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KEY POINTS  

QUESTION: How does ECT treatment change neurocomputational measures of learning and affective 

experiences in patients with treatment-resistant depression? 

 

FINDINGS: In this observational study, computational models were used to quantify the behavioral dynamics 

of learning and associated changes in subjective feelings in patients who underwent ECT treatment for 

treatment resistant depression and controls. In ECT-responders we observed increases in reward-based 

learning, normalized affective responses to surprising positive and negative outcomes, and associated 

changes in fMRI-measured BOLD-responses. 

 

MEANING: Computational phenotyping of task behavior and associated brain responses provides 

quantification of complex neurobehavioral dynamics and provides specific insight into the neurobehavioral 

mechanisms underlying successful ECT treatment.  
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ABSTRACT 

IMPORTANCE: Electroconvulsive therapy (ECT) is an effective medical procedure for patients with treatment-

resistant depression. However, quantitative neural and behavioral measures that characterize how patients 

respond to ECT treatment are largely lacking.  

OBJECTIVE: Determine whether neurocomputational models that integrate information about adaptive 

learning behavior and associated affective experiences can characterize neurobehavioral changes in patients 

whose depression improves following ECT treatment.   

DESIGN: This observational study included two research visits from 2020-2023 that occurred before and after 

standard-of-care ECT for treatment-resistant depression. This report focuses on “visit 2”, which occurred after 

patients received their initial ECT treatment series.  

SETTING: Wake Forest University School of Medicine; Atrium Health Wake Forest Baptist Psychiatric 

Outpatient Center; Atrium Health Wake Forest Hospital. 

PARTICIPANTS: Participants who received ECT for treatment-resistant depression (“ECT”), and participants 

not receiving ECT but with depression (“non-ECT”) or without depression (“no-depression”) were recruited from 

the Psychiatric Outpatient Center and community, respectively.  

EXPOSURES: Computerized delivery of a Probabilistic Reward and Punishment with Subjective Rating task 

with functional magnetic resonance imaging.  

MAIN OUTCOMES AND MEASURES: Computational modeling of choice behavior provided parameters that 

characterized learning dynamics and associated affect dynamics expressed through intermittent Likert scale 

self-reports. Multivariate statistical analyses relating model parameters, neurobehavioral responses, and 

clinical assessments. 

RESULTS: ECT (N=21; 47.6% female), non-ECT (N=36; 69.4% female), and no-depression (N=38; 65.8% 

female) participants. Parameters derived from computational models fit to behavior elicited during learning and 

the expression of affective experiences for all groups reveled specific changes in patients who responded 

favorably to ECT. ECT-responders demonstrated increased rates of learning from rewarding trials, normalized 

affective response to punishments, and an increase in the influence of counterfactual ‘missed opportunities’ on 
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affective behavior. Additionally, ECT-responders’ showed changes in BOLD activity regions specific to each of 

these parameters. ECT-responders’ BOLD-responses to surprising punishments and counterfactual missed 

opportunities were altered from visit 1 to visit 2 in the inferior frontal operculum, Rolandic operculum, precentral 

gyrus, and caudate.  

CONCLUSIONS AND RELEVANCE: Computational models of neurobehavioral dynamics associated with 

learning and affect can describe specific hypotheses about neurocomputational-mechanisms underlying 

favorable responses to treatment-resistant depression. Our results suggest computational estimates of 

learning and affective dynamics may aid in identifying depression phenotypes and treatment outcomes in 

psychiatric medicine where objective measures are largely lacking.  
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INTRODUCTION  

Electroconvulsive therapy (ECT) is an effective medical procedure for patients with treatment-resistant 

depression (TRD) who are unresponsive to standard antidepressants1,2. Despite decades of use, it is still 

unclear how ECT-induced changes in brain function give rise to behavioral changes in treatment responders3–

5. Objective measures that link neural and behavioral changes produced by ECT treatment may provide a 

precise explanation of how ECT improves depressive symptoms in patients with TRD6–8. 

