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KEY POINTS  

QUESTION: Can neurocomputational depictions of learning and affective behavior characterize patients with 

treatment-resistant depression before electroconvulsive therapy?  

 

FINDINGS: In this observational study, computational models were used to quantify the behavioral dynamics 

of 1) adaptive choice behavior as individuals learned from feedback and 2) associated changes in affective 

self-report. These models provided quantitative parameters that were associated with specific neural and 

behavioral changes in patients with treatment-resistant depression and may be sufficient to independently 

identify patients with depression. 

 

MEANING: Computational models that describe hypothesized mechanisms underlying adaptive behavior and 

affective experience may provide a means to quantitatively phenotype individual differences in major 

depression pathophysiology. 
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ABSTRACT 

IMPORTANCE: Globally, treatment-resistant depression affects approximately one-third of all patients 

diagnosed with major depressive disorder. Currently, there are neither behavioral nor neural measures that 

quantitatively phenotype characteristics underlying treatment-resistant depression.  

OBJECTIVE: Determine whether neurocomputational models that integrate information about adaptive 

behavior and associated self-reported feelings can characterize differences in patients with treatment-resistant 

depression.   

DESIGN: In this observational study, data were collected over two research visits from 2020-2023 that 

occurred before and after standard-of-care electroconvulsive therapy (ECT) for treatment-resistant depression. 

This report focuses on “visit 1”, which occurred after patients consented to ECT but before their initial 

treatment.  

SETTING: Wake Forest University School of Medicine; Atrium Health Wake Forest Baptist Psychiatric 

Outpatient Center; Atrium Health Wake Forest Hospital. 

PARTICIPANTS: Participants planning to receive ECT for depression (“pre-ECT”) and participants not 

planning to receive ECT with (“non-ECT”) or without depression (“no-depression”), were recruited from the 

Psychiatric Outpatient Center and community. 

EXPOSURES: Computerized delivery of a ‘Probabilistic Reward and Punishment with Subjective Rating’ task 

during fMRI. 

MAIN OUTCOMES AND MEASURES: Computational modeling of choice behavior provided parameters that 

characterized learning dynamics and associated affect dynamics expressed through intermittent Likert scale 

self-reports. Multivariate statistical analyses relating model parameters, neurobehavioral responses, and 

clinical assessments.  

RESULTS: Pre-ECT (N=29; 55.2% female), non-ECT (N=40; 70% female), and no-depression (N=41; 65.9% 

female). Parameters derived from computational models fit to behavior elicited during learning and the 

expression of affective experiences clearly differentiates the three groups. Reinforcement Learning model 

parameters alone do not perform as well as models that incorporate affective self-reports. Notably, the set of 

model parameters that include learning and affective dynamics demonstrated excellent, cross-validated, 

diagnostic classification of depression diagnosis. Prior to ECT, neurobehavioral responses associated with 
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learning and affective experiences about ‘punishing’ events were significantly impaired in pre-ECT compared 

to non-ECT and no-depression cohorts.  

CONCLUSIONS AND RELEVANCE: Computational models of behavioral dynamics associated with learning 

and affect can describe specific hypotheses about neurocomputational-mechanisms underlying treatment-

resistant depression. The present work suggests differences in processing of emotionally negative states and 

suggests a potential model-based behavioral diagnostic for individuals with major depression. Such models 

may eventually be used to augment the diagnosis of treatment-resistant depression or possibly determine 

phenotype-genotype relationships for disease status and progression. 
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INTRODUCTION 

Depression is projected to be the leading cause of global disability by 20301 with approximately one-

third of patients meeting criteria for treatment-resistant depression (TRD)2,3. These patients suffer for 

prolonged periods before effective interventions such as electroconvulsive therapy (ECT) may be performed4,5. 

Unbiased neurobehavioral measures that identify patients at risk for TRD may be leveraged to accelerate 

research into the neurobehavioral mechanisms underlying depression, which in turn may lead to earlier 

diagnosis and treatment strategies6,7.  

