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Abstract

Pathological hubs in the brain networks of epilepsy patients are hypothesized to drive seizure

generation and propagation. In epilepsy-surgery patients, these hubs have traditionally been asso-

ciated with the resection area: the region removed during the surgery with the goal of stopping the

seizures, and which is typically used as a proxy for the epileptogenic zone. However, recent studies

hypothesize that pathological hubs may extend to the vicinity of the resection area, potentially

complicating post-surgical seizure control. Here we propose a neighbourhood-based analysis of

brain organization to investigate this hypothesis. We exploit a large dataset of presurgical MEG

(magnetoencephalography)-derived whole-brain networks from 91 epilepsy-surgery patients. Our

neighbourhood-focus is two-fold. Firstly, we propose a partition of the brain regions into three sets,

namely resected nodes, their neighbours, and the remaining network nodes. Secondly, we introduce

generalized centrality metrics that describe the neighrbourhood of each node, providing a regional

measure of hubness. Our analyses reveal that both the resection area and its neighborhood present

large hub-status, but with significant variability across patients. For some, hubs appear in the

resection area; for others, in its neighborhood. Moreover, this variability does not correlate with

surgical outcome. These results highlight the potential of neighborhood-based analyses to uncover

novel insights into brain connectivity in brain pathologies, and the need for individualized studies,

with large-enough cohorts, that account for patient-specific variability.

∗ apmillan@ugr.es

2

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 4, 2024. ; https://doi.org/10.1101/2024.10.02.24314429doi: medRxiv preprint 

mailto:apmillan@ugr.es
https://doi.org/10.1101/2024.10.02.24314429
http://creativecommons.org/licenses/by/4.0/


I. INTRODUCTION

The network description of complex systems such as the brain provides a remarkable tool

to unveil its underlying organization and emergent dynamics. Such a description has enriched

our understanding of brain organization both at the macroscopic [1–4] and microscopic [5]

levels, and has found remarkable clinical applications [6, 7]. A notable example, which is

the focus of this study, is the case of epilepsy surgery. This is the treatment of choice

for drug-resistant epilepsy patients, and it entails the removal or disconnection of a set of

brain regions –the epileptogenic zone (EZ)– with the goal of stopping seizure generation

and propagation [8–10]. In practice, there is no gold standard to identify the actual EZ,

instead the EZ may be approximated by the resection area (RA) in combination with surgical

outcome: for patients with good outcome the EZ is included in the RA, whereas for patients

with bad outcome the EZ was at least partially preserved by the surgery. Epilepsy surgery is

preceded by an extensive presurgical evaluation, involving different imaging modalities such

as magnetic resonance imaging (MRI) or electro- and magneto-encephalography (E/MEG).

However, positive outcome rates (i.e. seizure freedom after the surgery) are not optimal,

and around 30% of the patients continue to present seizures one year after the resection,

although this number can go up to 50% for cohorts with complicated etiology. With the

goal of improving these outcome rates, network-based studies have investigated in detail the

brain network organization of epilepsy patients in order to unveil pathological effects that

may predict surgical outcome [11, 12].

Within this context, a big conceptual leap has taken place, from the notion of individ-

ual epileptogenic zones, to the consideration of epileptogenic networks that arise from the

interplay between different brain regions in promoting and inhibiting ictal activity [13–16].

According to this perspective, the effect of a given surgery cannot be determined alone by

the characteristics of one or more regions, but needs to measured against the whole epilepto-

genic network [17]. Data-driven and modeling studies seem to support this hypothesis, and

thus network mechanisms are recognized to participate in the generation and propagation

of seizures [18–27].

Substantial evidence underscores changes in structural and functional brain networks

in epilepsy [28, 29], particularly related to the EZ [30]. Whether there is an increase or

decrease in connectivity of the EZ compared to healthy individuals, however, remains an
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open question. fMRI-based studies initially pointed towards a disconnection of the EZ

[31–33], which has been supported by some invasive EEG [34] and MEG studies [35, 36].

However, recently several M/EEG studies have suggested hyperconnectivity of the EZ and

neighbouring regions [14, 30, 37–43].

Pathological changes in brain connectivity in epilepsy are disproportionally associated

with the network hubs [44] –highly central or important regions in the network architecture

of the brain– a finding echoed in other neurophysiological disorders such as Azheimer’s

disease, multiple sclerosis, or stroke [28, 45]. In the case of epilepsy, pathological hubs that

facilitate seizure generation and propagation may be present. Indeed, the properties of the

brain hubs, including their spatial distribution and overlap with the RA, are associated

with epilepsy surgery outcome [46–51]. Notably, however, hubs can also have an inhibitory

effect to prevent the ictal state [34, 50], and it should be noted that hub removal can lead

to increased side-effects from the surgery. The RA and the EZ have been associated with

brain hubs by several studies, both in the ictal [52–54] and interictal [40, 52, 54] states.

Such studies found associations between hub removal and seizure-freedom with different

MEG-based connectivity measures [40, 55], although in a recent study involving a large

cohort (n = 91) of epilepsy-surgery patients we could not confirm these findings [41]. In a

recent MEG study with a smaller cohort of 31 epilepsy patients, [43] were able to classify

epilepsy surgery patients according to surgical outcome (79% accuracy and 65% specificity)

by comparing the degree centrality (a measure of hubness given by the number of neighbours

of a node) of the RA to the remaining network node, in the pre-surgical brain-network.

Overall, although hub removal has been associated with a favorable outcome of epilepsy

surgery, this does not seem to be a necessary condition for a good outcome. Indeed, brain

hubs do not always overlap with the RA, even for seizure-free patients [20, 21, 23, 41].

These findings motivated the hypothesis that the seizure onset zone (SOZ), (the region

where seizures start), need not coincide with the pathological hubs but may be strongly

connected to them, in which case removal of either the SOZ, the pathological hub, or even

the connection between them may be enough to prevent seizure propagation and achieve

a good outcome [20, 41]. Thus, regional brain organization around the SOZ –as opposed

to only its centrality– becomes a promising target to understanding the effect of a given

resection.

In order to study the role of regional brain organization in epilepsy surgery, we propose
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here a neighbourhood-based description of brain connectivity and of the effect of a resective

surgery in epilepsy. Firstly, we consider explicitly the role of the connectivity of the RA-

neighbours by implementing a partition of the brain regions, namely into RA-nodes, its

neighbourhood, and the remaining network. By doing so, we are able to specifically address

the question of the emergence of pathological hubs in the vecinity of the RA, and their

relation to surgical outcome. Secondly, we introduce a novel analysis framework to quantify

regional brain organization based on the notion of extended neighbourhoods, following a

previous theoretical study that generalizes the notion of clustering coefficient [56]. The

extended neighbourhood of a node describes its area of influence, providing a mesoscopic

description of brain organization that can inform us of e.g. the existence of regions with

strong recurrent connectivity [56]. By characterizing the extended neighbourhood of each

brain region through topological data analysis [57], we propose the generalization of local

node-based centrality metrics to regional descriptors that encode regional organization. As

we go on to show, the neighbourhood-based description unveils the distinctive properties of

the neighbours of the RA. In this multi-frequency study (including 6 specific frequency bands

as well as the broadband) we found that the RA and its neighbours shared a highly central

status that was significantly larger than that of the remaining brain regions. The relative

centrality of the RA and its neighbours varied within the population (and between frequency

bands and network metrics), and whether the RA or its neighbours were more central was not

an indicator of surgical outcome (Area Under the Curve AUC = 0.46 for the classification of

patient outcome for the broadband network). In contrast, we achieved a fair classification of

the patient groups (AUC = 0.62, 0.64 respectively) when considering either the hub-status

of the RA or of its neighbourhood in relation to the remaining brain regions. These findings

support the notion of the emergence of pathological hubs in the brain of epilepsy patients

that may not coincide with the seizure onset zone but appear in its neighbourhood. Overall,

our findings highlight the need to consider regional brain connectivity in epilepsy surgery

studies, for instance with the notion of node neighbourhoods as proposed here.
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(a) (b)

ROI Neighbours

Second 
Neighbours

FIG. 1: Schematic description of extended neighbourhoods. (A) Illustrative representation

of the extraction of a node’s neighbourhood for d = 2. The nodes are color-coded to show

the central node (red), its first (orange) and second (yellow) neighbours and the remaining

network nodes (green). (B) Extended neighbourhood of the node. The central node is not

included in its neighbourhood, therefore it is shown here with low opacity (light pink node)

and its edges are removed (dashed lines). The topological organization of the

neighbourhood can be observed. In this case, e.g. two different connected components

emerge, as well as two closed triangles.

