.43, 14	0.038		14	6.3, 21	<0.001			-23, 9.4		591	10	4.6, 16	<0.001		6.7	-2.3, 16	(
/ (mm³) A S 13: Alzheime	1,205						0.00, 0.00				0.00, 0.00							0.00	0.00, 0.00	<0.001			0.00, 0.00	
ume, MCI : Mild	Cogniti	ve ітра	uirnent, 1 3	ri: Inyro	ou Stil	nuiatir	іу ногтоп	е.															38	

Crude models SH (µIU/mL)	Characteristics			ıdy particip				hy contro				nitive impa		N		Dementia	n-value	N		emales	n-value	N	Rota	Males	n
SH (µ U/mL)		N	Beta	95% CI	p-value	N	Beta	95% CI	p-value	N	Beta		p-value models		Beta	95% CI	p-value	N	Beta	95% CI	p-value	N	Beta	95% CI	p-vo
SH (\(\(\perp(\parp)\))))))})) \) \end{picture} \) \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	SH (µIU/mL)	1,348	44	3.9, 85	0.032	522	42	-11, 94	0.12	641	80	21, 138	0.007	185	-79	-183, 24	0.13	667	15	-39, 70	0.6	681	57	-1.1, 116	0.0
ge (years) 1,205 -18 -24, -12 -20, 010 452 -24 -34, -14 -30, -14 -20, -15 -24 -34, -15 -24, -15 -34, -17 -24 -39, -10 -30, -30, -10 -30, -10 -30, -10 -30, -10 -30, -10 -30, -10	011/11/11																								
Female 1,205								•												•				•	0.0 <0.
Female Male 266 174, 358 <0.001 190 35, 344 0.016 215 77, 353 0.002 340 80, 600 0.011 1,205	,			-24, -12	₹0.001		-24	-34, -14	\0.001		-13	-21, -5.1	0.001		-24	-33, -10	<0.001	331	-12	-13, -4.3	0.002	014	-23	-54, -17	√υ.
Figure 1 1,205		_,	_	_			_	_			_	_			_	_									
HC				174, 358	<0.001		190	35, 344	0.016		215	77, 353	0.002		340	80, 600	0.011								
MCI Dementia		1,205																591				614			
Dementia 1,205 -698, -322 <0.001 -508 -699, -322 <0.001 -640 -898, -382 1,205 -898, -988			-232	-329 -136	<0.001														<u> </u>	— -249 14	0.080		-	— -471 -183	<0.
Acial profile White				,																					<0.
Black Other	acial profile	1,205		,		452				583				170				591		,		614		•	
Other ducation (years) 11 -178, 200 >0.9 91 -186, 367 0.5 -26 -327, 276 0.9 -11 -528, 507 >0.9 100 -134, 333 0.4 -91 -403, 220 (1,205 -4.2 -20, 11 0.6 452 -11 -35, 14 0.4 583 0.62 -22, 24 >0.9 170 -3.4 -49, 42 0.9 591 3.0 -18, 24 0.8 614 -12 -35, 11 $1,205$ 24 24 24 24 24 24 24 24			_				_				_												_		_
ducation (years) $1,205$ -4.2 $-20,11$ 0.6 452 -11 $-35,14$ 0.4 583 0.62 $-22,24$ >0.9 170 -3.4 $-49,42$ 0.9 591 3.0 $-18,24$ 0.8 614 -12 $-35,11$ 0.06 $18,24$ $18,29$ $19,29$ 19								•																	0
POE $\varepsilon 4$ aumber) $\begin{array}{cccccccccccccccccccccccccccccccccccc$		1.205		•		452				583				170				591				614			0
number) DAS ₁₃ (points) 1,205 -26 -32, -20 <0.001 452 0.20 -14, 15 >0.9 583 -33 -42, -24 <0.001 170 -30 -43, -17 <0.001 591 -31 -39, -22 <0.001 614 -22 -31, -12 (DS) (points) 1,205 -2.5 -31, 26 0.9 452 -31 -85, 24 0.3 583 4.9 -34, 44 0.8 170 21 -52, 94 0.6 591 -42 -80, -3.5 0.033 614 34 -9.4, 76																									0 0
DS (points) 1,205 -2.5 -31, 26 0.9 452 -31 -85, 24 0.3 583 4.9 -34, 44 0.8 170 21 -52, 94 0.6 591 -42 -80, -3.5 0.033 614 34 -9.4, 76	,	,		•				·												Ť					Ŭ
	., ,			•				· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·				•									<0. 0. 0
MI 1,205 4.0 -3.7, 12 0.3 452 6.9 -4.7, 18 0.2 583 -0.73 -12, 11 >0.9 170 2.8 -21, 26 0.8 591 5.2 -3.7, 14 0.2 614 1.9 -12, 15								•								-32, 34									0.