Recent work suggests computational psychiatric methods may aid in investigating depression 

pathophysiology8–10. Notably, computational reinforcement learning (RL) models have been used to reveal 

connections between moment-to-moment decisions, neural responses, momentary ‘happiness’, and 

depression symptoms11–14. However, little computational psychiatric work has been done in TRD. Here, we 

investigated mechanisms underlying TRD using functional magnetic resonance imaging (fMRI), a value-based 

decision-making task, and RL-based computational models describing 1) hypothesized reward and punishment 

learning mechanisms and 2) associated affective behavior. This study uses a Valence Partitioned 

Reinforcement Learning framework15 that was recently shown to provide a good explanation of behavior16,17 

and track sub-second changes in dopamine levels16 in the task used in the present work.  

Symptoms of depression have been linked to changes in processing of both positive and negative 

valence18–21. Changes in positive valence processing may be associated with anhedonia, while changes in 

negative valence processing may relate to feelings of hopelessness or worthlessness, difficulties in regulating 

negative emotions, or negative rumination22–24. Research consistently shows that reward prediction error 

(RPE)25,26-associated brain responses are reduced in patients with depression27–29. Such findings broadly 

suggest that observable learning behavior and computational models that connect affective responses to 

reward processing may be fruitfully used to investigate depression13,30–34. Collectively, computational models of 

learning and affect have consistently identified disruptions in reward processing in depression; but, work 

investigating the impact of negative valence is less coherent35–38.  

RL model based studies report contradictory changes in neural activity associated with punishment 

learning in patients with depression39–42. Apparent inconsistencies may stem from the use of RL models that 

depict punishments as symmetric reflections of rewards rather than as potentially separate, independently 
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processed signals15,43–45. Valance-partitioned approaches have been suggested in the RL literature whereby 

the expectations of rewards and punishments may be learned at different rates15–17,46–48. Modeling learning and 

affective behavior through such a framework may clarify important distinctions about how negative and positive 

experiences differentially impact patients with depression. For example, Brown and colleagues12 demonstrated 

that separating RL model parameters based on the valence of each trial better explained both control and 

depression participant choice behavior compared to methods that did not discriminate trial valence12.  

Here, we follow this line of reasoning and, using a previously validated Valence Partitioned 

Reinforcement Learning (VPRL) model15–17, sought to determine whether a computational psychiatric 

approach50–52 that partitions positive and negative valence and utilizes derived learning signals to predict 

affective responses could provide insight into patients with TRD. We hypothesized that individual differences in 

depression may be revealed in both VPRL parameters and model parameters that describe how latent learning 

signals modulate affective self-reports.  

 

METHODS 

 

Study Design 

Here, we report data collected during research “visit 1” of a two-visit observational study following a 

standard-of-care ECT-treatment timeline (Fig.1A). All participants completed a Probabilistic Reward and 

Punishment with Subjective Rating task16,17 with fMRI scanning. The Patient Health Questionnaire 9 (PHQ-949), 

Hamilton Depression Rating Scale (HAM-D50), and Montreal Cognitive Assessment (MOCA51) were assessed 

after fMRI scanning. Participants provided written informed consent under IRB protocol: 

WFUSoM:IRB00056131.  

 

Participants 

“Pre-ECT” patients included patients with TRD who consented to begin, but were naïve to, ECT at 

AHWFB Psychiatric Outpatient Center (pre-ECT,N=29; 55.17% female). Participants with depression not 

planning ECT (non-ECT,N=40; 70% female) and participants without depression (no-depression,N=41; 65.90% 

female) were recruited from the Winston-Salem, NC area. See eMethods and eTables1-2 for full details. 
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Probabilistic Reward and Punishment with Subjective Rating (PRPwSR) Task  

The PRPwSR task (Fig.1B, eMethods) was executed as previously described16,17. Briefly, the PRPwSR 

task is a value-based decision-making task. Over 150 trials, participants make choices, experience monetary 

gains and losses, and must learn which probabilistic options maximize real monetary returns (eFigs.1-3). After 

each trial, with one-third probability, participants are asked, “How do you feel about the last outcome?”. 

Participants respond using a Likert scale ranging “very bad” to “very good.”  

 

Computational Modeling 

We used hierarchical Bayesian methods52 to fit models to participants’ behavior on the PRPwSR task 

(eMethods). Behavior was modeled as a state-action-outcome learning problem consistent with computational 

RL theory. Expected values and outcome prediction errors were estimated using a VPRL framework15–17. 

