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ABSTRACT 

 
A substantial body of research examines the potential of gene-expression-based 

biomarkers for diagnosing and selecting treatments for neuropsychiatric disorders, yet no clear 

consensus has been reached regarding the influence of controllable factors such as study 

design and model selection on the performance of gene-expression-based classifiers.  To 

investigate study characteristics and methodologies that influence the accuracy of studies using 

transcriptomics to classify neuropsychiatric disorders, we conducted a literature review and 
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meta-regression of relevant studies. We extracted several characteristics from each study, 

including the number of samples in a training dataset, approach for model validation, and 

classification model. Using univariate and multi-variate mixed-effect meta-regression analyses, 

we estimated the association between these study characteristics and reported classification 

accuracies. Machine Learning (ML) models accounted for 55% of all models, Deep Learning 

(DL) models accounted for 20% and variations of Logistic Regression models making up the 

remaining 25%. Support vector machine(SVM) was the most common model type (17%).The 

use of withheld test samples (56%) was the most frequent approach for validating performance 

of classification models. We found significant associations between reported accuracies and 

study-rated bias risk, model type, class ratio, and validation approach. Overall, this review 

provides helpful insights into study characteristics that significantly influence classification 

accuracies and emphasizes the importance of prudent methodologies for training and 

evaluating classification models to mitigate biased accuracy estimates. 
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INTRODUCTION 

Over the past two decades, researchers have explored biomarkers associated with 

neuropsychiatric disorders, aiming to determine their capacity for accurate and objective 

identification of these disorders. These biomarkers have been evaluated from many modalities 

including genetics, transcriptomics, proteomics, epigenetics, metabolomics, and brain structural 

and functional activity. Due to the complexity and overlapping of features in neuropsychiatric 

disorders, developing algorithms for diagnosing patients or predicting treatment outcomes has 

been a significant challenge (Cornblath et al., 2019). Machine learning (ML) and Deep Learning 

(DL) methods have emerged as powerful tools for gaining insights into complex biology and 

disease, demonstrating considerable potential in uncovering useful biomarker patterns.  

Significant strides have been achieved in transcriptomic technology, expanding the 

number and diversity of RNAs that can be profiled in cells and tissues. This progress, coupled 

with substantial advances in genomics, has paved the way for in-depth explorations of transcript 

variants and splicing isoforms. These developments have prompted further investigations into 

the harnessing of the potential of RNA expression states as valuable diagnostic or therapeutic 

biomarkers. Many studies that investigated the diagnostic utility of gene expression-based 

biomarkers for neuropsychiatric disorders have used classification methods that range from 

conventional regression-based models, like logistic regression, to ML-based methods such as 

support vector machine or neural networks.  These studies have used a wide array of study 

designs and procedures to evaluate model performance. This procedural variability among 

studies poses an opportunity to investigate how study characteristics influence model 

performance. Earlier reviews of classification studies have found that the size of the training 

sample and procedures used for assessing model performance are among the most significant 

predictors of classification accuracy for genomics (Barnett et al., 2024) and brain structural 

imaging (Zhang-James et al., 2023; Vabalas et al., 2019). To date, neuropsychiatric studies that 
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evaluated classification performance for ML-based methods have commonly relied upon smaller 

sample sizes, falling below the recommended sample size (Vabalas et al., 2019) criteria for 

modeling complex tasks. This is particularly pertinent for genomics datasets, where the number 

of features often surpasses the number of samples by several orders of magnitude. 

Ascertaining tens-to-hundreds of thousands of samples for an individual classification study is 

generally neither practical nor feasible. Therefore, when investigators apply ML to smaller-sized 

datasets, it is crucial to adhere to standard procedures to ensure to prudently use the methods 

and evaluate them, thus mitigating the risk of bias (Vabalas et al., 2019). For example, it has 

been shown that k-fold cross-validation tends to strongly bias performance estimates, but 

nested cross-validation and designs that use dedicated training and testing split validation 

methods yield more accurate and less overfitted results (Vabalas et al., 2019; Quinn & Hess et 

al., 2024; Zhang-James et al., 2023).  