(CV (mm³) 1,205 0.00 0.00, 0.00 <0.001 452 0.00 0.00, 0.00 <0.001 583 0.00 0.00, 0.00 <0.001 170 0.00 0.00, 0.00 0.001 591 0.00 0.00, 0.00 <0.001 614 0.00 0.00, 0.00 DAS ₁₃ : Alzheimer's Disease Assessment Scale – 13 items, APOE : Apolipoprotein E, BMI : Body Mass Index, CI : Confidence Interval, GDS : Geriatric Depression Scale, HC : Healthy Controls, ICV : colume, MCI : Mild Cognitive Impairment, TSH : Thyroid Stimulating Hormone.	CV (mm³)	1,205	0.00	0.00 0.00	<0.001	452	0.00	0.00 0.00	<0.001	583	0.00	0.00.000	<0.001	170	0.00	0.00 0.00	0.001	591	0.00	0.00 0.00	<0.001	614	0.00	0.00 0.00	<∩

<i>p</i> -1
0.
U
0.
1 <0
8 <0
37 <0
3 (
; (8
, (
5 <u< b=""></u<>
0 <0
: Intra
73 111 12 24 4.8 33 9.7 0.0

ge (years) 1,205 8.6 -12, -5.3 -30.01 452 -13 -19, -6.7 -30.01 583 -6.6 -11, -1.8 -10, -1.0 -10, -1.0 -10, -1.0 -10, -1.2 -10, -1.	H (µIU/mL) H (µIU/mL) e (years)	N 1,348	Beta			N										050/ 01			Data	OEO/ CI	n ualua	N	Rota	95% CI	p-va
Help(HmL) 1,348 16 -7.2, 38 0.2 522 26 -5.8, 58 0.1 641 22 -10, 55 0.2 185 -52 -108, 4.5 0.071 667 2.1 -29, 33 0.9 681 22 -11, 54 Help(HmL) 1,205 12 -9.0, 33 0.3 452 20 -12, 53 0.2 583 22 -10, 54 0.2 170 -29 -8.1, 23 0.3 591 5.9 -23, 35 0.7 614 18 -12, 48 Help(HmL) 1,205 12 -9.0, 33 0.3 452 20 -12, 53 0.2 583 22 -10, 54 0.2 170 -29 -8.1, 23 0.3 591 5.9 -23, 35 0.7 614 18 -12, 48 Help(HmL) 1,205 12 -9.0, 33 0.3 452 20 -12, 53 0.2 583 22 -10, 54 0.2 170 -29 -8.1, 23 0.3 591 5.9 -23, 35 0.7 614 18 -12, 48 Help(HmL) 1,205 12 -9.0, 33 0.3 452 20 -12, 53 0.2 583 22 -10, 54 0.2 170 -29 -8.1, 23 0.3 591 5.9 -23, 35 0.7 614 18 -12, 48 Help(HmL) 1,205 12 -9.0, 33 0.3 452 20 -12, 53 0.2 583 22 -10, 54 0.2 170 -29 -8.1, 23 0.3 591 5.9 -23, 35 0.7 614 18 -12, 48 Help(HmL) 1,205 12 -9.0, 33 0.3 452 20 -12, 53 0.2 583 22 -10, 54 0.20 170 -29 -8.1, 23 0.3 591 5.9 -23, 35 0.7 614 18 -12, 48 Help(HmL) 1,205 12 -9.0, 33 0.3 452 20 -12, 53 0.2 583 22 -10, 54 0.001 583 -6 -11, 1.8 0.007 170 -8.1 -16, 0.02 0.049 591 5.7 -10, -1.2 0.013 614 -12, -17, -7.5 0.013 614 -12, -17, -7.5 0.014 614 614 614 614 614 614 614 614 614 6	H (μlU/mL) e (years) x		16					JJ,0 CI	p-value	7.4	вета				Beta	95% CI	p-value	N	веца	95% CI	p-value	14	Detu	5570 0.	, , , , , , , , , , , , , , , , , , ,
Highly Michael (1998) 1,205	H (μlU/mL) e (years) x		10	-7 2 32	n 2	522	26	-5 2 52	0 11	641	22				-52	-108 / 5	0 071	667	2.1	-29 33	n 9	681	22	-11 5/	0.