These signals were used to model and predict subjective ratings17. Each individual was represented as a 

vector of their unique set of parameters for further analyses, which we hypothesized may represent a 

computational phenotype53,54.  A description of parameters follows: 

 

“Valence Partitioned Reinforcement Learning” parameters 

A previously validated VPRL framework15–17 was used to summarize participants’ behavior. The 

mathematical description of this VPRL model15–17 is described (eMethods). Here, we describe parameters in 

narrative form for interpretability: 

VPRL15 expresses the hypothesis that brains track appetitive (e.g., positive/rewarding) and aversive 

(e.g., negative/punishing) stimuli simultaneously, but via independent systems. This allows stimuli to predict 

benefits and/or costs that may be independently estimated such that cost-benefit comparisons can be made15. 

Each system updates value estimates (i.e., Q-values) akin to standard Q-learning with temporal difference RL 

rules45,55. Hence, Q-values for both positive (���,

� � and negative (���,

� ) states (��) are estimated. Likewise, future 

states’ (����) positive (�����

� � and negative (�����

� ) values are estimated and, respectively, discounted by 

parameters (��,��). The combination of current actual outcomes, discounted expectations of future values, 

and expected current values are used to calculate temporal difference prediction errors (��
�,��

�), which are then 
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used to update respective Q-values by independent learning weights (��,��). We modeled choice policy using 

a softmax function with a temperature parameter (�) that describes how exploitative versus random a 

participant’s choices are given Q-value estimates. The free parameters in the VPRL framework (��,�� , ��,��, 

and �) were used to characterize each participant’s computational learning phenotype.  

 

“Subjective Feeling” Model parameters 

We hypothesized that participants’ subjective ratings resulted from a combination of expectations 

(���

� ,���

� ) and better or worse than expected outcomes (��
�,��

�). Further, we hypothesized 1) that expectations 

about the unchosen option (i.e., the counterfactual choice) may play a significant role in participants’ affective 

response; and 2) that the positive or negative sign of outcome prediction error – indicating greater-than or less-

than expected, respectively – would be asymmetrically weighted in their influence on affective responses. 

Therefore, we fit a linear regression model with subjective ratings as the dependent variable and Q-values 

(���,��,�	
���

� , ���,��,��	
���

� , ���,��,�	
���

� , ���,��,��	
���

� � and signed prediction errors (+��
�,-��

�,+��
�,-��

�) as 

independent variables. See eMethods for details. eFig.4 shows model performances.  

 

fMRI Analysis  

eMethods contains details about fMRI data-acquisition, pre-processing, and model-based analyses. 

VPRL and Subjective Feeling models were fit to each participants’ behavior. Following first-level general linear 

modeling, results for each participant were included in a second-level whole-brain analysis of the variance 

(ANOVA) for group comparisons. Post-hoc t-tests were performed given significant ANOVA results. All 

comparisons were initially assessed at an uncorrected threshold of p<0.001 and reported results were selected 

using a family-wise error-corrected threshold of p<0.05 at cluster and peak voxel levels.  

 

Statistical Analyses 

We used hierarchical Bayesian analysis52 to estimate posterior distributions of free parameters in the 

VPRL model of choice behavior and learning (��, ��,��,��, and �) and subsequently for the linear regression 

coefficients in the Subjective Feeling regression model 
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(���������, �
	
�

� , �
�
�

� , �
	
�

� , �
�
�

� , �
���,��,��	�
�
� , �

���,��,����	�
�
� , �

���,��,��	�
�
� , �

���,��,����	�
�
� ). Differences across groups were 

assessed by considering differences between individual parameters and by performing a principal component 

analysis (PCA) to reduce the dimensionality of both parameter sets. 

To test whether model-based summaries of behavior could be used to characterize individual 

differences without prior information about participants’ clinical diagnoses, we fit VPRL and Subjective Feeling 

models assuming no prior clinical information and uniform priors over parameter values. The resulting 

parameter estimates were concatenated to form a single 14-vector per participant and subjected to PCA. 

Finally, we performed a leave-one-out cross-validated linear discriminant analysis (LDA) to determine if the 14-

vector could distinguish depression versus no depression from behavior observed in the PRPwSR task. 

Receiver Operating Characteristic (ROC) analyses are reported. Further details provided in eMethods. All 

analyses were conducted in R version 4.2.2 and RStan version 2.21.856.  