Several reviews highlight the potential for using blood-based gene expression-based 

biomarkers to individualize treatments for neuropsychiatric disorders, including depression 

(Mariani et al., 2021), schizophrenia (Mamdani et al., 2013), and Alzheimer’s Disease 

(Teunissen et al., 2022). The potential of blood-based biomarkers to reveal molecular pathways 

contributing to the etiology of neuropsychiatric disorders has also been reviewed, accompanied 

by recommendations for applying their clinical application (van de Leemput, Glatt, & Tsuang, 

2016). Several studies have examined the utility of blood-based gene-expression and other 

‘omics profiles to serve as useful proxies for the brain. The overarching consensus from these 

studies is that the expression levels of genes highly expressed in both the brain and blood 

exhibit a moderate correlation across these tissues (Tylee et al., 2013). These findings have 

been expanded upon by other studies, revealing that several gene co-expression networks in 

the human brain are significantly and strongly preserved in the blood (Cai et al., 2010; Hess et 

al., 2016). This work highlights the considerable potential of blood-based gene-expression to 
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serve as a useful proxy of the human brain. Recent advancements in transcriptome imputation 

methodologies, such as BrainGENIE, B-GEX, and TEEBoT, have further enhanced this 

potential by enabling gene expression profiles in the brain to be predicted based on gene 

expression profiles directly measured in the blood (Hess et al., 2023; Basu & Wang et al., 2021; 

Xu et al., 2020). The present study is a literature review and meta-regression of the gene 

expression-based classification studies centered on neuropsychiatric disorders aiming to 

investigate the study characteristics and methodologies that significantly influence the accuracy 

of the classification models using transcriptomics to predict neuropsychiatric disorders.  

 

METHODS 

  

Literature Search 

  

We conducted a literature search in PubMed to identify original research studies that 

evaluated diagnostic- or treatment-response based classifiers based on traditional statistical 

models (such as logistic regression) or supervised ML algorithms (such as k-nearest neighbors, 

linear discriminant analysis, support vector machine, random forest, neural networks, XGBoost, 

and Naïve Bayes, to name a few) in the context of neuropsychiatric disorders. The scope of our 

review focused on studies that used gene expression exclusively or in combination with other 

data modalities as input into classification models. We searched PubMed and Medline using the 

following keywords: (Alzheimer’s disease OR mild cognitive impairment OR attention-

deficit/hyperactivity disorder OR schizophrenia OR depression OR bipolar disorder OR autism 

OR post-traumatic stress disorder OR suicide*) AND (gene expression OR transcript*) AND 

(classification OR machine learning OR support vector machine OR random forest OR neural 

network OR decision tree OR naive bayes OR XGBoost OR linear discriminant analysis OR 

nearest neighbor OR deep learning OR elastic net OR lasso OR gradient boosting OR 

autoencoder OR long-short term memory OR gated recurrent units) AND (AUC or accuracy OR 
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area under the curve). Our literature search yielded 260 studies and their full texts were 

reviewed. Studies that did not report accuracy or area under the receiver operating 

characteristic curve (AUC) measures were excluded. Studies that reported diagnostic accuracy 

of gene expression-based biomarkers solely via a ROC analysis without any implementation of 

ML or regression-based classifiers were excluded. A total of 198 studies were retained for our 

review. 

  

Data Extraction 

The full-text articles were reviewed and the following study features were recorded for 

our analysis: the number of samples in training dataset per class, number of samples in the 

validation set per class (if available), approach for model validation (none, k-fold cross-validation 

(CV), leave-one-out cross-validation (LOOCV), divided training/test sets), choice of classification 

model, and performance metrics of classification model (i.e., AUC, sensitivity, specificity, or 

overall accuracy). If studies reported multiple accuracies for different parametrizations of the 

same classification model (e.g., multiple SVMs trained using the top 5, 10, … k differentially 

expressed genes), then the best-performing model was recorded for our analysis. As some 

studies did not report how many subjects were randomly assigned to training and validation 

sets, we approximated these numbers from the reported percentage of subjects included in 

each set (e.g., 80% in training set and 20% in test set). 