 Computational models of reinforcement learning (RL) have been increasingly applied to better 

understand depression pathophysiology and treatment mechanisms9–11. Further, quantifying links between 

measurable and computable learning signals and subjective emotional states has started to reveal how 

depression impacts the emotional processing of decision outcomes12–15. However, to date, no study has 

applied neurocomputational depictions of learning and affective experiences to characterize ECT treatment 

outcomes. The goal of this study was to combine computational models of learning and affective dynamics with 

functional magnetic resonance imaging (fMRI) to characterize neurobehavioral changes in patients with TRD 

following their initial ECT treatment series. Specifically, we used a Valence Partitioned Reinforcement Learning 

(VPRL) model recently shown to explain human choice behavior better than single-valence RL models and that 

was shown to explain sub-second changes in dopamine fluctuations in humans performing the same task that 

is used in this work16–18.  

While computational RL methods describing post-ECT effects are lacking, other clinical treatments 

have been shown to improve reward learning deficits in non-treatment resistant depression19–24. For example, 

antidepressants increase neural responses to reward prediction errors in responsive patients25–27. However, 

there are variable findings regarding punishment learning28–30. For example, multiple fMRI studies using similar 

tasks report inconsistent BOLD responses to ‘negative reward prediction errors’ in unmedicated patients with 

depression31–35. Further, antidepressant studies also report increased36, decreased37, or no change38,39 in 

patients’ punishment learning when considering ‘negative reward prediction errors’ and the punishment signal.  

Brown and colleagues recently separated trials within their RL tasks according to whether the trial was 

rewarding or punishing (e.g., gains vs. losses, respectively) and demonstrated normalized reward and loss 

neurocomputations after cognitive behavioral therapy in patients with depression9. This separation of valence 

aligns with recent evidence suggesting positive and negative valence processing occurs through separate 
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neural systems, which differs from traditional single-valence RL approaches28,40–42. The VPRL framework used 

in this study follows this line of reasoning and hypothesizes that independent neural systems track positive and 

negative events whether anticipated or actually experienced16–18,28. We hypothesize that applying VPRL to 

investigate ECT treatment outcomes may clarify how ECT alters distinct positive and negative learning 

mechanisms in patients with TRD. 

In addition to reinforcement learning and decision making mechanisms, further investigating how 

positive and negative learning signals differentially influence affective states using neurocomputational models, 

may identify specific affective mechanisms altered by ECT treatment43–48. For example, Eldar and Niv 

demonstrated that positive prediction errors improved mood while negative prediction errors worsened mood 

during a learning task, with emotional states further biasing valuations of subsequent outcomes in individuals 

with mood instabilities13. Also, Rutledge and colleagues showed that reward expectations and reward 

prediction errors directly affected mood ratings about recent outcomes in patients with depression12. While 

such studies dig deeper into the influence of decision outcomes on affective state, there remains a gap in the 

literature describing how neurobehavioral computations may give rise to affective experiences and how these 

processes are altered in depression and perhaps favorably modulated by effective treatments including 

ECT49,50.  

In this study, we applied a VPRL framework17,18 to determine whether a computational psychiatric 

approach51,52 that uses valenced-partitioned (i.e., positive and negative systems) learning signals to predict 

affective behavior could provide insight into how ECT treatment changes learning and affective dynamics in 

patients with favorable responses. We hypothesized that ECT would alter neurobehavioral signals related to 

both learning and affective behavior in ECT treatment responders.  

 

METHODS 

 

Study Design 

Here, we report data collected during research “visit 2” of a two-visit observational study following a 

standard-of-care ECT-treatment timeline (Fig.1A). All participants completed a Probabilistic Reward and 

Punishment with Subjective Rating task during fMRI scanning. Following fMRI scanning, participants 
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completed the Patient Health Questionnaire 9 (PHQ-9)53, Hamilton Depression Rating Scale (HAM-D)54, and 

Montreal Cognitive Assessment (MOCA)55. Participants provided written informed consent under Wake Forest 

University School of Medicine IRB00056131.  