 

RESULTS 

 

Clinical Characterization 

Pre-ECT, non-ECT, and no-depression groups are significantly different on both PHQ-9 (F2,107=112) 

and HAM-D (F2,107=121.5). PHQ-9 and HAM-D scores are significantly higher for pre-ECT compared to non-

ECT (post-hoc t-test, p<0.001) or no-depression (post-hoc t-test, p<0.001); non-ECT is significantly greater 

than no-depression (post-hoc t-tests, p<0.001). The three groups did not differ in age, gender, race, ethnicity, 

or MOCA score. eTables1-2 summarize participant demographic and clinical characteristics.  

 

Behavioral and Neural Computational Phenotypes for Reward and Punishment Learning – VPRL  

Behavioral 

We hypothesized that VPRL parameters determined from participants’ behavior on the PRPwSR task 

would distinguish depression diagnosis and ECT treatment status. To test this hypothesis, we first determined 

the best groupings for model fitting using hierarchical Bayesian methods57,58. We compared VPRL model fits 

separately for (i) all participants as one group, (ii) depression (i.e., pre-ECT and non-ECT combined) and no-

depression groupings; and (iii) pre-ECT, non-ECT, and no-depression separated. The latter, three-group 
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model, resulted in the maximum model evidence and predictive density values (eTable3) and was used for 

further analyses (Fig.2,Table1). 

We observed group-level differences in the positive system learning rate (��,Fig.2A,eTable4). Non-

ECT showed evidence of higher �� than both pre-ECT (median difference [95% HDI]=0.06[-0.04,0.15]) and 

no-depression (0.04[-0.03,0.11]). Upon visual inspection (Fig.2A), the posterior distributions indicated large 

within-group variability for ��, 
� , and ��. The median and 95% HDI for VPRL parameters (��,��,��,��, and 

�) for each group and group-level comparisons are reported (eTable4).  

We performed a principal components analysis to reduce dimensionality and assess whether distinct 

covariation amongst the five-vector of VPRL parameters could distinguish the three groups (Fig.2C). The 

combination of the first two principal components (PCs) explained 63.2% variance and reveals a relationship 

between depression status and PC1 loading. Fig.2C shows information about how each parameter contributed 

to PC1.   

 Neural 

We compared BOLD response differences associated with VPRL signals across the three groups 

(Table1). We found significant differences in the BOLD response to the positive system Q-values ( 

���,��,�����
�

:F(2,101)=12.77) and negative system prediction errors (+��
�:F(2,101)>9.00 ; -���:F(2,101)>15.00) in 

the right calcarine sulcus, medial and ventromedial prefrontal cortex, left supplementary motor cortex, and right 

angular gyrus. Refer to Table1 for details. eTable 5 describes brain areas tracking positive and negative 

system learning signals across participants.  

 

Behavioral and Neural Computational Phenotypes for Subjective Feelings in depression groups  

Behavioral 

We hypothesized that VPRL learning signals may drive changes in subjective feelings about the 

consequences of choices made (Fig.1B). We hypothesized a simple linear combination of these signals (and 

included a constant term to represent a baseline feeling state): 

���������, �
	
�

� , �
�
�

� , �
	
�

� , �
�
�

� , �
���,��,��	�
�
� , �

���,��,����	�
�
� , �

���,��,��	�
�
� , �

���,��,����	�
�
�   to predict subjective ratings. Group-

level parameter estimates and comparisons of posterior distributions are shown in Fig.2B and eTable6.  
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Both depression groups’ parameter estimates (compared to the no-depression group) showed stronger 

influences of positive system prediction errors for less rewarding outcomes (�
�
�

�� and counterfactual choice 

expectations (�
���,��,����	�
�
� �; however, no-depression participants showed a stronger influence of negative 

system counterfactual choice expectations (�
���,��,����	�
�
� � on feelings. Pre-ECT patients showed a stronger 

influence of negative system prediction errors for worse punishments (�
	
�

�� relative to non-ECT participants. 

No-depression participants showed a stronger influence of positive system prediction errors for more rewarding 

outcomes (�
	
�

�� relative to non-ECT participants.  

Group-level variation in nearly all Subjective Feeling model parameters (Fig.2B) suggest high-

dimensionality in how affective responses are driven across the three groups. Therefore, we performed PCA. 

The first two PCs explained 91.4% variance and revealed natural clustering of each group (Fig.2D). Fig.2D 

shows information about how parameters contribute to PC directions.   