We evaluated studies for potential bias based on the following conditions: 

(1) Feature selection was performed exclusively on the samples designated for model 

training. 

(2) The training sample comprised a balanced set of classes or corrections were made 

to address class imbalance. 

(3) Performance of the classification model was evaluated on a set of data treated 

separate from the training data 
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Studies for which all three conditions were satisfied were assigned a “low likelihood” risk for 

potential bias. Studies for which one or more conditions were not satisfied or if unclear were 

assigned “probable/high likelihood” risk for potential bias. 

A total of 92 studies were retrieved and 532 models were extracted. Ten of the models 

were excluded due to not reporting classification performance in terms of AUC or overall 

accuracy (n=2) or failing to report sample size of the training set (n=9), leaving 521 total models 

from 91 studies that were used in the analyses. 

  

Statistical Analysis 

We performed univariate linear mixed-effect regression analyses to estimate the 

association between each study characteristic and reported classification performance. In our 

univariate regression analyses, we specified each study characteristic as an independent 

variable and reported accuracy as the dependent variable. We corrected p-values obtained by 

our univariate models using the Benjamini-Hochberg false discovery rate (FDR) procedure. To 

gain additional insight into the joint effect of study characteristics on reported accuracy, we 

conducted a meta-regression in which we modeled all study characteristics as predictors of 

reported classification performance via a linear mixed-effect regression model. All mixed-effect 

regression models included a random-effect term for study to account for the non-independence 

among study observations. Standard errors were approximated using the Satterthwaite 

approach. All statistical analyses were performed in R (v.4.2.1) and mixed-effect regression 

models were fitted using the lmerTest package. 

Secondary Analysis of Reported Accuracies in Relation to Tissue Source of Biomarkers  

It is plausible that biomarkers obtained from postmortem brain tissue analyses exhibit 

greater ontological relevance to psychiatric disorders than peripherally accessible RNAs, 

potentially influencing classification performance. Additionally, we suspected that tissue 

concordance (i.e., using either exclusively peripheral blood or postmortem brain for both model 
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training and validation) or discordance (i.e., transition models between brain and blood samples 

for model training and validation) between datasets might impact classification accuracy. We 

conducted a secondary analysis on a subset of our entire study pool, comprising 51 unique 

studies and 292 classification models. These studies evaluated the performance of classification 

models on completely withheld samples, independent from those used for model training. 

Among these models, 233 were trained on gene expression profiles from ex vivo peripheral 

blood samples and tested on independent ex vivo peripheral blood data. Additionally, two 

studies trained models on gene expression profiles observed in ex vivo blood samples and 

validated them using data obtained from postmortem brain tissue. Nine studies trained models 

using gene expression profiles observed in postmortem brain tissue and validated them using 

data from ex vivo peripheral blood. Finally, 37 models were trained on gene expression profiles 

observed in postmortem brain and validated in independent postmortem brain samples. We 

compared reported classification accuracies between these four groups of studies using a 

mixed-effect type III ANOVA using a unique study identifier as a random-effect term to adjust for 

repeated measurements. A significance threshold of p<0.05 was used for this post-hoc analysis. 

 

RESULTS 

 

Overview of Study Characteristics 

  

Our literature search uncovered 91 eligible studies, as detailed in the PRISMA diagram 

provided in Supplementary Figure 1. A complete collection of study data is provided in 

Supplementary File 1. These studies reported classification accuracies for 521 models for 13 

neuropsychiatric disorders, including:  autism spectrum disorder, Alzheimer’s disease, mild 

cognitive impairment, schizophrenia, bipolar disorder, psychosis, obsessive-compulsive 

disorder, attention-deficit/hyperactivity disorder, methamphetamine-associated psychosis, 

suicide,  major depressive disorder, post-traumatic stress disorder, and Parkinson’s disease. 
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Figure 1a summarizes the number and type of classification models reported per 

disorder. ML-based algorithms were used in 289 (55%) of reported classification models, DL-

based models in 105 (20%), logistic regression models accounted for 85 of the models (16%) 

and regularized logistic regression models accounted for 42 of the models (9%). Support vector 

machine (SVM) was the most frequently used classification model among the studies in our 

review, which accounted for 17% or 86 of the 521 models. A low potential risk of bias was found 

for 74 out of the 91 studies; 17 studies showed probable/high potential risk of bias. 