II. RESULTS

A. Extended Neighbourhoods

In order to characterize regional brain organization we have considered the notion of

the extended neighbourhood EN of a node [56]. Extended neighbourhoods, also called

ego-centered networks, define the area of influence of a node. Mathematically, the extended

neighbourhood of node i, EN d
i , is defined as the subgraph conformed by nodes at distance δ,

0 < δ ≤ d, of node i (which, crucially, excludes node i, see Methods for a detailed definition),

as depicted in figure 1. By changing the radius d of the extended neighbourhood we can

access different scales of network organization, going from the local to the global perspective.

In order to quantify the structure of EN d
i , and thus regional network organization, we have

considered five topological measures: the size or number of nodes Nd
i , the number of edges

Ed
i , and the first three Betti numbers quantifying the number of connected components

βd
0,i, the number of loops βd

1,i (not accounting for triads which are always considered to be

filled, see Methods), and the number of cavities or 2-dimensional loops, βd
2,i. These metrics

quantify the topology of the extended neighbourhood of each node. The number of nodes
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and edges indicate the regional connectivity of the node, and can be interpreted as centrality

metrics. Similarly, a high value of the first Betti number indicates that node i acts as a broker

between different otherwise disconnected components of its neighbourhood [56]. In figure

2 we provide an illustration of these different metrics. A more detailed description of each

metric can be found in the Methods and in the Supplementary Material.

FIG. 2: Illustration of the properties of simplicial complexes and extended

neighbourhoods. (a) Schematic network were we highlight two nodes: a regional hub (node

H) with high degree (7 neighbours) and high BC since it brokers two communities, and a

local hub (node W ) with high degree (5 neighbours) but low BC. Panels (b) and (c)

illustrate extended neighbourhoods of W and H, respectively. The different topology of

ENW and ENH is encoded by the regional and local metrics, as shown in panel (d).

Whenever there is a closed clique in the original network, simplices are built in the

extended neighbourhood. For instance, in panel (b), the grey triangle represents a

2-dimensional simplex built according to this rule.

As a benchmark, we have considered also three node-based metrics, namely the between-

ness centrality BCi, the local clustering coefficient ci, and the local curvature Ci. The

betweenness centrality is a standard measure to quantify node-centrality and define hubb-

ness [20, 28, 40]. It quantifies the extent to which a node lies on the shortest paths between

other nodes, thus capturing its role in controlling information flow in the network [58]. Node

curvature measures how paths in the simplicial complex diverge or converge around a node,

capturing the local geometric properties of the space. Specifically, in a simplicial complex,

curvature reflects how higher-dimensional simplices (such as triangles or tetrahedra) connect

around a node, influencing the shape and flow of the network structure. It is associated with

network robustness, and also identifies brain hubs, with large negative values being indica-

tive of hub status [59]. The clustering coefficient captures the connectedness of a node’s

neighbours, and has previously been associated with epilepsy surgery outcomes [19].
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B. Topological characterization of the epileptogenic zone

Following the hypothesis that the EZ is either a hub or connected to a hub, we hypothe-

sized that RA nodes and their neighbourhoods will be more central than other nodes in the

network. In order to test this hypothesis, we considered an existing database comprising

91 patients who underwent epilepsy surgery at Amsterdam UMC, location VUmc. This

database had been studied with a combination of network metrics and machine learning

previously [41]. The brain organization for each patient was encoded in a functional brain

network comprised of 90 regions of interest (ROIs) (according to the AAL atlas [60]), derived

from resting-state MEG, and thresholded to keep only the strongest links (see Methods for

details). MEG networks were derived in different frequency bands, which account for dif-

ferent aspects of brain function. For simplicity we have considered here first the broadband

(0.5− 48.0Hz), but refer back to a multi-frequency analysis in later sections. The resection

area of each patient was derived from post-operative MRI and was encoded in terms of AAL

nodes.

Each node in the network was described by means of the 8 metrics defined in the previous

section, with high values of these metrics associated with higher generalized centrality, except

for the curvature where the direction is the opposite as discussed above. Initially, two sets

of nodes were defined for each patient and network: resected nodes RA and non-resected

nodes RA. We analysed whether these nodes differed at the individual level in any of

the 8 metrics considered (bootstrapping and a Bonferroni correction were used to establish

statistical significance, see details in the Methods). Details of this analysis for an exemplary

case are shown in Supplementary Figure 2. We found that, at the individual level, RA

nodes were significantly more central according to all neighbourhood metrics, except β0,

for 15% to 30% of patients (respectively for 23, 27, 20 and 14 cases for N , E, β1 and β2).

Traditional node-based metrics were less efficient at detecting differences between the node

groups: according to these metrics RA nodes were significantly more central than RA nodes

only for a handful of patients (respectively 6, 3 and 6 for c, C and BC). We note that, for

a few patients, the opposite result was found and RA nodes were significantly less central

than RA nodes, both with the node- and neighbourhood-based metrics (respectively 5, 5, 7

and 3 cases for N , E, β1 and β2; and 3 and 1 cases for c and C; whereas no case was found

for BC). These results are summarized in figure 3 (a), whereas numerical results can be
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FIG. 3: Patient-specific comparison of different node groups for the two-group (a) and the

three-group (b, c, d) set-ups. For each panel, the hypothesis of the relation in centrality

between the two metrics is shown in the panel title. The fraction of patients for whom

there was a significant difference in the direction (opposite direction) of the hypothesis is

shown by the blue (red) triangles in the upper-right (bottom-left) corner of each cell,

respectively for each frequency band (rows) and metric (columns), color-coded as indicated

by the colorbar. The corresponding numerical values are shown in Supp. Tables 2 and 3.

The vertical black line separates node-based (left) from neighbourhood-based (right)

metrics. X (S) stands for the generalized centrality metric X measured on the nodes in set

S.
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found in Suppl. Tables 2 and 3.

Our results agree with previous studies according to which the RA is not always a network

hub, but it is often strongly connected to a pathological hub [20, 28, 41]. Consequently, the

RA node set may include both nodes that are less and more central thanRA nodes. In order

to take into account this effect, we split the RA set into two: nodes that were neighbours

of the RA (neighbours, N set) and nodes that were not (other, O set). According to our

initial hypothesis, within this division of the node sets we expected that both RA and N

nodes were more central than O nodes, and that RA and N nodes were similarly highly

central. As expected, we found that the node setsRA andN were in most cases significantly

more central that the O set (see figure 3 panels b and d). As before, neighbourhood-based

metrics were able to capture this difference more consistently across patients than node-

based metrics. Regarding the relative hub-status of the RA and its neighbourhood, we only

found significant differences between RA and N nodes for a small fraction of the patients

(figure 3 panel c). These went in both directions, with a tendency towards a higher centrality

of N nodes at the group level, as we discuss below. For instance, for the metric that picked

up the most differences in the broadband, β1, RA nodes were more central than N nodes

for 10 cases, but the opposite was true for 12 cases. These findings indicate heterogeneity

in the patient population regarding the relative hub-status of the resection area and its

neighbours. For most cases, these two sets could not be distinguished based on centrality

metrics (either node- or neighbourhood-based), indicating a similar highly-central status

(note that the remaining nodes were found to be less central).

1. Group level analyses.

In order to gain a population-level perspective of the relative hub-status of the RA, we

repeated the previous analyses at the group level. To do so, we measured the average

centrality of the nodes in each node-set, for each patient and frequency band. We found

that, when all patients were pooled together, the differences between node-sets became

more subtle, likely due to patient-specific variability, as shown in figure 4. Overall, we found

in the two node-group analysis that the RA and RA node-sets could not be significantly

distinguished at the group level, for most metrics and frequency bands, with the most notable

exception of the broadband. The three node-group analysis recovered for the most part the
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FIG. 4: Group-level comparison between nodes sets, for each considered frequency-band

(y-axis) and network metric (x-axis). From left to right, the panels indicate the difference

between the node sets: i) RA vs RA, ii) RA vs N , iii) RA vs O, iv) N vs O. X (S)

stands for the generalized centrality metric X measured on the nodes in set S. The color

code indicates the z-score of the difference between the average values of each node set,

computed by bootstrapping the data (sampling size of 104). Single asterisks indicate

significant differences (p < 0.05) that did not survive the Bonferroni correction (n = 56, see

Methods), and double asterisks the ones that did (p < 8.9−4). The corresponding

numerical values are shown in Supp. Tables 4 and 5.

findings of the individual-level analyses, i.e. O nodes were the least central, and N were

somewhat more central than RA. At the group level the betweeness centrality became the

most robust metric across frequency bands, and the broadband network was the network for

which differences between node-groups were more prevalent across metrics. Notably, three of

the metrics, the local clustering c, β0 and β2, performed poorly for the remaining frequency

bands.