 

Participants 

“ECT” patients included patients with TRD who received ECT treatment for the first time at AHWFB 

Psychiatric Outpatient Center (ECT, N=21; 47.6% female). We defined ECT treatment responders as patients 

who showed any clinical improvement following their standard-of-care ECT treatment series based on clinician 

notes or PHQ-9 or HAM-D assessments (ECT Responder, N=17; ECT Non-responder, N=4). Participants with 

depression not planning ECT (non-ECT, N=36; 69.4% female) and participants without depression (no-

depression, N=38; 65.8% female) were recruited from the Winston-Salem, North Carolina area. See eMethods 

and eTables1-3 for full participant details.  

 

Probabilistic Reward and Punishment with Subjective Rating (PRPwSR) Task  

Participants completed the same PRPwSR task completed at research visit 1 (Fig.1B)17,18. Briefly, the 

PRPwSR task is a value-based choice task where participants make choices and learn to maximize 

probabilistic rewards (i.e., monetary gains) and minimize probabilistic losses (i.e., monetary losses) over 150 

trials. After each trial there is a one-third probability that participants would be asked, “How do you feel about 

the last outcome?”. Participants respond using a Likert scale ranging from “very bad” to “very good.” See 

eMethods and eFig.1 for task details. See eFig.2 for group performance measures. 

 

Computational Modeling 

 We used hierarchical Bayesian methods56 to fit RL computational models to participants’ choice 

behavior on the PRPwSR task (eMethods). Participants’ expected icon values and outcome prediction errors 

were estimated using a VPRL framework16–18. These learning signals were then used to model and predict 

participants’ subjective ratings during the task. We hypothesize that each individual’s unique set of learning 

and affective parameters could represent a computational phenotype and that ECT responders’ computational 

phenotype would change relative to pre-ECT-treatment. See below for brief descriptions of model parameters:  
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Valence Partitioned Reinforcement Learning Model Parameters  

A previously validated VPRL framework was used to quantify participants’ choice behavior16–18. VPRL 

hypothesizes that brains track appetitive (e.g., positive/rewarding) and aversive (e.g., negative/punishing) 

stimuli simultaneously, but via independent systems. This allows stimuli to predict benefits and/or costs that 

may be independently estimated such that cost-benefit comparisons can be made16. Each system updates 

value estimates (i.e., Q-values) akin to standard Q-learning with temporal difference RL rules57. Hence, Q-

values for positive (���,��

� � and negative (���,��

� ) state-action sets (��, ��) are estimated. Likewise, future states’ 

(����) positive (�����

� � and negative (�����

� ) values are estimated and, respectively, discounted by independent 

parameters (��,��). The combination of current actual outcomes, discounted expectations of future values, 

and expected current values are used to calculate independent temporal difference prediction errors (��
�,��

�), 

which are then used to update respective Q-values by independent learning weights (��,��). We modeled 

choice policy using a softmax function with a temperature parameter (	) that describes how exploitative versus 

random a participant’s choices are given Q-value estimates. The parameters in the VPRL framework 

(��,�� , ��,��, and 	) were used to characterize each participant’s computational learning phenotype. See 

eMethods for details about the VPRL model.   

 

Subjective Feeling Regression Model Parameters 

We hypothesized that participants’ expectations about icon values (���

� ,���

� ) and prediction errors 

resulting from choice outcomes (��
�,��

�) collectively contributed to their reported feelings in the PRPwSR task18. 

We also hypothesized that the contribution of learning signals to subjective ratings in ECT-responders would 

differ from those observed before ECT treatment. We fit a linear regression model58 with Q-values (���,��,�	
���

� , 

���,��,
��	
���

� , ���,��,�	
���

� , ���,��,
��	
���

� ) and prediction errors (+��
�, -���, +��

�, -���) as independent predictors 

of subjective ratings. The coefficient parameters in the Subjective Feeling model 

(���������, ����
� , �	��

� , ����
� , �	��

� , �

��,��,��	�
�
� , �


��,��,����	�
�
� , �


��,��,��	�
�
� , �


��,��,����	�
�
� ) were used to characterize each 

participant’s computational affective phenotype. See eMethods for details about the Subjective Feeling model.  