Neural 

We compared BOLD response differences associated with the influence of VPRL signals on subjective 

feelings across the three groups (Table1). The medial and ventromedial prefrontal cortex, left supplementary 

motor area, and right angular gyrus showed significantly greater BOLD responses to negative system outcome 

prediction errors (�
���

�:F(2,101)>11.00; �
���

�:F(2,101)>15.00) in no-depression versus pre-ECT groups. See 

Table1 and eMethods for full statistical details. 

 

Computational phenotypes of dynamic learning and associated affective dynamics may be predictive 

of depression status 

The preceding analyses used hierarchical Bayesian methods for model fitting that incorporated prior 

knowledge of the clinical status when fitting group-informed parameters (eTable3). We tested the hypothesis 

that VPRL and Subjective Feeling models, fit to behavioral dynamics on the PRPwSR task alone, would be 

sufficient to identify and discriminate patients with versus without depression. To test this, we fit model 

parameters for each participant without group information included at any stage. We then reduced the resulting 

14-vector of parameters (i.e.,���������, �
	
�

�  , �
�
�

�  , �
	
�

� , �
�
�

� , �
���,��,��	�
�
� , �

���,��,����	�
�
�  , �

���,��,��	�
�
�  , �

���,��,����	�
�
� , 

��,��, ��, ��, and �) to two dimensions using PCA. While the first two PCs explain only 33.3% of the total 
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variance, color-coding depression status clearly shows a pattern that distinguishes no-depression from 

positive-depression status (Fig.3A). eFig.5 shows pairs plots to reveal the underlying data structure for all 

combinations of resulting PCs.  

We next sought to determine whether individually fit learning and subjective experience parameters 

could predict depression status. We performed a supervised, leave-one-out-cross-validated, linear discriminant 

analysis (LDA) using each individual’s 14-vector of parameters as the independent set of variables and their 

known clinical status as the dependent categorical variable. LDA score distributions are shown in Fig.3B for 

depression and no depression groups. The overall prediction accuracy of the leave-one-out LDA model was 

86% (p-value=3.08e-7, 95% CI=0.77, 0.91) with 0.85 sensitivity and 0.86 specificity. The resulting ROC curve 

(Fig.3C) shows excellent diagnostic performance compared to chance with an AUC=0.90; 95%CI=[0.83-0.97], 

p-value=2.28e-12. See eTable7 for more information on model performance.   

 

DISCUSSION 

We investigated neurobehavioral dynamics of learning and associated moment-to-moment changes in 

feelings in 1) patients with TRD planning to undergo ECT; 2) patients with depression managed without plans 

for ECT; and 3) participants without depression. We report observations from the first of two observational 

research visits (Fig.1A). VPRL models of behavior on the PRPwSR task (Fig.1B) yielded a set of parameters 

that suggested a spectrum of depression (Fig.2C) and provided a means to quantitatively estimate moment-to-

moment changes in subjective feelings (eFig.4). Notably, Subjective Feeling models further distinguished the 

three depression categories (Fig.2D). In addition to these behavioral results, the derived computational 

phenotypes differentiated fMRI BOLD-response patterns associated with learning and affective dynamics 

(Table1). Together, these results suggest that computational descriptions of learning and affective behavior 

may be sufficient to characterize patients with depression. Indeed, VPRL and Subjective Feeling model 

parameters fit to individuals’ behavior yielded an unbiased computational phenotype that provided excellent 

sensitivity and specificity for depression-state classification (Fig.3).  

Neurobehavioral dynamics associated with learning and subjective experience are complex and 

traditionally challenging to characterize. Computational psychiatric approaches provide a potential solution59–61. 

Prior work described neurocomputational processes associated with momentary happiness13 and changes in  
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learning, dependent on whether the trial was rewarding or punishing, associated with depression12. The 

present study is, to our knowledge, the first to apply computational psychiatric methods to TRD and to combine 

insights from valence-partitioning RL methods to infer subjective experience.  