C. Topological signatures of the RA and surgical outcome

In order to investigate whether the hub-status of the RA was associated with surgi-

cal outcome in this dataset, we assigned each patient a distinguishability score DRA,RA to

quantify the distinguishability between the RA and RA node-sets [43]. For each patient,

DRA,RA measures the number of tests (over the 8 network metrics considered) for which the

hypothesis of the hub-status of the RA is significantly fulfilled (see Methods for details on

data and how the statistical analyses have been performed.). Following our previous find-

ings that a three-node-group division is more informative at the node level, we also assigned
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distinguishability scores to the pairwise comparisons between the three node-sets RA, N

and O, namely DRA,N , DRA,O and DN ,O. Next, to summarize the results of the three-

node-group analysis into one score, we defined a combined score of the three-node-group

analysis Dcomb by summing over the corresponding three pairwise comparisons (see Meth-

ods for details). The derivation of these metrics is illustrated in Supplementary Figure 3. We

used each distinguishability score to classify the patients between the seizure-free (SF) and

non-seizure-free (NSF) groups, as shown in figure 5 (a statistical comparison between the

two groups was also performed, see Supplementary Figure 4, but no statistical differences

between the two groups survived after Bonferroni correction). We found that patient clas-

sification was fair at best for any of the frequency bands or node-group montages (panel c).

The best results were found for the broadband when considering the combined information

of the three-node-group analyses, which resulted in an area under the curve AUC = 0.68.

Finally, to better contextualize and validate our findings, we considered an alternative

definition of the node distinguishability, D′, as introduced by [43]. In this case D′ is simply

the area under the curve resulting from the classification of RA and RA nodes (see Supple-

mentary Figure 6). In their original study, [43] found that they could classify the patients

according surgical outcome with an AUC of 0.76 using D′ based on the degree-centrality as

metric. For our dataset, however, we found an AUC of only 0.65 when using D′ based on

the degree-centrality (see Supp. Table 6). When applying D′ to the 8 metrics considered in

the main part of this study, we found AUC values ranging from 0.68 (for the neighbourhood

metric N in the α1-band) and 0.36 (neighbourhood metric β1, α-band) for the two-node-sets

analysis, with similar results also for the three-node-set partition (see Supp. Figure 7).

III. DISCUSSION

In our study involving 91 patients who underwent epilepsy surgery, we investigated the

hub-status of the resection area and its region of influence to shed new light onto the presence

of pathological hubs in the brains of epilepsy-surgery patients and their role in the outcome

of epilepsy surgery. We proposed a novel methodology based on node-neighbourhoods and

topological data analysis to quantify node centrality at a mesoscopic level. As a validation of

our novel approach, we compared our findings against established node-based metrics such

as the betweenness centrality and clustering coefficient. Moreover, by leveraging the same
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FIG. 5: Classification of SF and NSF patients based on the two-node-group (a) and

three-node-group (b) distinguishability scores. X (S) stands for the generalized centrality

metric X measured on the nodes in set S. Panels (a) and (b) show the ROC curves

corresponding to the broadband, the remaining bands are shown in Supplementary Figure

5. The resulting AUC is indicated by the figure legends. Panel (c) shows the resulting

AUC for all frequency bands, for this same analysis. In this representation, the SF group is

assigned to be the positive class. The color-scale is centered around AUC = 0.5, which

indicates a lack of association. Blue-colors stand for an association in the direction of the

hypothesis (AUC > 0.5, i.e. the SF group presents a higher distinguishability score)

whereas red-colors stand for the opposite (AUC < 0.5, the NSF group presents a higher

distinguishability score).

database previously analyzed by [41] with traditional methodologies, we enabled a direct

comparison between the two studies.

In our study, we found that (a) the neighbours of the resection area play an important

role in brain-network organization in epilepsy and are significantly different from the re-

maining nodes in the networks (thus a three-group partition of the brain regions, where RA

neighbours are separated from the remaining brain network, is more representative than a

two-group partition); (b) the RA and its neighbours are more central than the remaining

brain regions, which holds true at the group level and also individually for most patients;

(c) the RA and its neighbours are similarly highly-central, with only some differences at

the individual level (for 10 to 20% of patients) that go in both directions, whereas at the
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group level the neighbours are weakly but significantly more central; and (d) the difference

in hub-status between either the RA or its neighbours and the remaining network nodes,

but not between them, is weakly associated with surgical outcome (AUC = 0.62, 0.64 and

0.46, respectively). A main consequence of our findings is that a three-node-group partition

of the brain regions as we have introduced here, such that the RA-neighbouring regions are

separated from the remaining brain regions and considered specifically, is more representa-

tive than a two-node-group partition, in particular yielding better node-classification results.

These findings support the hypothesis of the emergence of pathological hubs in refractory

epilepsy that do not necessarily overlap with the RA, a finding that was valid for patients

with good and bad outcome. These results further highlight the need for individualized

studies that take into account patient-specific brain connectivity.

A. Hub status of the RA

In this study we considered the emergence of pathological hubs in epilepsy and their

overlap with the resection area [28, 40]. The RA has been associated with brain hubs

both in functional and structural studies ([14, 21, 38–43, 52–54, 61, 62]; see also [28, 63]

for recent reviews), and their overlap has been related to surgical outcome, with several

MEG studies finding that hub removal was associated with good postsurgical outcomes

[40, 42, 43, 62]. In particular, [40] found that the brain network hubs (defined via the

betweenness centrality on a minimum-spanning-tree, MST, description) were localized within

the resection cavity in 8 out of 14 SF patients and none (out of 8) NSF patients (73%

accuracy). Similarly, [62] found that removal of the most central hubs (defined via the

eigenvector centrality on weighted PLI networks) had predictive value in a study with 31

patients (17 SF). Considering a simple correlation metric as the basis for connectivity, [43]

found, in a study with 31 patients (12 SF), that SF patients had significantly more hubs

surgically removed. Finally, [42] also found higher functional connectivity (defined via both

the amplitude-envelope coupling and phase-locking-value on the MST description) inside

than outside the RA for SF patients, and few differences between the two for NSF patients

in a study with 37 (22 SF) patients involving both children and young adults with refractory

epilepsy. The functional connectivity measures predicted weakly the EZ location and surgical

outcome (sensitivity and specificity above 0.55 with leave-one-out cross-validation).
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However, the relationship between hub-removal and surgical outcome could not be vali-

dated in our previous study [41] (94 patients, 64 SF) which used the same patient cohort as

we have considered here. Nissen and colleagues defined the hub-status on the basis of the

MST betweenness centrality, and only a weak association with the RA was found (60.34%

accuracy with a random forest classifier) and none with surgical outcome (49.03% accuracy).

In line with the suggestion that the relationship between the RA and the brain hubs is not

straightforward, several studies have pointed towards the functional isolation of the EZ, both

in invasive EEG [34] and MEG [35]. In particular, [35, 36] found that SF patients presented

a more isolated resection area (relative to the contralateral hemisphere) than NSF patients

in a study with 12 patients (7 SF) based on amplitude-envelope-correlation networks. [34]

found that the seizure onset zone (SOZ) and the early propagation zone presented increased

inwards and decreased outwards functional connectivity in an invasive EEG study involving

81 drug-resistant epilepsy patients undergoing presurgical evaluation. Interestingly, they

found that the largest difference between SF and NSF patients appeared in the propagation

zone: the connectivity profile of the propagation zone was intermediate to that of the SOZ

and the remaining networks for SF patients, whereas for NSF patients it consistently and

closely resembled that of the remaining network. It is worth noting that this result may just

reflect a difference in invasive EEG sampling between SF and NSF patients, such that e.g.,

the true propagation zone of NSF patients may have been undersampled [34].