Classification models for Alzheimer’s disease and mild cognitive impairment accounted for 332 

(63%) of all reported classifiers. The most frequent validation approach for evaluating 

classification model performance was via withheld test sample (292 models), followed by k-fold 

cross-validation (189 models), and LOOCV (21 models). In 19 models, classification 

performance was reported based solely on a training sample without the use of cross-validation 

or an independent test sample. An overview of the number of studies that contributed to each 

disorder is provided in Figure 1b. A complete collection of study data is provided in 

Supplementary File 1.  

There was a significant difference in reported classification performance across 

diagnostic groups when accounting for bias level and sample size as illustrated in Figure 2 (p= 

0.029).  The mean accuracy for all models was 0.72 (SD= 0.16).  

 

Univariate Mixed-Effect Meta-Regression of Study Characteristics and Reported Accuracy 

The results obtained from univariate mixed-effect meta-regression models are 

summarized in Figures 3 and 4. We found a significant association between study-rated bias 

risk and classification performance (p=0.004).  Studies rated as having high/unclear bias 

exhibited higher reported accuracies than studies with low observed bias.  Because high risk of 

bias can inflate reported classification accuracy, we included study-rated bias risk as a covariate 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 2, 2024. ; https://doi.org/10.1101/2024.10.02.24314719doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.02.24314719
http://creativecommons.org/licenses/by-nd/4.0/


in our downstream multivariate meta-regression when assessing the influence of other study 

characteristics on reported accuracy. 

Our univariate mixed-effect regression analyses showed a small yet significant 

association between the size of the training sample and classification accuracy (Figure 4a). 

Notably, these results revealed an inverse relationship: as sample size increased, reported 

accuracies decreased by a rate of 0.056, 0.038, per unit increase in log10-transformed sample 

size for studies using k-fold CV and LOOCV respectively. 

We found a significant inverse association between classification performance and the 

ratio of cases to controls within training samples. This association was found among studies that 

evaluated classification performance within independent test samples (p=0.005) and studies 

where performance was solely evaluated in the training sample (p=0.005) (Figure 4b).  Type of 

accuracy was not significantly associated with reported accuracy and had no impact on the 

association between ratio of cases to controls within training samples and accuracy (Figure 4b).  

As shown in Supplementary Figure 2, no significant association was found between 

year of study and study accuracy (p=0.09). However, year of study was significantly correlated 

with total size of training sample (p=4.9 x 10-10). All linear models were analyzed for 

heteroscedasticity through the application of Gamma family Generalized Linear Models with a 

log link and showed similar statistical significance. 

  

Multivariate Mixed-Effect Meta-Regression Analysis of Study Characteristics and Reported 

Accuracy  

Table 1 provides the summary statistics from the multivariate linear mixed-effect 

Regression model, which was used to estimate the conditional effects of study-level 

characteristics on reported accuracy of classification models. From an omnibus mixed-effect 

ANOVA, reported classification accuracy was found to be significantly associated with all six 

study characteristics. The significant association were found for the total sample size of the 
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training set (F-value=13.96, p=0.0003),  type of classification model (F-value=6.10, p=0.0004), 

class ratio (F-value=7.24, p=0.007), approach used by studies to assess validation of model 

performance (F-value=7.95, p=6 x 10-5), the diagnostic group studied (F-value = 4.19, 

p=0.0001), and study-rated bias risk (F-value=6.59, p=0.01). 