He (\(\pi\begin{array}{c c c c c c c c c c c c c c c c c c c	e (years) x	1 205		-1.2, 30	0.∠	JZZ	20	-5.0, 56	0.11	041	22				-JZ	100, 4.3	0.071	007	∠. ⊥	-23, 33	0.5	001	22	-11, 34	U
1,205	x	1,203	12	-9.0, 33	0.3	452	20	-12, 53	0.2	583	22				-29	-81, 23	0.3	591	5.9	-23, 35	0.7	614	18	-12, 48	0.
The make of the ma			-8.6	-12, -5.3	<0.001		-13	-19, -6.7	<0.001		-6.6	-11, -1.8	0.007		-8.1	-16, -0.02	0.049	591	-5.7	-10, -1.2	0.013	614	-12	-17, -7.3	<0.0
Male 117 63, 172 <0.001 81 -17, 179 0.11 98 17, 178 0.017 143 -3.2, 289 0.055	emale	1,205				452				583				170											
Segmosis of C			<u> </u>	— 63 172	<0.001		<u></u>	— -17 179	0 11		98	— 17 178	0.017		143	<u> </u>	0.055								
Fig. 1.45 - 2.02, -87		1,205	11/	05, 172	~0.001		01	17, 173	0.11		50	17, 170	0.017		140	J. Z, ZOJ	0.033	591				614			
Dementia cial profile	iC	,	_	_															_	_			_	_	
Calal profile White 1,205																				•				-269, -102	<0.
Vinite		4.00=	-245	-356, -135	<0.001					F.C.2				4=0				F.C. 1	-194	-360, -27	0.023		-303	-452, -154	<0.
Black 19 -87, 124 0.7 -40 -184, 104 0.6 114 -63, 290 0.2 -3.0 -377, 371 >0.9 27 -98, 152 0.7 5.3 -184, 190 obtained by the control of the con		1,205		_		452	_	_		583	_	_		1/0	_			591	_			614	_		
Other State of the process of the pr			19	-87. 124	0.7		- 40	-184 104	0.6		114	-63, 290	0.2		-3 0	-377 371	>0 9		_ 27	-98, 152	0.7		5.3	- -184, 195	>(
fucation (years) 1,205 -1.8 -11, 7.5 0.7 452 -2.5 -18, 13 0.8 583 -3.1 -17, 10 0.6 170 5.9 -20, 32 0.6 591 7.4 -5.7, 21 0.3 614 -11 -24, 2.5 color by the following states of								•																-208, 153	0
Imber) 1,205 -15 -51, 22 0.4 452 -4.2 -71, 63 >0.9 583 0.24 -51, 52 >0.9 170 -37 -127, 54 0.4 591 -24 -75, 27 0.4 614 -13 -65, 39 DAS ₁₃ (points) 1,205 -13 -17, -9.1 <0.001 452 -1.5 -11, 7.7 0.8 583 -16 -21, -11 <0.001 170 -14 -21, -6.3 <0.001 591 -14 -20, -8.9 <0.001 614 -11 -17, -5.9 DS (points) 1,205 1.8 -15, 19 0.8 452 -16 -51, 19 0.4 583 4.9 -18, 28 0.7 170 22 -19, 63 0.3 591 -24 -47, -0.12 0.049 614 26 1.2, 51 1,205 2.7 -1.8, 7.3 0.2 452 4.8 -2.6, 12 0.2 583 1.3 -5.4, 8.0 0.7 170 -0.01 -13, 13 >0.9 591 4.5 -0.96, 10 0.11 614 0.10 -7.8, 8.0 V (mm³) 1,205 0.00 0.00, 0.00 <0.001 452 0.00 0.00, 0.00 <0.001 583 0.00 0.00, 0.00 <0.001 170 0.00 0.00, 0.00 0.00 0.00 0.00, 0.00 0.00, 0.00 0.00, 0.00 DAS ₁₃ : Alzheimer's Disease Assessment Scale — 13 items, APOE: Apolipoprotein E, BMI: Body Mass Index, CI: Confidence Interval, GDS: Geriatric Depression Scale, HC: Healthy Controls, ICV	ucation (years)	1,205	-1.8	-11, 7.5	0.7	452		-18, 13	0.8	583		-17, 10	0.6	170	5.9		0.6	591	7.4		0.3	614	-11	-24, 2.5	0.
