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 69 

 70 

Key Points 71 

Question: Is ectopic adipose deposition measured on pre-pandemic CT scan associated with risk of respiratory 72 

failure from SARS-CoV-2? 73 

 74 

Findings: In this retrospective cohort study of 8812 participants enrolled in 4 large cohort studies pre-75 

pandemic, greater pericardial and abdominal visceral adipose tissue were associated with increased risk of 76 

severe SARS-CoV-2 infection independent of body mass index, diabetes, hypertension, and cardiovascular 77 

disease. 78 

 79 

Meaning: Pericardial and abdominal visceral adipose tissue are associated with increased risk of 80 

hospitalization or death from SARS-CoV2 independent of existing measures of obesity; use of these measures 81 

could improve our risk assessments.  82 
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Abstract 83 

Importance: Higher body mass index (BMI) increases risk of respiratory failure and death from SARS-CoV-2 84 

infection. BMI is imprecise and fails to account for adipose tissue distribution. 85 

 86 

Objective: To determine whether pericardial adipose tissue (PAT), abdominal visceral adipose tissue (VAT), 87 

subcutaneous adipose tissue (SAT), or hepatic adipose deposition on pre-pandemic computed tomography 88 

(CT) scans associate with increased risk of hospitalization or death from SARS-CoV-2. 89 

 90 

Design: The Collaborative Cohort of Cohorts for COVID-19 Research (C4R) ascertained SARS-CoV-2 91 

outcomes among participants from 14 US-based cohort studies. This analysis includes participants enrolled in 92 

the Jackson Heart, CARDIA, MESA, and Framingham Heart studies. 93 

 94 

Participants: C4R attempted to enroll all cohort participants who were alive on March 1, 2020 and had not 95 

withdrawn consent for cohort participation. 96 

 97 

Exposures: Adipose depot size measured on research CT scans performed between 2000 and 2011. 98 

 99 

Outcome: Time from March 1, 2020 to hospitalization or death from SARS-CoV-2 infection ascertained by self-100 

report or active surveillance and confirmed when available, by protocolized record review. 101 

 102 

Results: There were 8412 participants with at least one CT adipose measure, among whom 184 events 103 

occurred over a median (interquartile range) of 547 (338-609) days. Participants were 57% female with median 104 

(SD) age of 69.1 (10.4) years. In adjusted models, both higher PAT (per doubling in PAT volume, HR 1.62, 105 

95% CI 1.25-2.09) and higher VAT (per 1-standard deviation, HR 1.41, 95% CI 1.20-1.67) were associated 106 

with greater hazards of hospitalization or death from SARS-CoV-2. Associations remained after adjustment for 107 

BMI, diabetes, cardiovascular disease, and hypertension. SAT was associated with hospitalization or death 108 

from SARS-CoV-2 but not after adjustment for BMI, diabetes, cardiovascular disease or hypertension. Hepatic 109 

adipose deposition was not associated with hospitalization or death. Associations did not vary by sex, age, 110 

race, cohort, smoking status, diabetes, or BMI. 111 

 112 

Conclusions and Relevance: Greater CT-measured pericardial and abdominal visceral adipose tissue were 113 

associated with increased hazards of hospitalization or death from SARS-CoV-2 independent of BMI or clinical 114 

cardiometabolic comorbidities. Further research should investigate use of CT adipose measures to quantify 115 

risk of severe disease from viral infections and to investigate mechanisms linking adiposity to lung injury.116 

  117 
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Introduction 118 

Obesity, defined by body mass index (BMI), is associated with an increased risk of testing positive for 119 

severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2),1,2 as well as for adverse COVID-19 120 

outcomes including severe disease,3-8 intensive care,9 and death.8,10,11 Obesity is also a known risk factor for 121 

acute lung injury in other settings.12-18 Nonetheless, the mechanisms linking obesity to lung injury are 122 

incompletely understood.  123 

Our understanding of mechanisms linking obesity to respiratory failure is partly limited by use of BMI as 124 

a measure of adiposity. While BMI is readily available and low-cost,19 it fails to capture differences in adipose 125 

tissue distribution, which vary by sex, race, and ethnicity.20-24 Adipose distribution is associated with both 126 

cardiovascular and all-cause mortality in the general population, independent of BMI.20,25-27 When energy 127 

intake exceeds energy utilization, excess energy is stored as free fatty acids, preferentially in subcutaneous 128 