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 2, 2024. ; https://doi.org/10.1101/2024.10.02.24314373doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.02.24314373
http://creativecommons.org/licenses/by-nc-nd/4.0/


 9

fMRI Analyses 

See eMethods for details on fMRI data acquisition, pre-processing, and model-based analyses. VPRL 

and Subjective Feeling models were fit to each participants’ behavior. We developed second-level “visit 2” 

minus “visit 1” contrasts of specific learning and affective neurocomputations that showed behavioral changes 

across research visits and performed whole-brain i) one-sample t-tests of blood-oxygen-level-dependent 

(BOLD) changes for ECT responders and ii) analysis of the variance (ANOVA) of BOLD changes between 

ECT, non-ECT, and no-depression groups. All statistical analyses were conducted at an uncorrected threshold 

of p<0.001 and reported results were selected using a family-wise error (FWE)-corrected threshold of p<0.05 

at cluster and peak voxel levels.  

 

Statistical Analysis  

We used hierarchical Bayesian analysis56 to estimate posterior distributions of free parameters in the 

VPRL model (��, ��,��,��, and �) and subsequently conducted a Bayesian linear regression58 with group-

informed posterior coefficients in the Subjective Feeling model 

(���������, ����
� , �	��

� , ����
� , �	��

� , �

��,��,��	�
�
� , �


��,��,����	�
�
� , �


��,��,��	�
�
� , �


��,��,����	�
�
� ). For all relevant tests, p<0.05 was 

deemed significant. Analyses were conducted in R version 4.2.2 and Stan version 2.21.0. (rstan version 

2.21.8)59. 

 

RESULTS 

 

Participant characteristics  

Across research visits, both ECT and non-ECT groups demonstrated decreases in PHQ-9 and HAM-D 

scores, indicating depression symptom improvement. ECT patients showed a substantial reduction in PHQ-9 

scores compared to both non-ECT and no-depression groups but a substantial reduction in HAM-D scores 

compared to no-depression participants only. The three groups did not differ in age, gender, race, or ethnicity. 

See eTable4 for clinical details.  

 

ECT Responder Computational Phenotypes for Valence Partitioned Learning 
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Behavior 

We hypothesized that ECT treatment altered neurobehavioral learning mechanisms in responders. To 

test this hypothesis, we fit the VPRL model separately to ECT responder, ECT non-responder, non-ECT, and 

no-depression group choice behavior for both research visits and assessed group-level changes in learning 

parameters across visits.  

ECT responders showed an increase in the positive system learning rate (
� , Table1A) following 

treatment (median difference [95% HDI] = 0.15 [-0.05, 0.35]). No-depression participants also showed some 

increase in 
� (0.02 [-0.04, 0.09]) while non-ECT participants showed decreased 
� across research visits (-

0.09 [-0.15, -0.02]). Non-ECT and no-depression groups also showed decreases in 1/
 (non-ECT: -0.08 [-0.20, 

0.05]; no-depression: -0.04 [-0.13, 0.04]) across visits.  

Neural  

Given the change in 
� among ECT responders, we performed a one-sample t-test of BOLD change 

across research visits (visit 2-visit 1) associated with positive system reward prediction errors (��
�) in ECT 

responders (see Supplementary Eq.1-2). However, we did not find significant changes in this activity following 

treatment (Table2A). We then tested whether BOLD activity associated with ��
� changed more in the ECT 

cohort compared to non-ECT and no-depression groups. We did not find significant differences between the 

three cohorts after conducting a whole-brain ANOVA on visit 2-visit 1 change in BOLD-associated ��
� activity 

(eTable5A).  