Thorse (MAS ₁₃ (points)) 1,205 -13 -17, -9.1 <0.001 452 -1.5 -11, 7.7 0.8 583 -16 -21, -11 <0.001 170 -14 -21, -6.3 <0.001 591 -14 -20, -8.9 <0.001 614 -11 -17, -5.9 (C) (points) 1,205 1.8 -15, 19 0.8 452 -16 -51, 19 0.4 583 4.9 -18, 28 0.7 170 22 -19, 63 0.3 591 -24 -47, -0.12 0.049 614 26 1.2, 51 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1		1,205	-15	-51, 22	0.4	452	-4.2	-71, 63	>0.9	583	0.24	-51, 52	>0.9	170	-37	-127, 54	0.4	591	-24	-75, 27	0.4	614	-13	-65, 39	>0 0. 0.:
OS (points) 1,205 1.8 -15, 19 0.8 452 -16 -51, 19 0.4 583 4.9 -18, 28 0.7 170 22 -19, 63 0.3 591 -24 -47, -0.12 0.049 614 26 1.2, 51 1,205 2.7 -1.8, 7.3 0.2 452 4.8 -2.6, 12 0.2 583 1.3 -5.4, 8.0 0.7 170 -0.01 -13, 13 >0.9 591 4.5 -0.96, 10 0.11 614 0.10 -7.8, 8.0 $V(mm^3)$ 1,205 0.00 0.00, 0.00 <0.001 452 0.00 0.00, 0.00 <0.001 583 0.00 0.00, 0.00 <0.001 170 0.00 0.00, 0.00 0.002 591 0.00 0.00, 0.00 0.003 614 0.00 0.00, 0.00 $OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO$		1 205	-13		<0.001	452	-1 5	-11 77	0.8			-21 -11	< 0.001	170	-14		<0.001	591	-14		<0.001	614	-11		<0.0
M 1,205 2.7 -1.8, 7.3 0.2 452 4.8 -2.6, 12 0.2 583 1.3 -5.4, 8.0 0.7 170 -0.01 -13, 13 >0.9 591 4.5 -0.96, 10 0.11 614 0.10 -7.8, 8.6 (V (mm³) 1,205 0.00 0.00, 0.00 <0.001 452 0.00 0.00, 0.00 <0.001 583 0.00 0.00, 0.00 <0.001 170 0.00 0.00, 0.00 0.00 0.00 591 0.00 0.00, 0.00 0.00 0.00, 0.00 0.00, 0.00																								1.2, 51	0.0
DAS ₁₃ : Alzheimer's Disease Assessment Scale – 13 items, APOE: Apolipoprotein E, BMI: Body Mass Index, CI: Confidence Interval, GDS: Geriatric Depression Scale, HC: Healthy Controls, ICV	11	•			0.2	452	4.8	-2.6, 12	0.2	583	1.3	-5.4, 8.0	0.7											-7.8, 8.0	>0
					<0.001	452	0.00	0.00, 0.00	<0.001	583	0.00	0.00, 0.00	<0.001	170	0.00			591	0.00	0.00, 0.00	0.003			0.00, 0.00	<0.0
ume, wc. . wild Cognitive impairment, 13n : Thyroid Stiriulating Hormone.										tein E	, BMI	: Body Ma	ass Index,	CI : C	onfider	nce Interva	al, GDS : (Geriatr	ic Dep	ression Sc	cale, HC :	Health	ny Cont	trols, ICV : I	ntrac
	ıme, ivici : Mild	Cogniti	ve Imp	pairment, 1	ISH: Thy	roid .	Stimula	ating Horn	ione.																