adipose tissue depots.28 With continued energy excess, the storage capacity of subcutaneous depots can get 129 

overwhelmed and these free fatty acids are increasingly stored in ectopic locations (e.g. visceral adipose, 130 

pericardial adipose, and liver).29 Greater ectopic adiposity is associated with increased systemic inflammation, 131 

changes in innate immune cell function, and increased cardiovascular disease, kidney disease, insulin 132 

resistance, and diabetes mellitus.30-33  133 

Whether greater ectopic fat storage alters risk of respiratory failure, such as with SARS-CoV-2 134 

infection, is unknown. Prior work investigating the association between adiposity and outcomes from SARS-135 

CoV-2 has relied on small single-center cohorts using clinically-indicated computed tomography (CT) imaging 136 

and is therefore limited by indication bias.34-39 Hence, we evaluated the association between adipose tissue 137 

depot sizes on pre-pandemic research CT scans and the risk of hospitalization or death from SARS-CoV-2 138 

infection in the Collaborative Cohort of Cohorts for COVID-19 Research (C4R) study.40 We hypothesized that 139 

greater pericardial (PAT), abdominal visceral adipose tissue (VAT), and hepatic adipose deposition on pre-140 

pandemic CT scans would associate with increased risk of hospitalization or death from SARS-CoV-2.  141 

 142 

Methods 143 

C4R attempted to enroll all participants from 14 large US-based longitudinal cohorts who were alive on 144 

March 1, 2020 and had not withdrawn consent for cohort participation. Enrollment in C4R included completion 145 

of two serial questionnaires (April 2020 through February 2023) and ascertainment of COVID-related 146 

hospitalizations and deaths by questionnaires or active surveillance. Additional information on protocols and 147 

mechanisms of pooling clinical and demographic data across studies has been published.40 Four of the studies 148 

participating in C4R had available pre-pandemic CT-measures of adipose depots: the Multi-Ethnic Study of 149 

Atherosclerosis (MESA),41 the Jackson Heart Study (JHS),42 the Coronary Artery Risk Development in Young 150 

Adults (CARDIA) study,43 and the Framingham Heart Study (FHS).44 Descriptions of these cohorts are included 151 

in the Supplementary Methods.  152 
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We performed a retrospective analysis of C4R participants from the aforementioned cohorts who had 153 

any available CT-measure of adipose tissue prior to the pandemic. Cohorts obtained institutional review board 154 

approval from participating centers. Each cohort had previously consented participants to in-person, telephone, 155 

and/or e-mail contact and for abstraction of medical records. Consent for COVID-19 data collection was 156 

obtained in accordance with cohort-specific procedures. Participants with missing data for incident SARS-CoV-157 

2 infection were excluded from this report. Recurrent SARS-CoV-2 infections, which were rare, were not 158 

analyzed. 159 

 160 

Measurement of exposures 161 

Methods for participant sampling for CT and protocols for adipose depot measurement in each cohort 162 

are further described in the Supplementary Methods. Chest and abdominal CT scans were performed as part 163 

of the research protocol in JHS from Exam 2 (2007-2010) and CARDIA Year 25 (2010-2011).45-47 Abdominal 164 

CT scans were performed as part of the research protocol in FHS Offspring, Generation 3, Omni 1, and Omni 165 

2 cohorts (2008-2011). Chest CT and abdominal CT scans performed as part of the research protocol in MESA 166 

from Exams 1-4 (2000-2007) and Exams 2-3 (2002-2004), respectively.47-49 Pericardial adipose tissue (PAT) 167 

volume quantification protocols were identical in all three cohorts with available measures (CARDIA, JHS, 168 

MESA).  169 

Primary analyses pooled PAT volumes across cohorts. The PAT distribution was skewed, therefore 170 

analyses were performed after log-2 transformation and results are reported per doubling of PAT volume. 171 

Measurement protocols for abdominal visceral adipose tissue (VAT), subcutaneous adipose tissue (SAT), and 172 

liver attenuation differed across all cohorts. FHS did not have available measures of liver attenuation. To pool 173 

these values, measures were standardized within each cohort and then the standardized values were 174 

combined for analyses; this approach was also used in secondary analyses of PAT.  175 

 176 

Measurement of outcomes 177 

Our primary outcome was hospitalization or death from SARS-CoV-2 infection, hereafter described as 178 