The existence of pathological hubs can reconcile these findings: a pathological hub that

may or may not coincide with the SOZ may be present facilitating seizure propagation. Then,

removal of either the SOZ, the pathological hub, or even the connection between them, could

lead to seizure freedom [23, 40]. In a previous modeling study, for instance, we found that

the link-based resections that led to the best postsurgical outcome in the model were those

linking the RA to the network hubs [20]. Our findings in the current study support this

hypothesis, as we have found that the relative hub-status of the RA varies largely within

the patient cohort, and that whether it is more or less central than its neighbours does not

determine outcome. Therefore, removal of a hub region was not necessary in this study to

achieve seizure freedom. Of note, in this study we have considered the RA as a proxy for the

epileptogenic zone, as it commonly done in epilepsy-surgery studies [22, 41, 43]. However,

this adds a level of inaccuracy: for NSF cases it is known to be inaccurate, but even for

SF cases it might have been larger that needed [20, 21]. This can lead to inaccuracies in
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the definition of the RA, and as a consequence of the neighbourhood regions. In contrast,

the differences between either the RA or its neighbours with the remaining brain regions

proved to be a stronger indicator of surgical outcome (albeit still weak, with AUC = 0.62

and 0.64, respectively). The proposed three-node-set partition may thus provide new insight

into the effect of a particular resection, which may be missed with the standard two-node-set

partition approach. This is in agreement with the methodology and findings in [34], but here

we propose a methodology based only on resting-state MEG brain connectivity, without the

need for invasive or ictal recordings, as the notion of the propagation zone is substituted by

that of the neighbours of the RA.

B. Centrality metrics and node neighbourhoods

In this study we proposed the use of regional centrality metrics to better account for

the effect of a given resection, following previous theoretical works [56, 64, 65]. Most pre-

vious clinical studies have considered traditional centrality metrics that do not take the

local network-neighbourhood into account, of which the degree [40–43], betweenness cen-

trality [40, 41], and eigenvector centrality [20, 66, 67] are predominant. Here we found that

neighbourhood-based metrics, with the exception of β0 (which equaled 1 in most cases for

the considered parameters, as a consequence of the high level of recurrent connectivity in the

networks), were able to more consistently pick up differences between RA and RA nodes

at the individual level across all frequency bands, and in particular for the broadband, than

nodal measures such as the betweenness centrality or the clustering coefficient (figure 3).

These findings indicate that the neighbourhood of the RA is significantly different from the

neighbourhood of other nodes in the brain network, in particular denoting a higher (gen-

eralized) centrality. In contrast, at the group level (figure 4) the metric that revealed the

strongest difference betweenRA andRA nodes was the betweenness centrality, which is also

the metric most often considered in the literature. We note this as an interesting venue for

future research: at the theoretical level to understand whether different centrality metrics

might be more or less sensitive to individual variations, and at the clinical level to validate

the generalizability of these findings. Notably, whereas the betweenness centrality requires

of global information, extended neighbourhood metrics can be computed with only regional

information, and are thus more efficient to compute for large systems.
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In the case of the three-node-set partition, at the group-level the differences between

local and regional centrality metrics were larger (figure 4 and Supp. Table 4). This may be

caused by the neighbourhood-based partition of the node sets, such that the RA neighbour-

hood is considered explicitly, even for the node-based metrics. At the individual level the

neighbourhood-based metrics were also slightly more sensitive to differences between both

the RA (RA set) and its neighbours (N set) with the remaining network nodes (O set).

Differences between the RA and N node-sets were sparse as discussed above, and gener-

ally all metrics performed similarly except for the clustering coefficient c, and the first and

third Betti numbers, β0 and β2, with very low sensitivity. In particular β0 and β2, showed

little variation across nodes for the parameters considered. At the group level, however, the

betweenness centrality and curvature found the strongest and more consistent differences be-

tween node-sets. Further studies, considering e.g., larger networks or different connectivity

thresholds, could validate the generalizability of these findings.

In order to better contextualize our study, we also considered the node strength (or

weighted degree) as a centrality metric, following [43]. In their original study the authors

found that this metric could classify RA and RA nodes for 8 out of 12 SF patients, and

that, using the area under the curve of this classification (distinguishability D′) as a patient

score, they could classify SF and NSF patients with an AUC of 0.76. In our study, however,

we have only found an AUC of 0.65 when implementing their methodology, and an optimal

value of AUC = 0.68 for the α1 band with the combined distinguishability score. These

results are in agreement with those found in the main part of our study, and with our previous

findings with this same dataset [41]. Further studies are needed to elucidate the origin of

the lower performance found here compared to Ramaraju et al. We identify methodological

considerations, such as the choice of connectivity metric –we considered here a phase metric,

the PLI, that is insensitive to volume conduction, whereas Ramaraju et al. used uncorrected

amplitude correlations [43]– or the thresholding procedure used (simple thresholding vs the

disparity filter considered here). Moreover, the small dataset considered by Ramaraju et al.

could have driven the higher performance of the classification analysis. The findings may

also reflect intrinsic differences between the patient populations: the cohort in this study is

highly heterogeneous, including patients with different etiologies.
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C. Multi-frequency analysis

In our study we considered a multi-band description, in analogy with some previous

studies [35, 46, 62, 68–71]. These studies found for the most part comparable results across

frequency bands, with significant differences in brain network organization between epilepsy

patients and controls, or between SF and NSF epilepsy-surgery patients, arising predomi-

nantly in the θ and α bands [35, 46, 69–71], although differences have also been observed in

the δ and γ bands [68] and in the ripple and fast ripple bands [68, 69].

In our study we also found comparable results across frequency bands for the node-based

analyses, both at the individual and group level. Some metrics such as the local clustering c,

β0 and β2 however only picked up differences between node sets in the broadband network.

Notably, only in this band were the sizes of the N and O node-groups markedly different

(when considering all ROIs and patients, see Supp. Figure 1 for more details). The bands

for which we found the best patient classification were the broadband and α1, in agreement

with the literature [35, 46, 69, 71]. Remarkably, we found the strongest variations across

frequency bands in the patient classification analysis (figure 5). Whereas in the broadband

and the lower frequency bands (in particular δ and α1) we found a somewhat better outcome

for patients with high distinguishability score, this was not the case for higher frequency

bands (in particular β and γ, see figure 5).

D. Methodological considerations

In this study we considered the same patient database as in our previous study [41].

In this previous study, a machine learning analysis was used to classify network nodes as

belonging or not to the resection area, and to classify patients as having good (SF) or bad

(NSF) outcomes. The performance of the node classifier was fair (60.37% accuracy), but the

patient classification failed (49.03% accuracy). We have introduced several methodological

changes relative to this original study, from the consideration of multiple frequency bands,

the three-node-group partition, and the inclusion of node-neighbourhoods and topological

data analysis. The methodologies of the two studies can be compared via the betweenness

centrality, a benchmark centrality measure considered in both studies: [41] found that hub

nodes overlapped more than expected by chance with the RA . This is in qualitative
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agreement with our finding that RA nodes are, at the group level, significantly more central

than RA nodes.

Regarding the patient classification, [41] performed a classification based on a combi-

nation of individual and average metrics, namely the averages over (a) RA nodes, (b) the

resection lobe, (c) nodes contralateral to the RA, (d) RA nodes, and two metrics measuring

the difference between the average over RA and the contralateral nodes, and over RA and

RA nodes. No significant differences between SF and NSF patients were identified at group

level, and a machine learning analysis was also unable to classify the patients according to

surgical outcome. In our study, instead of using the centrality values directly, we exploited

the results of the node-based analyses to perform a patient classification analysis, similarly

to [43]. In particular, we defined a distinguishability score based on the difference between

each of the node sets, and we found an AUC of 0.68 for the broadband network (the same

used in [41]). In this manner we were able to exploit a patient-specific analysis, accounting

for heterogeneity in the patient population, which can be lost if comparisons of absolute

values among patients are performed. The differences in findings between the two studies,

and our finding that a population-based analysis is less sensitive than the patient-specific

analysis, highlight the need to consider methodologies that allow for individualized patient

characterization [22, 23].

Whereas some of the studies mentioned above [43], as well as other recent studies [22],

have found better classification results than the ones found in this study, the strength of this

study lies in the much larger patient cohort considered here, which is two to three times larger

than typical cohort sizes in similar studies. Moreover, we further validated the robustness

of our findings with respect to several methodological choices, including the frequency band

of the MEG-based brain networks and specific analysis details, benchmarking our findings

and analysis pipelines against previous studies [41, 43].

IV. CONCLUSION

Pathological hubs occur in the brain networks of refractory-epilepsy patients that do not

necessarily overlap with the epileptogenic zone, but may instead be strongly connected to

it. Thus, a positive surgical outcome may be obtained also if the surgical resection does

not include a pathological hub. In this study we have found that a three-group partition
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of the brain regions, where the neighbours of the resection area are separated from the

remaining brain regions, can provide novel information regarding the organization of the

epileptogenic network. Regional descriptors of hub-status and network organization, as the

ones we propose here based on the notion of extended neighbourhoods, provide new tools to

characterize the effect of a proposed resection. Our findings also evidence the heterogeneity

of the patient population, and the need for individualized studies that allow for a patient-

specific consideration of brain connectivity.