																								4	1

Sh	TSH (µIU/mL) 1,348 TSH (µIU/mL) 1,205 Isge (years) 1,205 Fermale Male Diagnosis 1,205 HC MCI	18 16 -20 — 235	95% Cl -9.2, 46 -5.2, 37 -24, -17	0.2 0.14	522 452 452	Beta 37 25	95% CI 1.6, 73 -7.2, 56	p-value 0.041	N 641	Beta C 23	95% CI Crude mode -17, 63	p-value e ls 0.3		Beta	95% CI			Beta	95% CI			Beta	95% CI
SH (µ U/mL)	SH (µIU/mL) 1,205 ge (years) 1,205 ex 1,205 Female Male iagnosis 1,205 HC MCI	16 -20 — 235	-5.2, 37 -24, -17	0.14	452 452	25	-7.2, 56			23	-17, 63	0.3	185	-67	-128, -6.4	0.030	667	-8.7	-46, 29	0.7	681	31	-6.8, 69
Secondary 1,205 16 -5.2,37 0.14 452 25 -7.2,56 0.13 583 30 -3.0,64 0.075 70 -43 -94,69 0.09 591 60 -22,34 0.00 614 23 -28,18	SH (µIU/mL) 1,205 ge (years) 1,205 ex 1,205 Female Male iagnosis 1,205 HC MCI	16 -20 — 235	-5.2, 37 -24, -17	0.14	452 452	25	-7.2, 56						182	-b/	-128, -6.4	0.030	00/	-ŏ./	-46, 29	0.7	σδΙ	31	-b.8, b9
SH (µ(\begin{align*}{l}\) 1,205 16 5-2, 37 0.14 452 25 7-2, 56 0.13 583 30 -3.0, 64 0.075 170 -43 -94, 6.9 0.090 591 6.0 -22, 34 0.7 614 28 -3.4, 60 96 96 96 96 96 96 96	ge (years) 1,205 ex 1,205 Female Male fagnosis 1,205 HC MCI	-20 235	-24, -17 <u>—</u>		452			0.13	F.C. 2	ли													
ge (years) 1,205 -20 -24, -17 < 0,001 452 -22 -28, -16 < 0,001 583 -22 -27, -17 < 0,001 170 -10 -18, -2.6 0,009 591 -18 -22, -13 < 0,001 614 -23 -28, -18 ex 170 -18, -18 -18, -1	ge (years) 1,205 ex 1,205 Female Male iagnosis 1,205 HC MCI	-20 235	-24, -17 <u>—</u>		452				583		-		170	-43	-94, 6.9	0.090	591	6.0	-22, 34	0.7	614	28	-3.4, 60
Female Male 235 179,290	Female Male iagnosis 1,205 HC MCI	 235			452		-28, -16	<0.001	583	-22	•			-10	· ·					<0.001			
Male 235 179, 290 v.001 80 -15, 175 0.10 261 177, 344 v.001 268 126, 410 v.001 591 501 614 4 64 -119, 10 1 120 501 501 501 501 501 501 501 501 501 50	Male iagnosis 1,205 HC MCI		170, 200		452				583				170										
lagnosis HC	iagnosis 1,205 HC MCI			0.004		_	_			_	_	0.004		_	_	0.004							
HC	HC MCI		179, 290	<0.001		80	-15, 175	0.10		261	1//, 344	<0.001		268	126, 410	<0.001	E 0.1				614		
MCI	MCI	_	_														291	_	_		614	_	_
Dementia acial profile 1,205		-162	-221103	<0.001														-179	-259, -100	<0.001		-153	-24165
Acial profile White 1,205	Domonia		•																				
Black Other	acial profile 1,205				452				583				170				591				614		
Other -7.3 -122 , 107 >0.9 87 -84 , 259 0.3 -54 -236 , 129 0.6 -21 -304 , 261 0.9 54 -88 , 196 0.5 -92 -282 , 98 -282 , 99 , 99 -282 , 99 -282 , 99 -282 , 99 -282 , 99 -282 , 99 -282 , 99 -282 , 99 -282 , 99 -282 , 99 -282 , 99 -282 , 99 -282 , 99 -282 , 99 -282 , 99 -29 , 99 -29 , 99 ,		_	_			_	_			_	_			_	_				_			_	_
ducation (years) $1,205$ 0.28 $-9.3, 9.8$ >0.9 452 -3.5 $-19, 12$ 0.7 583 -1.4 $-15, 13$ 0.8 170 11 $-14, 36$ 0.4 591 -4.5 $-18, 8.5$ 0.5 614 3.1 $-11, 17$ 170 17			•								·				•				•				
POE \$\varepsilon 4\$ 1,205 -34 -71, 3.1 0.073 452 -14 -79, 51 0.7 583 -9.3 -63, 44 0.7 170 -45 -133, 43 0.3 591 4.9 -45, 55 0.8 614 -64 -119, -10 -10					152				583				170				501		•		614		