The VPRL model we applied was recently shown to track sub-second changes in human dopamine 

levels16. Those data showed that dopamine reacted systematically to positive system prediction errors (��
�) and 

negative system prediction errors (��
�)16. In the present study, these signals differentially modulated learning 

and affective behavior in depression (Figs.2-3). VPRL positive-system learning rates (��) were decreased in 

pre-ECT patients but increased in non-ECT patients (Fig.2A) whose symptoms were more effectively managed 

(eTables1-2). Further, negative-system learning rates (��) appear to be decreased in both depression groups 

(Fig.2A). In these models, learning rates relate how the magnitude of the error signals (e.g.,��
�, ��

�) are 

weighed in updating expectations. Consistent with this conceptualization, we also observed that error signal 

weights on subjective feeling reports (�
���

� , �
���

� , �
���

� , �
���

�) were significantly altered in patients with 

depression (Fig.2B). BOLD-responses to �
���

� , �
���

�, and ��
�  also differed between pre-ECT and no-depression 

groups (Table 1). Together our results suggest that regions in the brain associated with dopaminergic 

prediction error processing may be altered in patients with depression, but particularly so in relation to 

negative-system processes in TRD.  

Group-informed computational phenotypes (Fig.2) provided insight into neurobehavioral dynamics that 

differentiated the groups in the present work. However, to determine whether computational phenotypes may 

inform more broadly, we simulated ignorance of clinical information by fitting models to individuals while 

excluding prior clinical knowledge (Fig.3,eFig.5). This degraded the statistical quality of the models (eTable3) 

but allowed us to test the hypothesis that unbiased modeling may be used for diagnostic purposes. Indeed, 

PCA separation between the three groups was not as clear using individually-fit parameters (Fig.3A) compared 

to group-fit parameters (Fig.2D), but depression versus no-depression categories were still clear (Fig.3A) and 

leave-one-out-cross-validated modeling yielded excellent classification performance (Fig.3D). Together, these 

results support the notion that computational phenotypes based on hypothesis-driven models may be 

developed to augment diagnosis methods and form a basis for further research into neurobehavioral 
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mechanisms underlying psychiatric conditions. However, we note that more work is needed before the results 

here can be used clinically. 

 

CONCLUSIONS 

Subjective feelings are a critical element in our interpretation of sensory information and the choices we 

make as autonomous humans. The challenges in investigating subjective experience are its inherently private 

nature and the fact that observable behavior and latent conscious experiences do not always appear to be 

consistent. This represents a major barrier for psychiatric medicine and consciousness research. In this study, 

we used computational models grounded in RL theory and prior empirical work in computational neuroscience 

to summarize the relationship between observable objective stimuli, choice behaviors, brain responses, and 

unobservable but behaviorally inferred subjective feelings. Depression, including TRD, is at its core a disease 

of private experience that can manifest as sometimes obvious but often subtle changes in behavior. Using a 

relatively simple task that requires adaptive changes in behavior but also intermittently recorded subjective 

self-reported experiences, we characterized differences in neurobehavioral signals in patients with TRD, but 

also depression versus no-depression more generally. Future work will characterize neurobehavioral changes 

following ECT (i.e.,“visit 2”,Fig.1A)62.  
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Table1. Group-level differences in BOLD responses to learning and subjective experience signals 

Parameter Region Voxels Cluster-level 
p-value 

Peak-level 
p-value Statistic 

Peak MNI 
coordinates 

[x y z] 
Learning Computations  
+���     NS  
-���     NS  
���,��,�����	
�  Right calcarine sulcus 188 0.011 0.473 F(2,101)=12.77 [14 -74 16] 

   0.001 0.112   ano-depression > pre-ECT  
   0.002 0.689   anon-ECT > pre-ECT  
���,��,
	�����	
�      NS  

+��� Medial prefrontal cortex 74 0.027 0.998 F(2,101)=9.37 [4 54 16] 
   5.24e-6 0.992   anon-ECT > no-depression  
 Ventromedial prefrontal cortex 186 9.20e-5 0.526 F(2,101)=13.01 [0 58 -2] 
   1.78e-8 0.141   apre-ECT > no-depression  
-��� Left supplementary motor area  70 0.020 0.096 F(2,101)=15.70 [-4 10 66] 
   6.72e-5 1.73e-4   apre-ECT > no-depression [-4 12 66] 
 Right angular gyrus 143 2.50e-4 0.027 F(2,101)=17.66 [36 -56 28] 
   1.37e-6 0.008   apre-ECT > no-depression  
   0.028 0.496   apre-ECT > non-ECT  
���,��,�����	
�      NS  