V. METHODS

A. Patient group

The patient cohort derived from the one presented in [41]. Three cases were removed, two

due to existence of a previous resection, and one due to withdrawal of patient consent. The

final patient cohort thus consisted of 91 patients with refractory epilepsy, with heterogeneous

seizure etiology. All included patients (i) received a clinical MEG recording as part of their

presurgical evaluation between 2010 and 2015 at Amsterdam University Medical Center,

location VUmc; (ii) subsequently underwent epilepsy surgery at the same center; (iii) surgery

outcome information was available following the Engel classification [9] either 1 year (88

patients) or at least 6 months (3 patients) after the surgery. A waiver of ethical review

was obtained from the institutional review board (Medisch Ethische Toetsingscommissie

Vrij Universiteit Medical Center) as no rules or procedures were imposed other than routine

clinical care.

The patient group was heterogeneous with temporal and extratemporal resections and

different etiology. Surgical outcome was classified according to the Engel classification [9].

64 patients were deemed seizure free (SF).

B. Individualized Brain Networks

Individualized brain networks were derived for each patient from 10 to 15 minute resting-

state MEG (magnetoencephalography) recordings, using the Automated Anatomical Label-

ing (AAL) atlas [72] to define a brain parcellation of 90 Regions of Interest (ROIs), with 78

cortical and 12 subcortical ROIs, excluding the cereberallar ROIs [73]. The pre-processing
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steps, as well as the procedures to reconstruct the activity of each source are described in

detail in [41]. We derived 7 brain networks for each patient: a broadband network (B,

0.5 − 48.0Hz) and six frequency-band specific networks: δ (0.5 − 4.0Hz), θ (4.0 − 8.0Hz),

α1 (8.0−10.0Hz), α2 (10.0−12.0Hz), β (12.0−15.0Hz) and γ (15.0−30.0Hz), by filtering

the source-reconstructed data in the corresponding frequency bands.

Each ROI defined one node in the network, and the coupling strength or link weight

between each pair of nodes wij was estimated with the Phase Lag Index (PLI). The PLI is

a functional connectivity metric that measures the asymmetry in the distribution of instan-

taneous phase differences between two times series [74]. The PLI is insensitive to zero-lag

coupling and thus it is robust against volume conduction or field spread [74]. 174 epochs of

4096 samples (3.28s) where used for each patient to estimate functional coupling.

Raw PLI matrices were thresholded and binarized with a disparity filter method [75].

The disparity filter extracts the connectivity backbone (aij > 0 if there is a significant

connection between i and j and 0 otherwise) of a network by removing connections that are

not statistically significant. The disparity filter accounts for node heterogeneity in the edge

weight distribution: weak edges are identified on a node-by-node basis, by comparing their

strength to that of the remaining node’s edges with a given significance threshold α which

we set to 0.1. This resulted in sparse networks (with network densities of about 5%; range:

0.047−0.051, see Supp. Table 1) with giant components spanning the majority of the nodes

(range: 84.49− 89.1).

C. Local node metrics

We characterized the local structure of the network by three nodal properties. In par-

ticular, for each node i we considered its centrality (as given by the betweenness centrality

BCi), clustering coefficient CCi, and curvature Ci. The betweenness centrality of a node

measures its influence over the flow of information on the graph: BCi indicates the fraction

of shortest paths in the network that pass through node i. The local clustering coefficient

of a node indicates the fraction of triads involving node i that are closed, i.e.

CCi = 2
No. connected triangles including node i

ki(ki − 1)

= 2

∑
1≤j<l<N,j,l ̸=i aijailajl

ki(ki − 1)
,
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where aij indicates an element (i, j) of the adjacency matrix A, which is equal to 1 if i and

j are connected by a link or 0 otherwise,N is the number of nodes in the network, and

ki =
∑

j aij is the degree of node i. Finally, the local curvature of a network generalizes

the concept of curvature of a surface, which intuitively measures how the surface bends in

distinct directions [76]:

Ci =
mmax∑
m=1

(−1)m+1Clim
m

,

where Clim is the number of m-cliques see below to which i belongs, and mmax represents

the size (i.e. number of nodes) of the largest clique in the network. Here we have considered

the size of interactions up to three nodes (mmax = 3).

D. Simplicial complex description

Simplicial complexes represent higher-order networks which allow for interaction between

two but also more nodes, described by simplices. A d-simplex is formed by a set of d + 1

nodes and all their possible connections. For instance, a 0-simplex is simply a node, a 1-

simplex a link and the two corresponding nodes, a 2-simplex is a triangle, a 3-simplex is a

tetrahedron and so on. A simplicial complex K is formed by a set of simplices such that i) if

a simplex belongs to K then any simplex formed by a subset of its nodes is also included in

K, and ii) given two simplicies of K, their intersection either also belongs to K, or it is a null

set [56]. A simplicial complex representation of a network can be built deterministically by

defining the clique complex of the network. A k-clique is a subgraph of the network formed

by k all-to-all connected nodes. That is, 1-cliques correspond to nodes, 2-cliques to links,

3-cliques to triangles, and so on. Thus, in order to build a simplicial complex of dimension d

from a network, we identify all d+1-cliques [56, 77]. This choice for creating simplices from

cliques has the advantage of using pairwise signal processing to create a simplicial complex

from brain networks [78]. Other strategies to build simplicial complexes beyond pairwise

signal processing have been proposed, such as approaches combining information theory and

algebraic topology [57, 79–83].
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E. Extended neighbourhood

The mesoscopic structure of a complex network can be described in terms of extended

neighbourhoods or ego networks [56], as illustrated in figure 1 Starting from a given node i,

we define its d−extended neighbourhood EN d
i as the subgraph induced by the set of nodes at

hopping distance δ equal or smaller to d, δ ≤ d (see figure 1b). EN d
i generalizes the concept

of clustering coefficient, as it allows us to capture the connectivity not only between the

first neighbours of a node, but of its general area of influence characterized by the hopping

distance parameter d.

EN d
i can be characterize by its size (number of nodes, NEN d) and connectivity (num-

ber of links, EEN d). NEN d generalizes the notion of node degree, and indeed the de-

gree of a node equals to NEN d=1 . Similarly, the local clustering coefficient reduces to

CCi = 2
EENd=1

NENd=1 (NENd=1−1)
.

Finally, we also characterized the topological organization of the extended neighbour-

hoods by the notion of Betti numbers. The first Betti number β0 measures the number of

connected components on a network. Subsequent Betti numbers βi describe the topology of

the simplicial complex associated with the network. Generally, the Betti numbers βi, i ≥ 1

are topological invariants derived from the simplifical complex that measure the number of

linearly independent i-dimensional holes in the simplicial complex. Thus, β1 provides the

number of 1-dimensional cycles that are not boundaries of 2-dimensional simplices of the

associated simplicial complex, and similarly β2 indicates the number of 2-dimensional cycles

(i.e. over triangles) that are not boundaries of 3-dimensional simplices of the simplicial com-

plex. β0 indicates the number of connected components of the local neighbourhood. Thus,

large values indicate a hub that connects otherwise disconnected regions of the network [56].

β1 indicates the number of cycles forming 1-dimensional holes. Therefore, a large value of

the ratio β1/β0 indicates a sparse neighbourhood. Similarly, larger values of β2 indicate the

tendency to form planar (i.e. triangular) structures. The Betti numbers are non-linearly

influenced by the size and density of the neighbourhood, and integrate information of the

mesoscopic structure of the network in a non-trivial manner.
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F. Resection area and node sets

The resection area was determined for each patient from the three-month post-operative

MRI. This was co-registered to the pre-operative MRI (used for the MEG co-registration)

using FSL FLIRT (version 4.1.6) 12 parameter affine transformation. The resection area

was then visually identified and assigned to the corresponding AAL ROIs, namely those for

which at least 50% or the centroid had been removed during surgery.

Based on the resection area, we identified four sets of nodes: RA, or resected nodes, are

the nodes that belong to the resection area. RA, or non-resected nodes, are the nodes that

do not belong to RA. We further considered two subsets of RA nodes. This partition was

based on the connectivity of the resection area, and was thus different for each frequency

band: N , or neighbours, are the nodes that are connected to RA nodes and that do not

themselves belong to the resection area. O, or other nodes, are the remaining nodes in the

network, that is, nodes that do not belong to the resection area and are not connected to

any RA nodes.

G. Statistical analyses

We first performed an individualized node-based analysis by which we tested whether

the hub-status of the different node-sets differed significantly for each patient and metric X .