umber) 1,205 -34 -71, 3.1 0.073 452 -14 -79, 51 0.7 583 -9.3 -63, 44 0.7 170 -45 -133, 43 0.3 591 4.9 -45, 55 0.8 614 -64 -119, -10 DAS ₁₃ (points) 1,205 -17 -21, -14 <0.001	POF sA																		•				
DS (points) 1,205 -10 -27,7.2 0.3 452 -28 -62,5.7 0.10 583 -10 -34,14 0.4 170 22 -18,62 0.3 591 -12 -35,12 0.3 614 -7.8 -34,18 exitety (binary) 1,205 19 -53,92 0.6 452 26 -165,217 0.8 583 18 -81,117 0.7 170 4.8 -129,139 >0.9 591 -33 -138,71 0.5 614 61 -41,164 exitety (binary) MI 1,205 6.9 2.2,11 0.004 452 8.2 1.0,15 0.025 583 5.3 -1.7,12 0.14 170 2.8 -9.9,16 0.7 591 8.9 3.6,14 0.001 614 2.5 -5.8,11 extraction (binary) 1,205 0.00 0.00,000 <0.001 452 0.00 0.00,000 <0.001 583 0.00 0.00,000 <0.001 170 0.00 0.00,000 <0.001 591 0.00 0.00,000 <0.001 614 0.00 0.00,000	1 205	-34		0.073	452	-14	-79, 51	0.7	583	-9.3	-63, 44	0.7	170	-45	-133, 43	0.3	591	4.9	-45, 55	0.8	614	-64	-119, -10
nxiety (binary) 1,205 19 -53,92 0.6 452 26 -165,217 0.8 583 18 -81,117 0.7 170 4.8 -129,139 >0.9 591 -33 -138,71 0.5 614 61 -41,164 MI 1,205 6.9 2.2,11 0.004 452 8.2 1.0,15 0.025 583 5.3 -1.7,12 0.14 170 2.8 -9.9,16 0.7 591 8.9 3.6,14 0.001 614 2.5 -5.8,11 CV (mm³) 1,205 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0																							· · · · · · · · · · · · · · · · · · ·
MI 1,205 6.9 2.2,11 0.004 452 8.2 1.0,15 0.025 583 5.3 -1.7,12 0.14 170 2.8 -9.9,16 0.7 591 8.9 3.6,14 0.001 614 2.5 -5.8,11 $V(mm^3)$ 1,205 0.00 0.00,000 <0.001 452 0.00 0.00,000 <0.001 583 0.00 0.00,000 <0.001 170 0.00 0.00 0.00 <0.001 591 0.00 0.00,000 <0.001 614 0.00 0.00,000	,,		•				•				•												
$(V/(mm^3))$ 1.205 0.00 0.00 0.00 <0.001 452 0.00 0.00 0.00 <0.001 583 0.00 0.00 0.00 <0.001 170 0.00 0.00 0.00 <0.001 591 0.00 0.00 0.00 <0.001 614 0.00 0.00 0.00											·												
1,255 0.00 0.00, 0.00 10			•				•												•				
DAS ₁₃ : Alzheimer's Disease Assessment Scale – 13 items, APOE: Apolipoprotein E, BMI: Body Mass Index, CI: Confidence Interval, GDS: Geriatric Depression Scale, HC: Healthy Controls, ICV: Intra	DAS ₁₃ : Alzheimer's Disea	ease Assi	essment Sc	ale – 13	items	. APO	E: Apolino	pprotein F	535 E. BMI	: Bodv	Mass Index	. CI : Con	fidenc	e Inter	val. GDS : (Geriatric	: Den	ressio	n Scale. H	I C : Health	ıv Co	ntrols	ICV: Int

havaata-d-dl	Tot	al stu	idy partici	ipants		Hea	Ithy contro	ols	Mil	d cog	nitive impa	airment		D	ementia			F	emales			Λ	lales	
haracteristics	N	Beta	95% CI	p-value	N		95% CI	p-value		Beta	95% CI	p-value		Beta	95% CI	p-value	N	Beta	95% CI	p-value	N	Beta	95% CI	•
۱ اس/ ۱۱۱ / ۱۱	1 240	07	E 6 22	0.2	Enn	17	1 / 26	0.070	C / 1	10		models		20	61 2 4	0.070	667	20	22 17	0.0	601	1/	E 0 24	
iΗ (μIU/mL)	1,348	ŏ./	-5.6, 23	0.2	522	1/	-1.4, 36	0.070	641	10	-10, 31 Adjust e	0.3 ed mode	185 Is	-29	-61, 3.4	0.079	667	-2.8	-22, 17	0.8	681	14	-5.8, 34	
SH (µIU/mL)	1,205	8.6	-2.7, 20	0.14	452	11	-6.4, 28	0.2	583	16	-1.9, 34	0.080		-13	-40, 13	0.3	591	6.7	-8.3, 22	0.4	614	12	-5.2, 29	