 

ECT Responder Computational Phenotypes for Subjective Feelings  

Behavior  

We hypothesized that i) VPRL learning signals may drive changes in subjective feelings about the 

consequences of choices made (Fig.1B) and ii) ECT treatment would alter this affective mechanism in 

responders for specific learning signal contributions on reported feelings. We expected a linear combination of 

these signals: ���������, ����
� , �	��

� , ����
� , �	��

� , �

��,��,��	�
�
� , �


��,��,����	�
�
� , �


��,��,��	�
�
� , �


��,��,����	�
�
�   to predict subjective 

ratings.  

In ECT-responders only, receiving worse than expected punishments (+��
�) contributed to  
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more negative ratings of feelings after treatment (median difference [95% HDI] = -0.65 [-1.09, -0.22], Table1B). 

Both ECT responders and non-ECT participants demonstrated a shift from a negative to positive influence of 

positive system counterfactual choice expectations (���,��,��������

� ) on feelings across visits (ECT responders: 

1.27 [-0.04, 2.64]; non-ECT: 0.84 [0.10, 1.58]). Alternatively, both ECT responders and no-depression 

participants shifted from a positive to negative influence of ‘less-bad than expected’ punishments (-��
�) on 

rated feelings (ECT responders: -0.57 [-1.14, -2.76e-4]; no-depression: -0.58 [-1.06, -0.10]). No-depression 

participants demonstrated more negative feelings derived from less rewarding outcomes (-��
�; -0.58 [-0.93, -

0.24]) and more positive feelings from positive system chosen choice expectations (���,��,������

� ; 1.01 [0.40, 

1.59]).  

Neural  

 Given the changes in the Subjective Feeling model parameters we observed in ECT responders, we 

performed a one-sample t-test to determine BOLD activity change associated with subjective ratings influenced 

by ���,��,��������

� , +��
�, and -��

� across research visits (visit 2-visit 1). We found BOLD-associated changes in 

all parameters for ECT responders, with increased activity in the right inferior frontal operculum and decreased 

activity in the left rolandic operculum, left caudate, and right precentral gyrus following treatment (Fig.2; 

Table2B).  

To assess whether BOLD-associated changes in subjective feeling computations differed across ECT, 

non-ECT, and no-depression groups, we performed a whole-brain ANOVA based on behavioral results (we 

again assessed for group differences in emotional impacts of ���,��,��������

� , +��
�, and -��

�). We found 

differences in BOLD-associated punishment prediction error changes across the groups (eTable5B). Post-hoc 

t-tests showed greater changes in BOLD-related activity for non-ECT participants compared to ECT patients in 

the right calcarine gyrus, right precuneus, and left posterior cingulum and for no-depression participants 

compared to ECT patients in the right angular gyrus.  

   

DISCUSSION 

We investigated whether and how ECT treatment changed computational phenotypic depictions of the 

neurobehavioral dynamics of reward and punishment learning and associated subjective experiences in 
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patients with TRD (who were previously naïve to ECT). We assessed specific changes in ECT-responders, 

defined by any clinical improvement in depression, participants with depression managed by medications or 

therapy, and participants without depression to pinpoint treatment specific effects versus general 

neurobehavioral changes that may have occurred across research visits. We used a hierarchical Bayesian 

approach to fit a Valence Partitioned Reinforcement Learning (VPRL)16–18 model to participant choice behavior 

on a Probabilistic Reward and Punishment with Subjective Rating (PRPwSR) task (Fig.1B). This model 

provided parameters describing learning mechanisms in which ECT responders demonstrated an increase in 

reward learning rate following treatment (Table1A). From VPRL parameters, we then estimated participants’ 

expectations and prediction errors to model their influence on participants’ subjective feelings of decision 

outcomes during the task. Following treatment, ECT-responders demonstrated unique shifts in how unchosen 

potentially good (i.e., ‘missed opportunities’) and actual worse-than-expected losses affected their feelings, 

suggesting a treatment effect in positive and negative RL-affective systems (Table1B). These specific changes 

in subjective experience were further associated with changes in BOLD-responses associated with 

hypothesized affective processes (Fig.2). Our collective results suggest that specific neurobehavioral 

mechanisms underlying learning and affective processes are altered by successful ECT treatment. Further, 

these signals may provide a potential quantitative measure for ECT-responders and a favorable ECT 

response.  