Post-hoc pair-wise tests revealed significant differences in classification performance 

among categorical study characteristics. Studies employing logistic regression-based classifiers 

exhibited significantly lower classification accuracies compared to those using ML models (p= 

0.0002). Logistic regression-based classifiers also exhibited significantly lower classification 

accuracies compared to DL models (p= 0.002). In addition, studies using LOOCV exhibited 

significantly higher classification accuracies compared to studies that utilized withheld 

independent test sets (p <10-22), as well as studies that used k-fold CV (p=0.001). Furthermore, 

we found that studies that reported classification accuracies for models tasked with detecting 

AD/MCI were significantly higher than models tasked with detecting PTSD (p=0.0009). Studies 

that reported classification accuracies for models tasked with detecting AD/MCI were 

significantly higher than models tasked with detecting MDD (p= 0.002). Studies that reported 

classification accuracies for ASD were significantly higher than PTSD models (p= 0.027). 

Studies that reported classification accuracies for BD/SCZ were significantly higher than models 

focused on PTSD (p= 0.039). 

 

Relationship between Classification Performance and Tissue Source of Biomarkers 

We found no significant difference in reported classification accuracies between studies 

that were trained on blood or brain data and tested on blood or brain data, suggesting that 

biomarker sourced from postmortem brain, despite their potential ontological relevance for 

psychiatric disorders, does not improve classification performance as compared to direct blood 

data (Figure 5). Moreover, whether the training and validation sets were acquired from the 
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same tissue-type (either blood or brain tissue), did not significantly impact classification 

accuracies. 

DISCUSSION 

 This review summarizes the main model and study design variables impacting gene-

expression classifier performance in neuropsychiatric disorders. We found that these factors 

significantly influence the reported performance of gene expression-based classifiers, 

underscoring the importance of careful interpretation. If these factors are not thoroughly 

considered during key stages of study design, including model training and validation, the 

reported performance of gene expression-based classifiers may be either over- or under-

estimated, which can lead to misleading interpretations of the utility of these models by 

investigators. We highlight recommendations from the literature on best practices for mitigating 

sources of bias, providing guidance for investigators to enhance the robustness and 

performance of their models (Vabalas, et al., 2019; Zhang-James, et al., 2023; Barnett et al., 

2024). 

A prevailing challenge with applying classification models to high-dimensional data is the 

establishment of reliable comparative benchmarks. This can be attributed to the heterogeneity 

of psychiatric diagnoses, novelty of modeling approaches for diagnosis, and lack of 

standardized reference performances. Our review provides estimates of the mean and range of 

reported classification accuracies of gene-expression-based classifiers for specific 

neuropsychiatric disorders, offering a useful reference point for benchmarking performance in 

future classification studies.  Considering that there was an uneven representation of models in 

our meta-regression, it is imperative to use caution when extrapolating the estimates and 

interpreting how the results can be applied.  

Our analyses found several trends that should be useful for designing future studies.  

Firstly, increasing sample size predicted decreasing accuracy with different types of validation 

methodologies.  While this finding may appear counterintuitive, it has been documented in prior 
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meta-analyses of neuropsychiatric biomarker studies (Vabalas, et al., 2019; Zhang-James, et 

al., 2023).  It is likely that studies with smaller sample sizes are more vulnerable to overfitting, 

resulting in overestimation of model performance. Additionally, variation in sample 

ascertainment between small and large studies might influence the homogeneity of study 

groups, potentially influencing estimates of model performance. Inflated estimates from small 

studies may not be replicable in larger studies that encompass more representative samples 

capturing the full range of heterogeneity of the disorders of interest. The technical constraints 

due to small sample size, along with the considerable pathophysiological and clinical 

heterogeneity inherent in neuropsychiatric disorders, presents challenges for generalizing 

classification models in future unseen data. These findings underscore the importance of high-

quality datasets generated from large, diverse cohorts representative of the population. 