���,��,
	�����	
�      NS  

Subjective Experience Computations  
�
��

�     NS  

�
��

�     NS  

�
���,��,����	

�      NS  

�
���,��,�
����	

�      NS  

�
��

� Medial prefrontal cortex 279 8.44e-7 0.351 F(2,101)=13.42 [0 56 24] 

   3.43e-10 0.048   ano-depression > pre-ECT  
 Ventromedial prefrontal cortex 74 0.020 0.877 F(2,101)=11.09 [0 58 -2] 
   1.63e-9 0.266   ano-depression > pre-ECT  
�
��

� Left supplementary motor area  43 0.140 0.036 F(2,101)=17.23 [-4 10 66] 

   0.080 0.022   apre-ECT > no-depression  
 Right angular gyrus 85 0.008 0.117 F(2,101)=15.39 [34 -58 28] 
   1.31e-4 0.021   apre-ECT > no-depression  
�
���,��,����	

�      NS  

�
���,��,�
����	

�      NS  

All analyses were performed at an uncorrected threshold of p<0.001 in which reported results were selected using an FWE-corrected 
threshold of p<0.05 at cluster and peak voxel levels. Bold font indicates significance. NS: not significant. apost-hoc t-test. 
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Fig.1. Study procedure and PRPwSR task structure. (A) Patients were recruited from AHWFB Psychiatry & 

Behavioral Health outpatient clinic. Community volunteers with and without depression were also recruited. 

Participants complete a probabilistic reward and punishment with subjective rating (PRPwSR) task with fMRI 

scanning, followed by clinical assessment for each research visit. Here, we focus on research visit 1 (pre-ECT 

treatment). (B) Schematic of a trial in the PRPwSR task. Each trial starts with an option presentation screen. A 

participant selects an option (self-paced), and the other option disappears. After 3s, the chosen option is 

reinforced probabilistically (e.g., the selected win icon is associated with a certain probability of winning $1 

versus $0), and the outcome is shown for 1s. The screen then presents an interstimulus interval (ITI - sampled 

from a Poison distribution with �=3 seconds). After each trial, there is a 33% probability of a rating screen that 

asks participants how they felt about their most recent outcome. We fit a valence-partitioned reinforcement 

learning model to participants’ choice behavior in the PRPwSR task. This produced learning parameter 

estimates (��,�� , ��,��, and �) that we used to calculate participants’ expectations (���
� ,���

�) and prediction 

errors (��
�,��

�) during the subjective rating trials. Participants’ expectations and prediction errors were then 

used as independent predictors of their reported ratings in a Subjective Feeling linear regression model to 

relate learning signals to affective experience (i.e., green brackets and arrow).  

 

Fig.2. Mechanistic differences in learning and emotional phenotypes across major depression groups. 

Group-level posterior distributions of (A) valence-partitioned reinforcement learning (VPRL) model parameters 

and (B) coefficients from Subjective Feeling model that used participants’ expectations and prediction errors to 

predict subjective ratings during the task. Principal component (PC) analysis biplots with PC1 (x-axis) and PC2 

(y-axis) illustrating cohort variability in (C) VPRL parameters and (D) Subjective Feeling model coefficients. 

Each point represents each participants’ individual-level median values from the group-informed models. PC 1 

and 2 coefficients for respective variables are reported.  

 

Fig.3. Leave-one-out cross-validation linear discriminant analysis of depression diagnosis. (A) Principal 

component (PC) analysis biplot of individually estimated (i.e., non-group informed) valence partitioned 

reinforcement learning (VPRL) parameters and Subjective Feeling model coefficients with ‘VPRL’ PC1 on the 

x-axis and ‘Subjective Experience’ PC2 on the y-axis (left). Heatmap of learning and affective parameters for 
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the first two PCs where VPRL parameters described PC 1 and affective parameters described PC 2 (right). (B) 

Individual’s individual-level VPRL and affective parameters were inserted into a leave-one-out cross-validated 

linear discriminant analysis (LDA) to determine their predictive accuracy on depression diagnosis; distribution 

of participants’ resulting LDA scores by depression (green, N=69) and no depression (grey, N=40) groups. (C) 

Receiver Operating Characteristic curve showing comparison of true and false positive rates for depression 

versus no depression diagnosis in participants, with associated area under the curve (AUC).  
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B. Probabilistic Reward and Punishment with Subjective Rating Task Structure 
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