To our knowledge, our study is the first to apply a computational psychiatric approach to investigate 

ECT treatment mechanisms in patients with TRD, and to pair VPRL16–18 and related models to extract 

subjective experience16,18 in patients with depression. ECT responders demonstrated increased reward 

learning rates following treatment compared to other cohorts, suggestive of an ECT treatment effect that may 

allow relearning of the relationship between potentially good experiences and behaviors that promote them. 

This is consistent with prior work demonstrating that various types of antidepressants can improve reward 

learning in responsive patients with depression19,26,27, but demonstrates the role that ECT can have in this 

specific process in treatment resistant patients. Notably, the ECT patients in this study had tried multiple (and 

were currently taking) antidepressants that were ineffective and therefore proceeded to ECT treatment. These 

findings suggest ECT may be effective in targeting similar neural circuits associated with reward processing 

that the mechanisms of antidepressants could not alter for patients with TRD in our study29,38. We did not find 
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neural correlates to reward prediction error signaling improvements in ECT treatment responders, indicating 

further work is needed to pinpoint neural effects of reward learning from ECT.  

We found both neural and behavioral changes in how learning signals come to drive affective 

responses in ECT responders. These results suggest that ECT may have changed mechanisms underlying 

how good and bad outcomes are processed in patients and how they come to affect subjective feelings. 

Interestingly, counterfactual ‘missed opportunities’ showed a significant increase in the influence on positive 

feelings in both ECT-responders and no-depression groups across visits. Originally this parameters promoted 

strong negative feelings in responders, but after treatment, promoted positive feelings similar to what we 

observed in no-depression participants. Individuals with depression often experience challenges in 

experiencing pleasure or motivation (i.e., anhedonia). Despite not seeking rewards, this may cause rumination 

over missed opportunities and lead to negative feelings7,60,61. Our results suggest ECT may normalize this 

affective mechanism and involve regions such as the caudate and rolandic operculum known to be involved 

with reward seeking and emotional processing62,63. Further, ‘worse-than-expected’ punishments contributed to 

more negative feelings after ECT treatment in responders (compared to before ECT). Negative bias is a known 

depressive symptom where maintained expectations about negative events often lead to unsurprising 

emotional reactions when such events arise, often contributing to flatter affect in patients with depression64–66. 

As such, ECT may alter cognitive-emotional processes, previously shown to be tracked by the inferior frontal 

operculum67, translating to increased emotional reactivity to punishments in responders.   

The VPRL framework16–18 used here allowed us to identify potential computational phenotypes of ECT 

responders under hypotheses of independent reward and punishment learning systems in the brain. We 

identified specific learning and affective mechanisms that accompanied depression improvement in 

responders, which provided an objective, translatable understanding of successful ECT mechanisms51. 

Importantly, we recently demonstrated that the VPRL model tracks sub-second fluctuations in dopaminergic 

concentrations in the human brain using the same task used in this study17. And prior work has suggested that 

counterfactual signals can have a significantly influence on sub-second dopamine signals in humans68. In our 

visit 1 (pre-ECT) work, we showed that ‘worse-than-expected’ punishment prediction errors accounted for 

differences in ‘pre-ECT’ patients with TRD; here, we show that these differences were normalized in ECT 

treatment responders and correlated these changes to increased BOLD activity in the inferior frontal 
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operculum. These results are consistent with prior work that suggested that punishment learning processes 

may be altered in depression9 but extend these studies by suggesting specific neurocomputational 

mechanisms underlying ECT symptom improvement. More work is needed to clarify the specificity of our 

proposed computational phenotypes of ECT treatment responders and whether these tools may be used to 

augment clinical work.  