ge (years)	1,205	-11	-12, -8.8	<0.001		-11	-15, -8.1	<0.001	583	-11	-14, -8.8	<0.001	170	-6.3	-10, -2.2	0.003	591	-9.2	-11, -6.8	<0.001	614	-12	-15, -9.3	3 <
ex	1,205				452				583				170											
=emale Male		-	— 72, 131	<0.001		- 27	 -24, 78	0.3		- 107	— 63, 152	<0.001		- 133	— 58, 208	<0.001								
viale agnosis	1,205	102	72, 151	<0.001		21	-24, 70	0.5		107	03, 132	<0.001		155	30, 200	₹0.001	591				614			
HC	1,200	_	_															_	_			_	_	
<i>ICI</i>		-65	-96, -34	<0.001														-73	-115, -31	<0.001		-63	-110, -16	
Dementia		-166	-226, -106	<0.001														-157	-244, -70	<0.001		-180	-264, -97	7 <
cial profile	1,205				452				583				170				591				614			
White Black		-31	- -89, 26	0.3		-	- -94, 55	0.6		— 19	 -79, 116	0.7		- -178	- -371, 15	0.070		— -18	- -84, 47	0.6		- -42	- -148, 64	
Other		6.9	-6 <i>9</i> , 20	0.8		48	-94, 33 -44, 140	0.8		-35	-132, 62	0.7		60	-90, 209	0.070		32	-84, 47 -43, 107	0.4		-26	-146, 64	
lucation	1,205		-3.0, 7.1		450		-7.9, 8.3	>0.9	E02	0.83	-6.6, 8.3		170	8.4	-4.9, 22		591	-2.7		0.4	614	5.5		
ears)	1,205	2.1	-5.0, 7.1	0.4	452	0.25	-7.9, 6.5	>0.9	505	0.65	-0.0, 6.3	0.8	170	0.4	-4.9, 22	0.2	291	-2.1	-9.6, 4.2	0.4	014	5.5	-1.9, 13	
POE ε4 umber)	1,205	-16	-36, 3.3	0.10	452	-5.2	-40, 30	0.8	583	-7.2	-36, 21	0.6	170	-19	-65, 28	0.4	591	6.7	-20, 33	0.6	614	-34	-62, -4.6	5 0
DAS ₁₃ (points)	1 205	-9 4	-11, -7.3	<0.001	452	-2 7	-7.4, 2.1	0.3	583	-12	-15, -9.0	<0.001	170	-7.2	-11, -3.3	<0.001	591	-11	-13, -7.9	<0.001	614	-7.6	-11, -4.5	5 <
OS (points)	1,205		-17, 1.8	0.11	452		-33, 3.6	0.12	583		-19, 6.7	0.4	170	0.78	-20, 22	>0.9	591	-6.0	-18, 6.4	0.3	614	-9.0	-23, 4.9	
xiety (binary)	1,205	14	-24, 52	0.5	452		-61, 143	0.4	583	11	-42, 63	0.7	170	0.72	-70, 72	>0.9	591	-2.8	-58, 52	>0.9	614	26	-28, 81	
_	1,205		1.1, 6.0				-0.36, 7.3	0.076	583		-0.91, 6.5	0.14	170	3.7	-3.1, 10	0.3	591	4.2	1.4, 7.1	0.004	614	1.7	-2.7, 6.1	L
			0.00, 0.00					<0.001		0.00	0.00, 0.00				0.00, 0.00		591		0.00, 0.00	<0.001	614		0.00, 0.0	
JAS ₄₃ : Alzhein	nar'e I N	sease	e Assessn	nent Scal	le – 13	3 item:	s, APOE : A	Apolipopro	teın E	:, BMI.	: Body Mas	s Index, (CI: Co	ntidend	ce Interval,	GDS: G	eriatric	Depres	ssion Scale,	, HC : Hea	althy C	ontrols	, ICV : Int	trac

SH (µIU/mL) 1,348	8 9.57.4	-5.0, 24	p-value	N 522	Beta	thy contro 95% Cl	p-value	N	Beta	nitive impa 95% Cl	p-value	N	Beta	95% CI	p-value	N	Beta	emales 95% CI	p-value	N	Beta	95% CI	p-v
SH (μIU/mL) 1,205 te (years) 1,205 x 1,205	5 7.4		0.2	522									Deta	J370 CI	p-varue	,,	Deta	3070 01	p 10				٠ ۾
SH (μIU/mL) 1,205 te (years) 1,205 x 1,205	5 7.4		0.2		20	0.99, 39	0.039	641	12	-9.3, 34	models 0.3		30	-72, -5.2	0.024	667	-5.9	-25, 14	0.6	681	17	-3.2, 37	. 0
e (years) 1,205 x 1,205					20	0.99, 59	0.035	041	12	Adjuste			-59	-12, -3.2	0.024	007	-5.9	-25, 14	0.6	001	1/	- 3.∠, 31	
x 1,205	5 0 9	-4.4, 19	0.2	452	14	-3.4, 31	0.12	583	14	-4.2, 33	0.13		-30	-59, -0.56	0.046	591	-0.68	-17, 15	>0.9	614	17	-0.95, 34	0.