We found a small, non-significant trend toward decreasing accuracy among reported 

classification models over the years, a phenomenon which may influenced by many factors 

(Rajput, et al., 2022: Guo, Y. et al., 2010). This has been the case in a number of meta-

analyses focused on high-dimensional data (Zhang-James, Y., et al., 2023; Xiong, S., et al., 

2023). A potential source of model statistic changes over time is increased awareness on the 

issue of overfitting and model bias. Improved practices that limit study bias such as using 

standardized approaches for data pre-processing and algorithm deployment may also reduce 

the risk for over-fitting and over-estimation of classification performance. Choosing a model that 

exhibits low bias and is the right fit for the data structure is key for improving performance and 

generalizability of classification models. Optimizing the amount of signal captured by models 

while steering models away from overfitting requires careful practices to be adopted at various 

levels of the analysis, including feature selection and/or feature engineering, model design, 

training, and validation. Additionally, we cannot exclude the potential influence of bias towards 

better-performing models over the years—commonly known as the “file drawer effect” 
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(Nagarajan et al., 2017). This phenomenon, characterized by the likelihood of positive results 

being published, may contribute to the observed skewed outcomes over the years. 

When dealing with small, cross-validation procedures such as LOOCV and k-fold CV are 

commonly used for assessing model performance, which allows all available data to be used for 

training and assessing classifiers. However, the literature suggests that cross-validation yields 

overly optimistic estimates of model performance compared to studies that employ divided 

training/test set-ups, especially if the datasets are small and exhibit high variability between the 

subsets of data for training and testing in each fold, or if there are imbalances between classes 

in the dataset (Tabe-Bordbar, S., 2018). Over-estimation of model performance can worsen 

when proper practices are not adhered to in order to prevent data leakage across folds as has 

been documented for genomic data (Barnett et al., 2024). Leakage of information between 

subsets of data used for training and validation can happen in numerous ways. One of the most 

common missteps that lead to data leakage involves applying feature selection, scaling, or 

transformations—such as normalization, dimensionality reduction, and oversampling—across 

the entire dataset prior to splitting the data into subsets for cross-validation or dividing datasets 

into dedicated training, validation, and/or test sets. When these techniques are applied on the 

complete dataset rather than solely on the training sample, information can inadvertently leak to 

the validation and/or test data, leading to inflated estimates of model accuracy. This 

phenomenon was evident in our meta-regression results, where studies exhibiting high bias 

through improper practices such as breaking the separation of training and validation subsets, 

tended to overestimate the performance of their models.   

We found that ML models, particularly SVM, were the most common type of 

classification model employed among studies included in our meta-analysis. The popularity of 

SVM among studies employing gene-expression based classification methods might be 

attributed to the relative ease of use of such models, ability to capture higher-order interactions 

between features that may not be known a priori, and the availability of explainability methods. 
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Our meta-regression found that the type of classification model selected by studies had a 

significant influence on reported classification accuracy. Studies using conventional regression-

based methods yielded lower classification accuracies than studies using more complex ML and 

DL models.  This makes sense given that, compared with regression, the ML and DL models 

can model more complex relationships between features and outcomes and may better model 

the ground truth of psychiatric disorders which, themselves, have complex biology.  

Blood, being a readily accessible source of putative biomarkers, offers practical benefits 

compared to the challenges associated with collecting brain tissue. Brain tissue is not readily 

accessible in most clinical settings. Interestingly, our results did not reveal a statistically 

significant difference among classification models trained and validated on these tissues. This 

result could be partially due to uneven sample size distribution across groups: 232 models were 

trained and validated on blood, two were trained on blood and validated on brain tissue, nine 

were trained on brain and validated on blood, and 37 were trained and validated on brain. 

Nevertheless, the result suggests that classification tasks are not particularly tissue-specific in 

training and validation, bringing into question the idea that tissue-specific or cross-tissue 

analyses will necessarily lead to improved classification accuracies.  

There are advanced modeling methodologies holding potential promise that were not 

used in the pool of investigated studies. It is possible that models currently not utilized in 

neuropsychiatric gene expression analyses may perform better than current models (Wolpert & 

Macready, 1997). 