“severe events.” This outcome was defined by self-report or active surveillance and confirmed, when available, 179 

by protocolized review of medical records or death certificates. Our secondary outcome was intensive care unit 180 

admission or death (hereafter, “critical events”) from SARS-CoV-2 infection, ascertained and confirmed in the 181 

same manner.  182 

 183 

Measurement of covariates 184 

Covariates were obtained at the most recent pre-pandemic exam, which was not necessarily the time of 185 

CT (Supplemental Methods). BMI was calculated using height and weight, which were measured using 186 

standard methods at the most recent pre-pandemic exam. Vaccination date and status were obtained by self-187 

report; vaccination status at the time of infection was obtained by comparing infection and vaccination dates. 188 
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Clinical cardiovascular disease was defined by self-reported physician diagnosis or adjudication/administrative 189 

criteria for myocardial infarction, angina pectoris, or stroke. 190 

 191 

Statistical Analysis 192 

Adipose tissue measures were compared to BMI using Spearman correlations. For primary analyses, 193 

we used cause-specific hazards models to assess the association between adipose tissue measures and 194 

severe events over the period of March 1, 2020 to February 28, 2023. If a subject developed SARS-CoV-2 195 

infection but did not experience a severe event, they were censored on the date of non-severe infection as 196 

subjects with prior non-severe infection are unlikely to be hospitalized or die of SARS-CoV-2 with a subsequent 197 

infection. Participants who had not developed SARS-CoV-2 infection were censored on last available day of 198 

follow-up, defined as the date of the most recently completed questionnaire. Models were stratified by cohort to 199 

account for potential differences in the baseline hazards function. We evaluated the proportional hazards 200 

assumption by regressing Schoenfeld residuals over time. We visually display the associations between 201 

adipose measures and outcomes using the “survival” package with the “pspline” function in R.50,51  202 

We used directed acyclic graphs to identify a minimal set of covariates (Supplement Figure 1) including 203 

age, sex, race and ethnicity, educational attainment, smoking status, and vaccination status as a time-varying 204 

covariate. Among participants with missing vaccination data, vaccination status was classified as non-205 

vaccinated as of March 1, 2021 (since vaccination was rare before that time point) and subsequent follow-up 206 

was censored. To evaluate independent effects of CT-measured adiposity, we adjusted for BMI, diabetes, 207 

hypertension, and cardiovascular disease in separate models. We evaluated subgroups defined a priori by sex, 208 

age at C4R enrollment (<65 or ≥65), smoking status (never, former, current), diabetes, cohort, race, and WHO 209 

BMI category.52 We evaluated for interactions using Likelihood Ratio tests.  210 

We performed sensitivity analyses using Cox models with cohort as a frailty term using the “survival” 211 

package51 and Fine and Gray competing risks models stratified by cohort using the “crrSc” package.53 Frailty 212 

terms allow us to account for both between and within-study differences in risk.54 Fine and Gray models allow 213 

us to account for competing events without the assumption that these events are independent. For PAT, we 214 

performed additional sensitivity analyses with intra-cohort standardization. We used logistic regression models 215 

to evaluate the association between adipose depots and outcomes among participants with infection. These 216 

logistic regression models included cohort as a covariate. 217 

All analyses were performed using R version 4.0.0 (R Foundation for statistical computing) on the C4R 218 

Analysis Commons.  219 

 220 

Results 221 

 Twelve thousand fifty-four participants from the 4 included cohorts were enrolled in C4R, of whom 8412 222 

(70%) had at least one available CT-measure of any of the adipose depots of interest. Pericardial adipose 223 

measures were available from 6474 participants enrolled in MESA, CARDIA, and JHS from CT scans 224 
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performed between the years 2000 and 2011 (Figure 1). VAT, SAT, and liver attenuation measures were 225 

available on 6467, 6323, and 7251 participants, respectively (Figure 1). Characteristics were similar across 226 

subgroups with different available adipose measures (Supplemental Table 1) and differed between cohorts by 227 

age, race and ethnicity, and education status, consistent with known differences in the populations enrolled for 228 

each study (Supplemental Methods, Supplemental Table 2). Participants with greater pericardial or visceral 229 

adiposity were older, more likely to be male, White, and with diabetes and/or cardiovascular disease, and less 230 