We considered two types of comparisons: a) two-node-set setting, where we tested whether

X (RA) > X
(
RA

)
, and b) three-node-set setting, where we tested whether X (RA) >

X
(
N
)
, X (RA) > X

(
O
)
, X (N ) > X

(
O
)
. We quantified whether the hubness distribu-

tions were significantly different via bootstrapping analyses with 104 replicas to determine

the z-score and p-value of the difference. The sign of the difference indicated whether it

was in the direction of the hypothesis or against it. The z-score was computed as the

mean of the differences of the bootstrapped samples divided by the standard deviation of

these differences. The 2-tailed p-value associated with the z-score was determined using the

cumulative distribution function of a standard normal distribution. Considering the large

number of comparisons performed, we applied the Bonferroni correction to account for mul-

tiple testing and control the false discovery rate. Specifically, the Bonferroni correction was

applied by dividing the original significance level (α = 0.05) by the number of comparisons
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made. For each pairwise comparison of node-sets, we conducted 56 statistical comparisons

(7 bands times 8 metrics). Thus, for every pair of nodes, we used the Bonferroni correction

by adjusting the significance level to α′ = 0.05
56

≈ 8.9−4.

To determine whether the results held at the group level, for each patient we estimated

the average of each hubness metric for each of the node sets. We then performed a paired

bootstrapping analysis to test whether the distribution of average metrics was significantly

different, for each of the four pairs of node-comparisons as defined above.

We subsequently utilized the results of the node-based analyses to perform a receiver

operating characteristic (ROC) curve classification of the patients (SF or NSF). The result

of each node-based test was quantified in the variable rin1,n2
(X ) for each patient i, hubness

metric X , and node-set sets n1 and n2. rin1,n2
(X ) = 1, −1 or 0 indicating whether the

node-sets were significantly different in the direction of the hypothesis, contrary to it, or

not significantly different, respectively. We then summed over hubness metrics to define a

distinguishability score Di
n1,n2

for each patient and node-based comparison [43]. To sum up

the results of the three-node-set analysis, we defined a combined distinguishability score,

Di
comb, by summing over the corresponding three pairwise comparisons. The distinguisha-

bility score according to each test was then used to classify the patients with a receiver

operating characteristic (ROC) curve analysis, and the goodness of the classification was

measured with the area under the curve (AUC).

Finally, to enable a more direct comparison with the previous study by [43], we also

estimated the distinguishability score as originally proposed by calculating the AUC of the

node ROC-classification (instead of using rin1,n2
(X )), for each metric X and pair of node-

sets. Patient-classification based on this score was then performed similarly to the previous

analysis. For this test we also considered the node strength (the sum of its non-zero weights

after thresholding) as a metric to allow for a more direct comparison with [43].

H. Data availability

The data used for this manuscript are not publicly available because the patients did not

consent for the sharing of their clinically obtained data. Requests for access to the data

should be directed to the corresponding author. All user-developed codes are available on

github: https://github.com/LeonardoDiGaetano/TDA-Epilepsy.
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SUPPLEMENTARY INFORMATION

S.1. DISPARITY FILTER: BASIC NETWORK STATISTICS

The brain networks were thresholded with a disparity filter with significance threshold

of α = 0.1. In Supp. Table S.1 we report the average number of edges remaining in the

network after the thresholding procedure, and the size of the giant component.

Band B δ θ α1 α2 β γ

L 384.15 416.63 393.74 395.90 403.04 385.15 392.84

S 84.49 89.91 89.09 89.32 89.38 89.10 89.81

TABLE S.1: Basic network statistics. Average number of edges L remaining in the

network after the thresholding procedure, and the average size of the largest component S,

for each frequency band.

S.2. BASIC NODE-SETS STATISTICS

In figure S.1 we report the distribution of node-set sizes for each frequency band.

FIG. S.1: Distributions of the size of each node-set (as indicated by the general legend)

over the patient population, for each frequency band as indicated by the panel title.
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S.3. METRICS OF NETWORK TOPOLOGY

To quantify the connectivity and network properties of brain nodes, we utilized a variety

of metrics. These metrics can be categorized into node-level metrics and neighbourhood-level

metrics. Below is a detailed description of each metric:

A. Node-level Metrics

• The Betweenness Centrality BC measures the influence of a node over the flow

of information within the network. It is calculated by determining the fraction of

all shortest paths in the network that pass through a given node. Nodes with high

betweenness centrality are considered critical for information transfer and can be iden-

tified as hubs within the network [58].

• The Local Clustering Coefficient c quantifies the extent to which nodes in a graph

tend to form clusters or groups. For a given node i, the clustering coefficient is defined

as the ratio of the number of closed triplets (or triangles) to the total number of triplets

(both open and closed) centered on that node. Mathematically, it is given by:

ci =
2× Number of closed triangles including node i

ki(ki − 1)
(1)

where ki is the degree of node i. A higher clustering coefficient indicates a greater

tendency for node i to form tightly-knit groups with its neighbors [58].

• The Local Curvature C captures how paths bend around a node in its vicinity,

offering insights into the local geometric structure More specifically:

Ci =
kmax∑
k=1

(−1)k+1Clik
k

, (2)

where Clik is the number of k-cliques to which i belongs, and kmax represents the

size (i.e. number of nodes) of the largest clique in the network (kmax = 3 considering

interactions up to three-node ones.). It generalizes the concept of curvature from

differential geometry to network theory. Nodes with high curvature tend to have a

significant influence on the robustness and stability of the network [76].
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B. Neighbourhood-level Metrics

The extended neighbourhood EN of a node encompasses all nodes within a certain dis-

tance (or hops) from the given node, excluding the node itself [56].

• The Number of Nodes in the Extended Neighbourhood N measures the size

of the EN and it generalizes the concept of node degree.

• The Number of Edges in the Extended Neighbourhood E quantifies the total

number of pairwise edges within the EN , reflecting the local connectivity density.

• The Betti Numbers (β0, β1, β2) are topological invariants that describe the connec-

tivity of simplicial complexes (contructed in this case from the node neighbourhoods)

at different dimensions, generalizing the notion of clustering coefficient:

– β0 represents the number of connected components in the EN , indicating the

degree of fragmentation. A higher β0 indicates a node that acts as a broker

between different communities.

– β1 quantifies the number of one-dimensional holes or open loops representing

independent cycles within the EN . It provides information on the presence of

circular structures that are not filled in by higher-dimensional simplices.

– β2 measures the number of two-dimensional voids, reflecting higher-order connec-

tivity patterns such as cavities within the EN .

In the main section of this paper we used these 8 metrics to describe local and regional

network organization for each node, for each patient- and frequency-specific brain network.

In Supp. Figure S.2 we show an illustrative example of the distribution of values for each

of these metrics, for each of the node-sets defined in the main text, namely nodes in and

outside the resection area (RA and RA node sets), the neighbours of the resection area N

and other nodes in the network O.
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FIG. S.2: Distribution of generalized centrality metrics for an exemplary case (SF patient,

broadband network) for each node-set. Each panel corresponds to a generalized centrality

metric as indicated by the labels. For each panel we show the results for the two analysis

that were performed: the two-node-set partition (left) accounting for the RA and RA

node sets, and the three-node-set partition (right) accounting for the RA, N and O node

sets. In all panels we show the distribution of values for each node-set as a violin plot, and

indicate the mean and median values with solid lines. The box-plots indicate the median,

the 25% and 75% percentiles and the extreme values. Significant differences between two

groups are indicated by black lines connecting the corresponding violins.
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S.4. SUPPLEMENTARY INFORMATION TO PATIENT-SPECIFIC COMPARI-

SON

Here we report the number of patients for whom there was a significant difference in the

direction of the hypothesis (Table S.2 ) and in opposite direction (Table S.3) relative to the

results presented in figure 3 of the main material.