Limitations  

Our sample sizes for ECT non-responder group were small (N=4) and we did not have enough 

statistical power to run separate analyses to compare of investigate effects in non-responders. We aimed to 

observe the natural course of the current standard of care for ECT, therefore, ECT sessions varied by patient 

due to individual treatment plans that the research team was not involved with; however, this variation likely 

contributed to the overall successful treatment outcomes. Given this variation in treatment, but uniformity of 

treatment outcomes, our results may point to a general neurobehavioral state that may be a target for 

successful treatment. More work is needed to clarify these observations and test these hypotheses.  

Conclusions  

We estimated the magnitude of dynamic neurobehavioral changes in patients receiving ECT by using 

neurocomputational models of learning and affective processes fit to behavioral data from patients with TRD. 

This study demonstrates the utility of applying computational models to assess dynamic behavioral, neural, 

cognitive, and emotional processes that cannot not be captured by current clinical assessments. Future work 

developing computationally derived estimate of neurobehavioral signals relevant to clinical decisions and 

patient behaviors is needed to further advance objective and quantitative tools into psychiatry where subjective 

reports and trial-and-error methods are the current standard of care.   
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Table 1. Group-level changes in learning and subjective experience behavioral computations across research visits 
 ECT Responders (n = 17) ECT Non-responders (n = 4) Non-ECT (n = 34) No-depression (n = 38) 

Pre-ECT Post-ECT 
Median 

∆ 
[95% 
HDI] 

Credible 
Difference 

Pre-ECT Post-ECT 
Median 

∆ 
[95% 
HDI] 

Credible 
Difference 

Visit 1 Visit 2 
Median 

∆ 
[95% 
HDI] 

Credible 
Difference 

Visit 1 Visit 2 
Median 

∆ 
[95% 
HDI] 

Credible 
Difference 

Median 
[95% 
HDI] 

Median 
[95% 
HDI] 

Median 
[95% 
HDI] 

Median 
[95% 
HDI] 

Median 
[95% 
HDI] 
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B. Subjective Experience Parameters 
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 ECT Responders (n = 17) (continued) ECT Non-responders (n = 4) (continued) Non-ECT (n = 34) (continued) No-depression (n = 38) (continued) 
 Pre-ECT Post-ECT Median 

∆ 
[95% 
HDI] 

Credible 
Difference 

Pre-ECT Post-ECT Median 
∆ 

[95% 
HDI] 

Credible 
Difference 

Visit 1 Visit 2 Median 
∆ 

[95% 
HDI] 

Credible 
Difference 

Visit 1 Visit 2 Median 
∆ 

[95% 
HDI] 

Credible 
Difference 

Median 
[95% 
HDI] 

Median 
[95% 
HDI] 

Median 
[95% 
HDI] 

Median 
[95% 
HDI] 

Median 
[95% 
HDI] 

Median 
[95% 
HDI] 

Median 
[95% 
HDI] 

Median 
[95% 
HDI] 

B. Subjective Experience Parameters (continued) 

�
���

�  
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0.12 
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0.38] 
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82.24] 
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[-1.33, 
-0.82] 

-0.98 
[-1.23, 
-0.72] 

0.10 
[-0.26, 
0.46] 
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�
���

�  
0.19 

[-0.18, 
0.56] 

-0.38 
[-0.82, 
0.05] 

-0.57 
[-1.14, 

-2.76e-4] 

[97.39, 
2.61] 

0.18 
[-0.84, 
1.23] 

-0.48 
[-1.40, 
0.43] 

-0.66 
[-1.96, 
0.61] 

[84.34, 
15.66] 

0.15 
[-0.12, 
0.41] 

-0.05 
[-0.19, 
0.30] 

-0.09 
[-0.45, 
0.27] 

[69.49, 
30.51] 

0.24 
[-0.08, 
0.56] 

-0.34 
[-0.69, 
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-0.58 
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0.87] 

�
���,��,����	

�  
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[56.45, 
43.55] 
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1.33] 

-0.21 
[-2.12, 
1.77] 

0.53 
[-2.17, 
3.31] 

[35.26, 
64.74] 