likely to be Black (Supplemental Tables 3-4).  231 

One-hundred and eighty-four participants had a severe event and 794 had a non-severe infection over 232 

a median (interquartile range, IQR) follow-up of 547 (338-609) days. One-hundred thirty-nine of the severe 233 

events (76%) occurred within the first year of the pandemic when vaccine availability was low; only 8 severe 234 

events occurred among participants who had previously been vaccinated. 235 

 236 

BMI as a measure of adiposity 237 

BMI was strongly correlated with SAT (r = 0.76, p<0.0001, Supplemental Table 5). BMI was only 238 

moderately correlated with VAT (r = 0.50, p<0.0001) and weakly correlated with PAT (r = 0.33, p<0.0001). 239 

Lower liver attenuation indicates greater adipose content. BMI was weakly inversely correlated with liver 240 

attenuation (r = -0.22, p<0.0001).  241 

 242 

Pericardial Adipose Tissue 243 

 In the cohort with PAT measured, 135 participants experienced a severe event over a median (IQR) of 244 

365 (282-591) days. Greater PAT was associated with increased hazard of severe events in unadjusted and 245 

adjusted models (Table 1). In minimally-adjusted models, every doubling in PAT volume was associated with 246 

64% increased hazards of severe event (95% CI 128-109%, p=0.0001, Figure 2A). This association remained 247 

after inclusion of  BMI (HR 1.48, 95% CI 1.12-1.95), and diabetes, cardiovascular disease, and hypertension 248 

(HR 1.42, 95% CI 1.07-1.88). Greater pericardial adiposity was also associated with increased hazards of 249 

critical events in minimally-adjusted models (per doubling in PAT volume, HR 1.69, 95% CI 12-155%, p=0.013, 250 

Table 2). Findings were similar when PAT was standardized within cohorts and then analyzed (Supplemental 251 

Table 6), in analyses limited to those with documented infection (Supplemental Table 7), and in competing risk 252 

and frailty models (Supplemental Tables 7-8). 253 

      254 

Abdominal visceral adipose 255 

 In the cohort with VAT measured, 135 participants experienced a severe event over a median (IQR) of 256 

537 (365-610) days. Greater VAT was associated with increased hazards of severe events in unadjusted and 257 

adjusted models (Figure 2B, Table 1). In minimally adjusted models, every 1-SD increase in abdominal VAT 258 

was associated with 41% (95%CI 20-67%, p=0.0002) increased hazards of severe event. This association 259 

remained after inclusion of BMI (HR 1.32, 95% CI 1.09-1.56), and diabetes, cardiovascular disease, and 260 
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hypertension (HR 1.24, 95% CI 1.01-1.53). Greater abdominal visceral adiposity was associated with 261 

increased hazards of critical events in minimally adjusted models (per 1-SD increase in VAT, HR 1.48, 95% CI 262 

1.15-1.89, p=0.0021, Table 2). Findings were similar in sensitivity analyses (Supplemental Tables 7-9). 263 

 In models including both PAT and VAT, 1-SD increase in PAT was associated with 25% increased 264 

hazards (95% CI -4% to 63%) of severe events while 1-SD increase in VAT was associated with 23% 265 

increased hazards (95% CI -7% to 63%) in 3934 participants with available measures for both.  266 

 267 

 268 

Abdominal subcutaneous adipose 269 

 In the cohort with SAT measured, 129 participants experienced a severe event over a median (IQR) of 270 

538 (365-610) days. Greater SAT was associated with increased hazards of hospitalization or death in 271 

unadjusted and minimally adjusted models (Table 2) but not after adjustment for BMI or obesity-related 272 

complications. The plot suggested that there may be a threshold effect wherein after a certain amount of SAT 273 

has accumulated, greater SAT no longer alters risk (Figure 2C). Associations were similar in sensitivity 274 

analyses (Supplemental Tables 8-9). SAT was not associated with risk of critical illness or death (Table 2), or 275 

with risk of hospitalization among those with infection after adjustment for confounders (Supplemental Table 9).  276 

 277 

Liver attenuation  278 

 In the cohort with hepatic adiposity measured, 165 participants experienced a severe event over a 279 

median (IQR) of 365 (308-426) days. Decreased liver attenuation (indicating more intra-hepatic adipose 280 

deposition) was not associated with significantly increased risk of severe events (HR 1.14, 95% CI 0.99-1.32, 281 