(a) X (RA) > X (RA)

BC c C N E β0 β1 β2

B 6 6 1 23 27 0 20 14

δ 3 0 1 4 6 1 6 2

θ 3 4 1 11 14 0 8 9

α1 0 4 4 6 6 0 5 1

α2 0 1 1 2 5 0 3 4

β 0 5 4 4 5 0 4 3

γ 1 0 2 5 4 0 4 1

(b) X (RA) > X (O)

BC c C N E β0 β1 β2

B 16 17 1 49 50 2 46 37

δ 5 4 0 15 18 1 15 5

θ 10 8 1 23 25 0 24 15

α1 6 6 3 22 26 0 25 10

α2 5 3 0 14 16 0 17 7

β 4 9 4 17 21 0 17 9

γ 5 1 1 11 12 0 9 2

(c) X (RA) > X (N )

BC c C N E β0 β1 β2

B 5 3 7 9 5 0 10 4

δ 2 0 2 2 2 1 2 1

θ 2 3 2 1 1 1 2 0

α1 0 2 11 1 1 0 1 1

α2 0 1 3 0 0 0 0 1

β 0 5 6 0 1 0 0 1

γ 0 1 7 1 1 0 1 0

(d) X (N ) > X (O)

BC c C N E β0 β1 β2

B 61 29 1 71 68 24 73 54

δ 45 6 0 57 54 0 56 10

θ 41 15 0 57 55 2 55 23

α1 48 10 1 61 59 2 60 18

α2 44 4 0 45 46 1 48 6

β 53 13 0 56 56 2 56 20

γ 37 4 0 44 46 1 44 4

TABLE S.2: Number of patients for whom there was a significant difference in the

direction of the hypothesis of figure 3 of the main text.
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(a) X (RA) > X (RA)

BC c C N E β0 β1 β2

B 0 2 3 5 5 0 7 3

δ 0 1 0 3 2 0 3 0

θ 0 1 7 3 2 0 2 1

α1 0 0 1 6 5 1 4 0

α2 1 2 2 3 5 1 6 2

β 3 1 1 5 6 1 5 0

γ 0 1 2 2 1 0 3 0

(b) X (RA) > X (O)

BC c C N E β0 β1 β2

B 0 2 11 5 5 0 7 4

δ 0 1 4 3 3 0 3 0

θ 0 2 9 1 1 0 1 0

α1 0 1 6 6 5 1 4 1

α2 1 3 6 2 3 1 4 3

β 2 1 4 5 6 1 4 0

γ 0 1 4 1 1 0 2 0

(c) X (RA) > X (N )

BC c C N E β0 β1 β2

B 15 4 2 14 9 3 12 7

δ 4 2 0 5 6 0 6 2

θ 7 1 4 5 4 0 4 3

α1 10 3 0 10 10 1 8 2

α2 5 1 3 5 5 0 9 1

β 10 4 1 10 8 0 11 4

γ 10 2 0 4 4 0 5 0

(d) X (N ) > X (O)

BC c C N E β0 β1 β2

B 0 6 30 0 0 0 0 0

δ 0 3 25 0 0 0 0 0

θ 0 3 20 1 1 1 0 0

α1 0 3 24 1 0 2 0 0

α2 0 0 33 1 1 1 0 0

β 0 1 32 0 0 0 0 0

γ 0 4 27 0 0 0 0 0

TABLE S.3: Number of patients for whom there was a significant difference in opposite

direction of the hypothesis of figure 3 of the main text.
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S.5. SUPPLEMENTARY INFORMATION TO GROUP-LEVEL COMPARISON

Here we report the numerical values presented in figure 4 of the main material. Table

S.4 presents z-scores presented through colors in figure 4 of the main material and Table S.5

the corresponding p-values.

(a) X (RA) > X (RA)

BC c C N E β0 β1 β2

B 2.2 1.5 -1.7 4.2 3.8 2.7 2 1.4

δ 0.49 0.27 0.62 0.57 0.47 0.5 0.39 0.17

θ 0.87 1.8 -0.48 3.1 3.2 -0.097 1.2 0.9

α1 -2.1 0.52 0.83 0.25 0.67 -2.2 0.56 0.46

α2 -0.92 -0.99 -1.2 0.5 0.47 -0.75 -0.4 -0.12

β -1.2 1 0.36 0.39 0.41 -1.1 0.53 0.58

γ -2.1 -1.8 -0.42 -0.74 -0.64 -1.4 0.34 0.38

(b) X (RA) > X (O)

BC c C N E β0 β1 β2

B -4.2 0.1 1.6 -1.9 -1.4 -3.3 -1.2 -0.39

δ -3.2 0.3 3.5 -3.6 -3 0.25 -2.9 -0.38

θ -3.6 1 1.2 -2.5 -1.7 -0.68 -1.5 0.16

α1 -6.5 0.92 2.7 -2.9 -2.3 -1.9 -1.9 -0.21

α2 -5.6 0.5 0.5 -1.1 -2.3 -2.3 -0.044 0

β -7.5 0.5 2.8 -4.1 -3.5 -1.5 -4.1 -0.42

γ -6.8 -0.97 -3.7 -4.2 -4.1 -1.8 -0.2 0.052

(c) X (RA) > X (N )

BC c C N E β0 β1 β2

B 5.7 3.4 -3.7 8.1 7.7 5.4 4.4 2.9

δ 3.4 0.7 -1.6 4 3.6 0.64 0.82 0.86

θ 3.9 2.6 -2.1 6.1 6.5 0.46 3.2 2.2

α1 2.1 0.78 -0.51 4.8 3.5 0.72 0.41 1

α2 -0.6 -0.93 -0.5 4.7 3.1 -0.51 2 0.094

β 3.1 -1.5 -1.5 3.5 3.5 -0.72 1.2 1.4

γ 1.6 -2.1 -2.1 3.5 3.1 -0.1 1.3 0.61

(d) X (N ) > X (O)

BC c C N E β0 β1 β2

B 15 4.1 -5.7 13 12 8 6.2 1.2

δ 17 0.65 -7 11 8.1 7.9 7.1 1.2

θ 7.5 2.1 -3.6 11 11 1.5 5.2 2.2

α1 10 -0.25 -4.8 11 8.3 5.6 1.2 1

α2 15 -0.29 -4.7 7 7 -0.46 5.5 0.057

β 18 1.3 -5.7 13 10 1.8 7.3 1.8

γ 13 -1.5 -6.5 8.5 7.9 1.4 8 0.63

TABLE S.4: Numerical values corresponding to results of figure 4 of the main text.

Group-level comparison between nodes sets, for each considered frequency-band (y-axis)

and network metric (x-axis). X (S) stands for the generalized centrality metric X measured

on the nodes in set S. The numbers indicate the z-score of the difference between the

average values of each node set, computed by bootstrapping the data (sampling size of 104).
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(a) X (RA) > X (RA)

BC c C N E β0 β1 β2

B 0.03 0.145 0.083 0.0 0.0 0.007 0.05 0.176

δ 0.622 0.79 0.533 0.57 0.64 0.619 0.699 0.868

θ 0.386 0.07 0.632 0.002 0.002 0.923 0.212 0.218

α1 0.039 0.603 0.405 0.805 0.503 0.025 0.574 0.645

α2 0.359 0.323 0.241 0.618 0.637 0.453 0.662 0.901

β 0.214 0.295 0.722 0.7 0.684 0.268 0.599 0.562

γ 0.038 0.069 0.676 0.457 0.523 0.807 0.462 0.701

(b) X (RA) > X (O)

BC c C N E β0 β1 β2

B 0.0 0.919 0.121 0.062 0.17 0.001 0.249 0.693

δ 0.001 0.763 0.001 0.0 0.003 0.801 0.003 0.706

θ 0.0 0.306 0.215 0.013 0.087 0.495 0.122 0.872

α1 0.0 0.359 0.008 0.003 0.01 0.053 0.056 0.8

α2 0.0 0.546 0.262 0.024 0.023 0.965 0.05 0.92

β 0.0 0.517 0.005 0.0 0.0 0.121 0.0 0.671

γ 0.0 0.331 0.0 0.0 0.0 0.525 0.0 0.958

(c) X (RA) > X (N )

BC c C N E β0 β1 β2

B 0.0 0.001 0.0 0.0 0.0 0.0 0.0 0.004

δ 0.001 0.485 0.11 0.0 0.0 0.522 0.002 0.387

θ 0.0 0.01 0.079 0.0 0.0 0.645 0.001 0.03

α1 0.034 0.433 0.611 0.003 0.0 0.043 0.006 0.315

α2 0.001 0.352 0.003 0.002 0.002 0.61 0.01 0.925

β 0.002 0.139 0.122 0.0 0.0 0.472 0.003 0.163

γ 0.108 0.038 0.042 0.067 0.064 0.891 0.185 0.539

(d) X (N ) > X (O)