 

Conclusions  

We identified many cases of high study bias leading to either over-fitting or over-

estimations of model performance, underscoring the critical importance of adhering to 

guidelines for the prudent use of ML- or regression-based classification models throughout the 

entire process, including study design, implementation, and reporting (Quinn, TP., et al., 2024). 
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Furthermore, the findings from our meta-regression show that studies with relatively small 

sample sizes produced inflated estimates of model performance, underscoring the importance 

of large, representative datasets. A significant portion of variability in performance of 

classification models observed across studies can be attributed to the type of classification 

model selected, the proportion of cases in the training dataset, study-rated bias risk, and 

approach for validating classification models. Notably, studies that employed ML- and DL-based 

models exhibited significantly better classification accuracies than regression-based models, 

even when controlling for other study factors such as sample size and bias risk. In addition, 

studies with larger numbers of samples in their training dataset tended to yield lower estimates 

of model performance, particularly for studies that employed k-fold CV or LOOCV to evaluate 

model performance. This may reflect that studies with relatively few samples for training and 

evaluating models are susceptible to over-estimating model performance. Conversely, studies 

employing CV as the primary method for evaluating model performance may better capture 

patterns capable of generalizing to future unseen data. Based on the findings from our meta-

regression, greater prioritization should be given to studies employing large sample sizes and 

robust bias control. Leveraging larger, diverse datasets in tandem with rigorous ML techniques 

holds the potential to substantially enhance the generalizability of gene-expression based 

classifiers tailored for neuropsychiatric disorders. 
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Table 1. Summary statistics from a type III mixed-effect analysis of variance (ANOVA) and 

mixed-effect linear regression models. The ANOVA model was used to estimate the omnibus 

association of each predictor variable, particularly categorical variables that had 3+ factor levels 

(i.e., validation type and classified type), on reported mean accuracy of the studies included in 

our meta-regression. Summary statistics on the right-hand side of the table (i.e., not under the 

columns designated for the ANOVA statistics) are the regression coefficients indicating the main 

effects of continuous or differences in group means for 2-level categorical values on reported 

classification accuracies. For categorical variables with 3+ groups, we provide the pair-wise 

differences in estimated marginal means. In the mixed-effect ANOVA and regression models, a 

unique study indicator was set as the random-effect variable to adjust for non-independence 

between model accuracies. 

 

   
Type III Mixed-effect ANOVA 

Estimated marginal means (and post-hoc 
comparisons) 

Variable   F-value d.f. p-value  Beta*  S.E.  t-value  p-value* 

Diagnostic 
group* 

  4.1857 9, 106.42   0.0001195 
   

AD/MCI vs. MDD     0.16 0.039 4.10  0.002 
AD/MCI vs. PTSD 
ASD vs PTSD         
BD/SCZ vs. PTSD  

                  
0.22 
0.178 
0.152 

0.048 
0.554 
0.050  

4.54 
3.221 

3.02 

0.0009 
0.0272 
0.0386 

Class ratio   7.3524       1, 451.03   0.0069530 0.17 0.065 2.62 0.0089 

Classifier type  6.1037     3 495.92 0.0004400         

ML vs. Regression 
DL vs. Regression 

      
0.07227 
0.07117 

0.017 
0.021 

- 4.157 
3.421 

0.0002 
0.0020 

Bias risk   6.5874     1 126.63   0.0114339 0.0743 0.029 2.547 0.0122 
(Probable/High vs. Low)               

Validation type  7.9538        3,148.35       5.928e-05         

Divided vs. k-fold CV         -0.00073 0.027 0.055 0.96 
Divided vs. LOOCV         -0.1998 0.042 -4.73 <10-22* 
Divided vs. None         --0.0877 0.0515 -1.703 0.1170 
k-fold CV vs. LOOCV         -0.1991 0.0453 -4.394 0.001 

k-fold CV vs. None         -0.0869 0.0522 -1.666   0.1170 

LOOCV vs. None         0.112137 0.0608 1.846 0.1170 

Total sample size, log10 13.958          1,139.99 0.0002713 -0.085 0.03 -2.83 0.0055 