Table 1, Figure 2D) in primary analyses or sensitivity analyses (Supplemental Tables 7-8).  282 

 283 

Interactions 284 

The associations between adipose depots and severe events were not modified by age, sex, smoking 285 

status, diabetes, cohort, race or BMI category (Figure 3, Supplemental Figure 2).  286 

 287 

 288 

Discussion 289 

 Greater pericardial, abdominal visceral adipose, and abdominal subcutaneous adipose deposition, but 290 

not liver adipose deposition, as measured on pre-pandemic CT scans, were associated with increased risk of 291 

hospitalization or death from SARS-CoV-2 infection. Both pericardial and abdominal visceral adiposity, but not 292 

subcutaneous adiposity, were associated with risk of severe events even after adjustment for BMI and 293 

cardiometabolic comorbidities, suggesting an independent contribution of pericardial and abdominal visceral 294 

adipose to risk of hospitalization or death from SARS-CoV-2.  295 
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 Our study is the first to evaluate pre-pandemic research CT-based measures of adiposity with risk of 296 

hospitalization or death due to SARS-CoV-2 infection. Prior work evaluating the association between CT 297 

measures of adiposity and outcomes from SARS-CoV-2 has had variable results.34-39 The differences are likely 298 

attributable to the selection bias inherent to single center retrospective studies of participants who required 299 

hospitalization and had a clinical indication for cross-sectional imaging. Use of pre-pandemic research cohorts 300 

with protocolized scans allowed us to evaluate the association between adiposity and disease severity on an 301 

unbiased, population level. We identified a consistent relationship between multiple measures of ectopic 302 

adipose deposition and risk of severe manifestations of SARS-CoV-2 infection. Our results are consistent with 303 

prior work demonstrating an association between research CT measures of adiposity and subclinical 304 

parenchymal lung injury in the general population,55 suggesting that there may be broader associations 305 

between adiposity and lung injury. Future work is needed to establish how CT-measured adiposity could be 306 

used to identify patients at high risk of respiratory failure in the setting of viral infection, such that they could be 307 

targeted for prevention and early treatment.  308 

Our results illustrate that the standard, BMI-based classification of obesity does not capture all 309 

adiposity-related risk. Prior work has established that BMI frequently mis-classifies adiposity.22,23,56,57 310 

Specifically, BMI has been shown to misclassify body fat status in 41% of subjects with heart failure and 70% 311 

of subjects with advanced lung disease.56,57 In our study, BMI did not strongly correlate with CT-measures of 312 

ectopic adipose deposition (PAT, VAT, liver attenuation), and associations of PAT and VAT with adverse 313 

SARS-CoV-2 outcomes were only modestly attenuated by co-adjustment for BMI. Notably, associations of PAT 314 

and VAT with adverse outcomes were not attenuated by co-adjustment for diabetes, cardiovascular disease, 315 

and hypertension, which are known risk factors for severe SARS-CoV-2 infection.58-60 This suggests direct 316 

pathways linking adiposity and adverse SARS-CoV-2 outcomes.  317 

Greater subcutaneous adiposity may increase risk of severe SARS-CoV-2 infection. Associations 318 

persisted after adjustment for a minimal set of confounders, but not after inclusion of BMI or cardiometabolic 319 

obesity complications. There may be a threshold effect between SAT and respiratory failure; greater SAT 320 

appeared to be associated with increased risk of respiratory failure until a threshold beyond which it no longer 321 

altered risk. Once subcutaneous adipose storage capacity is exceeded, fat begins to accumulate in other 322 

locations.61 Greater accumulation after this SAT storage capacity threshold has been reached, may not 323 

significantly alter its inflammatory state. 324 

There are multiple potential mechanisms to explain why excess adiposity may predispose adults to 325 

severe manifestations of SARS-CoV-2 infection.62 Increased pro-inflammatory adipose tissue macrophages 326 

result in greater production of inflammatory mediators including interleukin-6, monocyte chemoattractant 327 

protein-1, and leptin.63-68 Pericardial adipose may particularly increase risk of respiratory failure as it drains 328 

directly into the coronary and pulmonary circulations; chronic release of these inflammatory mediators into the 329 

pulmonary circulation may lead to greater endothelial damage or alterations in immune cell function, that leave 330 

the lung primed for greater injury in the setting of subsequent infection.32,66,69 Greater expression of ACE-2 (the 331 
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binding receptor SARS-CoV-2 virus) in visceral adipose depots could contribute to excess risk by creating a 332 

larger viral reservoir.70 Notably, obesity is a known risk factor for respiratory failure in multiple settings,12,14,15,71-333 
73 suggesting that this association, and these mechanisms, may not be specific to the SARS-CoV-2 virus. 334 