BC c C N E β0 β1 β2

B 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

δ 0.0 0.516 0.0 0.0 0.272 0.0 0.0 0.224

θ 0.0 0.039 0.0 0.0 0.14 0.0 0.0 0.025

α1 0.0 0.806 0.0 0.0 0.408 0.0 0.0 0.248

α2 0.0 0.775 0.0 0.0 0.646 0.0 0.0 0.955

β 0.0 0.191 0.0 0.0 0.069 0.0 0.0 0.071

γ 0.0 0.127 0.0 0.0 0.519 0.0 0.0 0.531

TABLE S.5: p-values corresponding to results of figure 4 of the main text. Group-level

comparison between nodes sets, for each considered frequency-band (y-axis) and network

metric (x-axis). X (S) stands for the generalized centrality metric X measured on the

nodes in set S. The numbers indicate the p-values of the comparison between the average

values of each node set presented in Table S.4 and figure 4 of the main text.
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S.6. MULTI-FREQUENCY ANALYSIS: INDIVIDUAL PATIENT RESULTS

In this supplementary section we detail the definition of the distinguishability score D

and provide details on the statistical analyses involving this metric. In Supp. Figure S.3 we

show the results of the node-based analyses. Each panel corresponds to a frequency band

and a comparison between node-sets, as indicated by the panel title. For each panel, we

show the result xX
i of the statistical comparison between the two node-sets, using each of

the centrality metrics X and for each patient i with a color code. The color code indicates

whether there is a significant difference in the direction of the hypothesis (blue, xX
i = 1),

against it (red, xX
i = −1), or there is no significant difference (grey, xX

i = 0). The patient

distinguishability score Di is simply defined as the sum of the results of this statistical

comparison over generalized centrality metrics: Di =
∑

X xX
i . Given that central nodes have

large negative curvature, this term is multiplied by −1 in the sum. The resulting patient

distinguishability score Di is thus a number between −8 and 8, where Di = 8 (−8) indicates

that the two node-sets were highly different in the direction of the hypothesis (against the

hypothesis), and Di = 0 indicates no significant or inconsistent differences (across metrics)

for the patient.

In Supp. Figure S.4 we show the results of the statistical comparison between the SF

and NSF groups based on the distinguishability scores Di, for each of the node-based tests.

We observed a tendency towards higher scores for SF patients for the broadband, θ and

α1 bands, and in the opposite direction for δ and γ, however none of the differences are

significant after Bonferroni correction for multiple comparisons.

Finally, we also performed a receiver-operating-characteristic (ROC) patient-classification

analysis based on the distinguishability scores, the results of which were reported in the main

text. Here we show in Supp. Figure S.5 the ROC curves corresponding to each of the node-

based tests, for the broadband.
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FIG. S.3: Disthinguishability score Di. Each panel corresponds to the comparison between

two node-sets as indicated by the panel titles, and a frequency band (from top to bottom:

broadband, δ, θ, α1, α2, β, γ). We show the result for the statistical comparison xX
i for

each metric X and each patient i in the top rows of each panel and Di in the bottom row.

All metrics are color-coded as indicated by the colorbar. The vertical grey line on each

panel separate SF (left) and NSF (right) cases.
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FIG. S.4: Statistical comparison between the SF and NSF patient groups based on the

patient distinguishability score Di, for each node-group-comparison (columns) and

frequency band (rows), as indicated by the axis labels. The final column combines the

results of the three-node-groups tests by adding up the patient scores. The color-code

indicates the difference between the average scores of the SF and NSF groups, as given by

the color-bar. The cross markers indicate differences with p-value < 0.05 before Bonferroni

correction for multiple comparisons. None of the differences were significant after the

correction.

S.7. ALTERNATIVE DISTINGUISHABILITY SCORE

In order to compare our findings with a recent study by Ramaraju and colleagues [43], we

repeated the patient-classification analysis using their original definition of the distinguisha-

bility score, D′
i. We also consider the same centrality metric used by [43], the weighted

degree or strength of a node (the sum of its link weights after thresholding the PLI matrix

with the disparity filter). The distinguishability score for each patient D′
i was defined by

[43] as the AUC of the ROC-classification analysis of the RA and RA node sets. A D′

value close to 0.5 indicates that the two node sets cannot be classified according to the

corresponding metric, whereas values close to 0 or 1 indicate that the node sets are easily
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FIG. S.5: ROC analysis of the SF and NSF groups based on the patient scores, for each

frequency band (rows) and node-groups analysis (columns). The final column corresponds

to the compounded score of the three-node-group analysis. We indicate the area under the

curve (AUC) of each curve as the legend.

classifiable. In particular, AUC > 0.5 indicates that the RA set is more central than the

RA set, and vice versa for AUC < 0.5. The results of this analysis are shown in Supp.
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Table S.6 (first column).

We did not find a good patient classification for any frequency band. The best classifica-

tion results were obtained for the γ band with AUC = 0.64, followed by the α1 (AUC = 0.39)

and α2 (AUC = 0.60) bands. Interestingly, the direction of the classification changed across

frequency bands: for α2 and γ SF patients presented higher distinguishability scores D′
i than

NSF patients, whereas for α1 the opposite was true.

In order to exploit the three-node-set partition framework defined in the main text, we

extended this analysis to account for three more two-class node-based classifications, namely

i) RA and N nodes; ii) RA and O nodes; and N and O nodes (Supp. Table S.6). Swarm

plots depicting distinguishability scores are presented in Supp. figure S.6 for the case of

broad band for a visual representation of the classification. We found that the results for

the latter two cases were very similar to the original RA and RA distinguishability. As

expected from the results in Figure 3 in the main text, the RA and N cannot be easily

classified, resulting in low node-distinguishability scores and in a poor patient classification.

X (RA) > X (RA) X (RA) > X (N ) X (RA) > X (O) X (N ) > X (O)

B 0.56 0.51 0.57 0.49

δ 0.57 0.56 0.59 0.57

θ 0.42 0.46 0.43 0.44

α1 0.39 0.41 0.40 0.51

α2 0.60 0.55 0.61 0.60

β 0.48 0.47 0.45 0.50

γ 0.64 0.58 0.65 0.57

TABLE S.6: Results of the patient classification following the methodology in [43]. We

report the area under the curve (AUC) of the patient classification (SF versus NSF) based

on the distinguishability D′ between RA and RA nodes (first column), when using the

weighted degree as nodal centrality metric. X (S) stands for the generalized centrality

metric X measured on the nodes in set S. The latter three columns extend this analysis to

the three-node-set framework by considering the distinguishability between the i) RA and

N nodes; ii) RA and O nodes; and N and O node sets, respectively. Each row corresponds

to a different frequency band. We highlight in bold the results for with |AUC − 0.5| > 0.1.
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FIG. S.6: Swarm plot depicting distinguishability values (D′
RS) for SF and NSF surgical

outcomes for different node-based comparisons, based on the node strength. X (S) stands

for the generalized centrality metric X (node strength here) measured on the nodes in set

S. Values close to 0 (1) indicate that high strength nodes are resected (spared). Each

scatter point represents an individual patient. The results for every band are reported in

Table S.6.

Finally, we repeated this analysis on our proposed framework of 8 generalized centrality

metrics, the results are shown in Supp. Figure S.7. The results were similar to those using

the weighted degree, with only fair patient classification results. The best findings were

obtained when considering the two-node-set partition (i.e. RA versusRA) in the broadband

(AUC = 0.68 for the metric E), and overall showed large variability also in the direction of

the AUC (that is, whether SF or NSF patients presented larger distinguishability scores).

Thus this extended analysis was not able to improve upon our initial results.
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BC N E 0 1 2

B

1

2

0.65 0.66 0.46 0.4 0.68 0.65 0.65 0.54

0.47 0.48 0.54 0.53 0.47 0.59 0.47 0.56

0.54 0.6 0.49 0.41 0.61 0.38 0.6 0.52

0.39 0.4 0.47 0.68 0.4 0.49 0.36 0.52

0.44 0.41 0.5 0.56 0.43 0.53 0.41 0.46

0.53 0.57 0.46 0.47 0.55 0.52 0.54 0.6

0.46 0.58 0.55 0.5 0.59 0.41 0.55 0.55

( ) > ( )

BC N E 0 1 2

0.58 0.65 0.43 0.39 0.68 0.61 0.65 0.55

0.44 0.49 0.54 0.52 0.48 0.64 0.47 0.53

0.52 0.6 0.51 0.44 0.61 0.41 0.59 0.5
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FIG. S.7: Patient classification results using the methodology by [43] combined with our

proposed generalized centrality metrics. Each panel corresponds to a node-based

comparison as indicated by the panel titles, with the vertical line separating the

two-node-set case from the three-node-set cases. X (S) stands for the generalized centrality

metric X measured on the nodes in set S. Rows correspond to frequency bands and

columns to generalized centrality metrics. We show the resulting AUC both with the

color-code and by numerical values. Bold numbers correspond to |AUC − 0.5| > 0.1.
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