-1.68 
[-2.96, 
-0.36] 

-1.67 
[-2.98, 
-0.36] 

0.01 
[-1.83, 
1.85] 

[49.49, 
50.51] 

-1.39 
[-3.02, 
0.22] 

-0.68 
[-2.11, 
0.68] 

0.71 
[-1.40, 
2.85] 

[25.51, 
74.49] 

�
���,��,�
����	

�  

-0.68 
[-2.12, 
0.73] 

0.54 
[-0.45, 
1.54] 

1.22 
[-0.46, 
2.98] 

[8.39, 
91.61] 

-0.13 
[-1.64, 
1.39] 

0.04 
[-1.81, 
1.99] 

0.15 
[-2.26, 
2.56] 

[44.97, 
55.03] 

0.29 
[-0.48, 
0.20] 

0.40 
[-0.54, 
1.36] 

0.11 
[-1.07, 
1.29] 

[42.69, 
57.31] 

1.80 
[0.63, 
2.97] 

1.08 
[0.13, 
2.02] 

-0.71 
[-2.16, 
0.82] 

[82.79, 
17.21] 

Bold indicates evidence of distributional differences. Abbreviations: HDI: highest density interval. 
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Table 2. Paired t-test for ECT responder changes in learning and subjective experience neurocomputations following 
treatment  

Parameter Region Voxels 
Cluster-
level p-
value 

Peak-
level 

p-value 
T-statistic 

Peak MNI 
coordinates 

[x y z] 

A. Learning Computations 

∆����� ������� ���	
����
���     

NS 
 

B. Subjective Experience Computations 

∆����� ������� ���	
���

��,��,����	�
�
� �� Left rolandic operculum 92 0.009 0.689 T(14) = 6.55 [-40 2 16] 

 Left caudate 144 0.001 0.921 T(13) = 5.86 [-16 24 10] 

∆����� ������� ���	
������
��� Right inferior frontal 

operculum 279 7.78e-7 0.366 T(13) = 7.37 [40 8 28] 

∆����� ������� ���	
������
��� Right precentral gyrus 79 0.012 0.032 T(13) = 9.19 [42 -20 58] 

All analyses were performed at an uncorrected threshold of p<0.001 in which reported results were selected using an FWE-
corrected threshold of p<0.05 at cluster and peak voxel levels. Bold font indicates significance.  
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Figure 1. Study design. (A) This study focuses on research visit 2 results, which took place after patients with 

treatment-resistant depression received ECT treatment for the first time and approximately one to two months 

following visit 1 for non-ECT and non-depression participants (to follow along the ECT treatment timeline). All 

participants completed a probabilistic reward and punishment with subjective rating (PRPwSR) task while 

receiving fMRI scanning and completed clinical assessments afterward; these measures were identical to 

those taken at visit 1. (B) In the PRPwSR task, each trial starts with an ‘option presentation’ screen. A 

participant chooses an option (self-paced) and then the other option disappears. After 3s, the chosen option is 

reinforced probabilistically (monetary gain, no gain, or loss), and the monetary outcome is shown for 1s. The 

screen then goes blank for a random-length interval or displays with 33% probability a subjective rating screen 

(self-paced) followed by the blank screen before the next trial. We fit a valence-partitioned reinforcement 

learning model to participants’ choice behavior in the PRPwSR task to generate learning parameters. 

Expectations and prediction errors (depicted in red brackets) were then fitted as independent predictors of 

participant-reported subjective rating in a regression model (i.e., Subjective Feeling Model).  

 

Figure 2. Neural Changes Associated with Subjective Experience Computations in ECT Responders 

Following Treatment. Between research visits 1 and 2, ECT responders showed increased BOLD activity 

associated with ���
�

 influence on subjective experience (top), and decreased BOLD activity associated with 

���
� influence on subjective experience (middle) and ���,��,����	�
�

�  influence on subjective experience (bottom).  
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B. Probabilistic Reward and Punishment with Subjective Rating Task Structure 
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