Future work should focus on whether these mechanisms could link ectopic adipose deposition to severe lung 335 

injury from viral infection and whether targeting ectopic adipose deposition could alter risk of lung injury.  336 

 There are limitations to our study. First, CT measures were obtained 10-20 years prior to the pandemic. 337 

Prior work has shown that these depots may increase over time.74,75. Future work should consider measuring 338 

pericardial and abdominal visceral adipose in cohorts with more recent imaging. Second, protocols for 339 

measurement of abdominal adipose tissue differed across cohorts. Reassuringly, associations were similar 340 

within cohorts and across two measures of adiposity. Future work should validate a single standard 341 

measurement protocol to increase the clinical utility of these measures. Third, ascertainment of mild infection is 342 

primarily dependent on testing and self-report. It is possible that some participants who we consider “at-risk” for 343 

incident infection were asymptomatically infected prior and should not have been part of the at-risk population. 344 

Fourth, approximately 6% of eligible cohort participants did not enroll in C4R, which may have introduced 345 

selection bias; however, reassuringly, characteristics of enrolled participants were similar to the eligible 346 

population.40  347 

 In conclusion, greater CT-measured pericardial and abdominal visceral adiposity were associated with 348 

increased risk of hospitalization or death from SARS-CoV-2 infection independent of BMI, diabetes, 349 

cardiovascular disease, and hypertension in a multi-ethnic US population-based sample of adults. Future work 350 

should investigate the use of CT measures of adipose to better quantify respiratory failure risk and to 351 

investigate mechanisms linking ectopic adipose deposition to risk of acute lung injury in the general population.  352 
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Figure Legends 

Figure 1: Flow Chart for study inclusion  

Figure 2: Continuous association between (A) pericardial adipose volume, (B) abdominal visceral adipose tissue, (C) abdominal subcutaneous 
adipose tissue, (D) liver attenuation (lower attenuation indicates greater lipid deposition) and hazard of hospitalization of death due to SARS-CoV2 
infection. Models were adjusted for age, sex, race, education, smoking status, vaccination status at infection, and stratified by study. Point estimates 
for each subject are represented as individual dots (which appear as a continuous line) with dashed lines representing 95% confidence bounds. 
Each vertical line along the x-axis represents an individual subject. 

Figure 3: Forest plot demonstrating association between pericardial adipose, visceral adipose and hazard of hospitalization or death in subgroups 
defined by age, sex, smoking status, diabetes, cohort, and race. Models include same covariates as minimally-adjusted models (age, sex, race and 
ethnicity, educational attainment, smoking status, vaccination status as time-varying covariate; stratified by cohort) but exclude the variable of 
interest when evaluating subgroups defined by that variable. 
 

 

  

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted October 2, 2024. ; https://doi.org/10.1101/2024.10.02.24314721doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.02.24314721


19 
 

Figure 1: Flow Chart for study inclusion  
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Definition of abbreviations: CARDIA: Coronary Artery Risk Development in Young Adults; JHS: Jackson Heart Study. 
MESA: Multi-Ethnic Study of Atherosclerosis; PAT: pericardial adipose tissue; VAT: visceral adipose tissue; SAT: 
subcutaneous adipose tissue. 
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Figure 2: Continuous association between (A) pericardial adipose volume, (B) abdominal visceral adipose tissue, (C) abdominal subcutaneous 
adipose tissue, (D) liver attenuation (lower attenuation indicates greater lipid deposition) and hazard of hospitalization of death due to SARS-CoV2 
infection. Models were adjusted for age, sex, race, education, smoking status, vaccination status at infection, and stratified by study. Point estimates 
for each subject are represented as individual dots (which appear as a continuous line) with dashed lines representing 95% confidence bounds. 
Each vertical line along the x-axis represents an individual subject. 
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Figure 3: Forest plot demonstrating association between pericardial adipose, visceral adipose and hazard of hospitalization or death in subgroups 
defined by age, sex, smoking status, diabetes, cohort, and race. Models include same covariates as minimally-adjusted models (age, sex, race and 
ethnicity, educational attainment, smoking status, vaccination status as time-varying covariate; stratified by cohort) but exclude the variable of 
interest when evaluating subgroups defined by that variable. 
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Table 1: Association between adipose depot size and hazard of hospitalization or death due to SARS-CoV-2 infection. 
 