		-12, -7.9		452	-11	-14, -7.4	<0.001	583	-11	-13, -8.0	<0.001		-4.1	-8.7, 0.46	0.078	591	-8.7	-11, -6.2	<0.001	614	-11	-14, -8.4	<0
emale	5			452				583				170											
lale	133	— 102, 164	<0.001		 52	 0.24, 104	0.049		 153	— 106, 200	<0.001		— 135	 53, 218	0.002								
ignosis 1,205		102, 104	\0.001		32	0.24, 104	0.043		155	100, 200	\0.001		133	55, 210	0.002	591				614			
ic i	_	_															_	_			_	_	
1CI																	-106	-151, -61	<0.001		-90	-139, -41	- (1
ementia		-239, -113		452				F.0.2				170				F.0.1	-142	-234, -50	0.003	C14	-208	-296, -121	<0
cial profile 1,205 Vhite	5	_		452		_		583	_	_		170	_	_		591	_	_		614	_	_	0
lack	-16	-76, 44	0.6		-44	-120, 33	0.3		74	-29, 176	0.2		-119	-332, 93	0.3		-6.9	-76, 62	0.8		-30	-141, 81	
ther	-14	-78, 50	0.7		39	-55, 133	0.4		-19	-121, 83	0.7		-81	-246, 84	0.3		22	-58, 101	0.6		-66	-172, 40	
ucation (years) 1,205	5 -1.8	-7.1, 3.5	0.5	452	-3.7	-12, 4.6	0.4	583	-2.2	-10, 5.6	0.6	170	2.6	-12, 17	0.7	591	-1.8	-9.1, 5.5	0.6	614	-2.5	-10, 5.3	
OE ε4 1,205	5 -18	-38, 3.1	0.10	452	-8.6	-44, 27	0.6	583	-2.1	-32, 28	0.9	170	-26	-77, 25	0.3	591	-1.8	-30, 26	0.9	614	-31	-61, -0.68	0
mber) 1,205 AS ₁₃ (points) 1,205	5 -8.1	-10, -5.9	<0.001	452	-2 7	-7.6, 2.2	0.3	583	-11	-14, -8.3	<0.001	170	-3.6	-7.9, 0.61	0.093	591	-9.3	-12, -6.3	<0.001	614	-6.4	-9.6, -3.2	<0
	5 -2.7	-12, 6.9		452		-32, 4.9	0.2	583	-3.9	-17, 9.5	0.6		21	-2.2, 44	0.075	591		-19, 7.4	0.4	614	1.2	-13, 16	,
.,	5 5.5	-35, 46		452		-120, 89	0.8	583	6.8	-48, 62	0.8	170		-74, 82	>0.9	591	-30	-89, 28	0.3	614	35	-22, 92	1
		0.69, 5.9		452		0.78, 8.6	0.019	583	2.5	-1.4, 6.4			-0.83	-8.3, 6.6	0.8	591	4.7	1.7, 7.7	0.002	614	0.77	-3.8, 5.4	
/ (mm³) 1,205	5 0.00	0.00, 0.00	<0.001	452	0.00	0.00, 0.00	<0.001	583	0.00	0.00, 0.00	<0.001	170	0.00	0.00, 0.00	0.002	591	0.00	0.00, 0.00	<0.001	614	0.00	0.00, 0.00	-0
V (mm) D AS ₁₃ : Alzheimer's Dis Ilume, MCI : Mild Cogn	oisease gnitive Ir	Assessmer npairment,	nt Scale - TSH : Th	– 13 ii nyroid	tems, Stimu	APOE: Ap	oolipopro mone.	tein E,	, BMI :	Body Mass	Index, (CI : C	onfidei	nce Interva	o.002 al, GDS : (Geriati	ric Dep	ression Sc	ale, HC :	Health	ny Cont	rols, ICV : In	ti