 
Note: Degrees of freedom for the mixed-effect regression were estimated using Satterthwaite’s 

method. Beta*: indicates the regression coefficient (slope) of the main effect for continuous 

variables on reported accuracy, or differences in estimated marginal means of reported 

accuracy between categorical variables. p-value*: the column title denoting p-values indicates 

that post-hoc pairwise comparisons were adjusted for multiple comparisons with Benjamin-

Hochberg false-discovery rate procedure. **:values that could not be printed with more 

precision. Diagnostic group*: As there were a large number of post-hoc comparisons with 

respect to the diagnostic group variable, we present only the statistically significant findings in 

the table. 
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Figure 1. Graphical overview of the gene-expression based classification studies included in our meta-regression. (a) A bar-plot showing the 
number of classification models used for each of the main neuropsychiatric disorders represented among studies in our meta-regression 
dataset. (b) The number of studies featured per classification model type for each of the neuropsychiatric disorders represented in our dataset. 
Note: To enhance visualization clarity, we grouped Alzheimer’s disease (AD) and mild cognitive impairment (MCI)-focused classifiers into a 
single diagnostic label (“AD/MCI”). Similarly, we grouped schizophrenia (SCZ), bipolar disorder (BD), and psychosis into a single diagnostic 
label (“SCZ/Psychosis/BD”). Other abbreviations: attention-deficit/hyperactivity disorder (ADHD), autism spectrum disorder (ASD), 
methamphetamine-associated psychosis (MAP), major depressive disorder (MDD), Parkinson’s disease (PD), post-traumatic stress disorder 
(PTSD). 
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Figure 2. Forest plot showing the pooled estimated marginal means in reported 
accuracy for each diagnostic group. Pooled estimates of reported accuracy were 
obtained using a univariate linear mixed-effect model to adjust for repeated 
measures from studies. Estimated mean reported accuracies are color coded by 
type of classification model as follows: regression models appear in blue, machine 
learning models appear in orange, and neural networks appear in red. Vertical 
dashed lines designate the average pooled reported accuracy among all models 
according to study bias rating. There was a significant difference in reported 
accuracy across diagnostic groups according to mixed-effect type III ANOVA 
accounting for bias risk and model type (F9,111.17 = 2.1663, p = 0.029). Some 
categories do not include points in the figure due to limitations of estimated marginal 
means calculation for small sample sizes. Abbreviations: Alzheimer’s disease 
(AD), mild cognitive impairment (MCI), attention-deficit/hyperactivity disorder 
(ADHD), autism spectrum disorder (ASD), bipolar disorder (BD), methamphetamine-
associated psychosis (MAP), major depressive disorder (MDD), Parkinson’s 
disease (PD), post-traumatic stress disorder (PTSD), schizophrenia (SCZ) 
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Figure 3. Accuracy of models stratified by their risk of study bias and type of classification 
model. Abbreviations: machine learning (ML), deep learning (DL). A type III mixed-effect 
ANOVA revealed a significant group-wise difference in reported accuracy between studies 
with low vs. probable/high bias (F1, 291.90= 8.3512, p = 0.004143), but no significant difference 
was observed based on the interaction between bias rating and type of classification model. 
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Figure 4. Scatterplots depicting the univariate linear relationship between reported classification model accuracies and (left) the 
log10-transformed total sample size of the training dataset (x-axis), and (right) the proportion of positive classes in the training 
dataset. Plots were stratified by types of validation procedure used in the study. Each dot represents a single classification 
model. The regression coefficients and p-values from a univariate mixed-effect regression model are provided in each plot, which 
account for non-independence of the studies in our meta-regression. Black solid lines denote the best-fit relationship between 
variables based on mixed-effect linear regression. 
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Figure 5. Reported accuracy per training and validation pair in studies. No statistically 
significant difference in mean reported accuracy was found across the four pairs based on 
mixed-effect type III ANOVA (F3,168.02 = 0.2681, p = 0.8483). 
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