Pericardial Adipose Tissue Visceral Adipose Tissue 

Number of events 135 135 

Event Rate 1.91 (1.61-2.3) 1.68 (1.42-1.98) 

 N HR (95% CI) per doubling in 
in adiposity 

P-value N HR (95% CI) per 1-SD increase 
in adiposity 

P-value 

Unadjusted* 6221 1.64 (1.28-2.09) 0.0001 6103 1.34 (1.15-1.56) 0.0002 

Minimally-Adjusted# 6213 1.62 (1.25-2.09) 0.0002 5985 1.41 (1.20-1.67) 0.0001 

Min Adjusted + BMI 6213 1.48 (1.12-1.95) 0.006 5985 1.32 (1.08-1.62) 0.008 

Min Adjusted + BMI, DM, HTN, CVD 6213 1.42 (1.07-1.88) 0.014 5981 1.24 (1.01-1.53) 0.041 

 Subcutaneous Adipose Tissue Liver Attenuation 

Number of events 129 165 

Event Rate 1.64 (1.37-1.94) 2.04 (1.74-2.37) 

 N HR (95% CI) per 1-SD 
increase in adiposity 

P-value N HR (95%CI) per 1-SD decrease 
in liver attenuation 

P-Value 

Unadjusted* 5964 1.20 (1.02-1.40) 0.028 6950 1.13 (0.99-1.30) 0.076 

Minimally Adjusted 5849 1.19 (0.998-1.43) 0.053 6934 1.14 (0.99-1.32) 0.069 

Min Adjusted + BMI 5849 0.93 (0.69-1.26) 0.64 6934 1.09 (0.94-1.27) 0.25 

Min Adjusted + BMI, DM, HTN, CVD 5845 0.91 (0.67-1.24) 0.57 6934 1.06 (0.91-1.23) 0.48 
Event-rates calculated using the Mid-P exact test and reported per 100 person-years.  
*Unadjusted models are stratified by cohort.  
#Minimally adjusted models include covariates for age, sex, race-ethnicity, educational attainment, smoking status, vaccination status as time-
varying covariate; stratified by cohort 
Definition of abbreviations: PAT: pericardial adipose tissue; BMI: body mass index; DM: diabetes mellitus; HTN: hypertension; HR: hazard ratio 
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Table 2: Association between adipose depot size and hazard of critical illness or death due to SARS-CoV-2 infection. 
 

Pericardial Adipose Tissue Visceral Adipose Tissue 

Number of events 56 65 

Event rate 7.92 (6.04-10.21) 8.10 (6.30-10.25) 

 N HR (95% CI) per doubling 
in adiposity 

P-value N HR (95% CI) per 1-SD increase in 
adiposity 

P-Value 

Unadjusted* 6221 1.85 (1.25-2.73) 0.002 6103 1.42 (1.15-1.76) 0.0013 

Minimally-Adjusted# 6213 1.69 (1.12-2.55) 0.013 5985 1.48 (1.15-1.89) 0.0021 

 Subcutaneous Adipose Tissue Liver Attenuation 

Number of events 64 80 

Event rate 8.1 1 (6.31-10.30) 9.87 (7.90-12.20) 

 N HR (95% CI) per 1-SD 
increase in adiposity 

P-value N HR (95% CI) per 1-SD decrease in 
liver attenuation 

P-value 

Unadjusted* 5964 1.15 (0.92-1.45) 0.22 6950 1.17 (0.96-1.42) 0.110 

Minimally-Adjusted# 5849 1.18 (0.92-1.53) 0.196 6934 1.22 (0.995-1.51) 0.056 
Event-rates calculated using the Mid-P exact test and reported per 1000 person-years.  
*Unadjusted models are stratified by cohort.  
#Minimally adjusted models include covariates for age, sex, race-ethnicity, educational attainment, smoking status, vaccination status as time-
varying covariate; stratified by cohort 
Definition of abbreviations: PAT: pericardial adipose tissue; BMI: body mass index; HR: hazard ratio. 
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