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Abstract 

Alzheimer’s Disease (AD) is the 7th leading cause of death worldwide. 95% of AD cases are 

late-onset Alzheimer’s disease (LOAD), which often takes decades to evolve and become 

symptomatic. Early prognosis of LOAD is critical for timely intervention before irreversible 

brain damage. This study proposes an Artificial Intelligence (AI)-driven longitudinal multi-

modal platform with time-series transformer (LMP-TX) for the early prognosis of LOAD. It has 

two versions: LMP-TX utilizes full multi-modal data to provide more accurate prediction, while 

a lightweight version, LMP-TX-CL, only uses simple multi-modal and cognitive-linguistic (CL) 

data. Results on prognosis accuracy based on the AUC scores for subjects progressing from 

normal control (NC) to early mild cognitive impairment (eMCI) and eMCI to late MCI (lMCI) is 

respectively 89% maximum (predicted by LMP-TX) and 81% maximum (predicted by LMP-

TX-CL). Moreover, results on the top biomarkers predicting different states of LOAD onsets 

have revealed key multi-modal (including CL-based) biomarkers indicative of early-stage LOAD 

progressions. Future work will develop a more fine-grained LMP-TX based on disease 

progression scores and identify the key multi-modal and CL-based biomarkers predictive of fast 

AD progression rates at early stages. 

 

Keywords: Late Onset Alzheimer’s Disease; Early Prognosis; Progression Timing; Progression 

Rate; Longitudinal Data; Multi-modal Data; Connected Speech; Cognitive-linguistic Marker; 

Data Imputation; Large Language Model; Transformer; Progression Biomarker. 
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1. Introduction 

Alzheimer’s Disease (AD) is the 7th leading cause of death worldwide. 95% of AD cases occur 

after age 65, i.e. Late Onset Alzheimer’s Disease (LOAD). However, LOAD often takes decades 

to evolve and become symptomatic, making it challenging to provide timely intervention at early 

stages. Statistical methods and artificial intelligence (AI) approaches have been proposed for 

LOAD diagnosis (how likely one will get LOAD onsets now) and prognosis (how likely one will 

get LOAD onsets in the future). Statistical models aim to characterize long-term disease 

timelines by describing a set of biomarker trajectories (often under certain assumptions, e.g., the 

trajectory is monotonic or follows a sigmodal curve) and aligning subject trajectories to a 

synchronized timescale based on short-term longitudinal observations (Young et al., 2024). 

These models are easy to interpret, requiring fewer data points for model fitting. They can be 

generally categorized into discrete models of biomarker abnormalities and continuous models of 

biomarker dynamics (see Young et al. (2024) for a more detailed review). Nevertheless, these 

statistical models often fail to capture the complexity of biomarker trajectories and their dynamic 

non-linear relationships. 

AI techniques, particularly deep learning, have enabled a more efficient data-driven 

search of biomarkers for the diagnosis and prognosis of AD (Li et al., 2021). Existing multi-

modal and speech-based deep learning approaches have primarily focused on symptomatic 

LOAD diagnosis rather than prognosis (De la Fuente Garcia et al., 2020; Khojaste-Sarakhsi et al., 

2022). More recently, several data-driven LOAD prognosis studies have been proposed. Most of 

these studies have focused on predicting conversions or changes in cognitive scores over time 

using deep neural networks (Al Olaimat et al., 2023; Ghazi et al., 2019; Jung et al., 2021; 

Maheux et al., 2023; Nguyen et al., 2023; Wang et al., 2022; Xu et al., 2022).  Some studies have 

also investigated time-to-conversion prediction using deep learning models tailored for survival 

analysis (Mirabnahrazam et al., 2023; Yi et al., 2023). Moreover, unsupervised learning methods 

have been developed to derive a prognostic index to predict LOAD progression based on low-

cost multi-modal data (Burkhart et al., 2024; Lee et al., 2024). However, these data-driven multi-

modal models are often constrained by limited data modalities and features, especially 

overlooking (1) high-dimensional genetic data (often involving millions of genetic mutation 

biomarkers) that can improve the biological understanding of LOAD progression and (2) 
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connected speech data that can enable low-cost, non-invasive, and large-scale deployment for 

LOAD prognosis (De la Fuente Garcia et al., 2020; Elazab et al., 2024; Mueller et al., 2018). 

They have yet to fully unlock the potential of deep learning in (1) fusing high-dimensional multi-

modal data and capturing their complex non-linear relationships for LOAD prognosis, and (2) 

processing connected speech data for lightweight CL-based LOAD prognosis using simple 

multi-modal data. 

Furthermore, medical AI models are generally data-intensive, often suffering from small, 

fragmented, heterogeneous, or missing data points (Elazab et al., 2024). To work with limited 

data, existing deep learning methods for LOAD progression modeling have used simple 

imputation techniques (e.g., mean values) (Maheux et al., 2023), incorporated built-in imputation 

mechanisms during model training (Jung et al., 2021), or utilized self-supervised learning (such 

as input data reconstruction) against model overfitting due to limited data (Wang et al., 2022). 

However, addressing the data scarcity problem in longitudinal clinical settings remains 

challenging. For example, the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database is a 

comprehensive longitudinal dataset, including a wide range of data modalities, such as whole-

genome sequencing (WGS), demographics, cognitive assessments, biospecimen, and brain 

imaging, covering more than 800 subjects who were followed up in multiple years. Many 

longitudinal features, such as cognitive scores, are sparse and incomplete (Aghili et al., 2022), 

and some modalities are completely unavailable, especially connected speech (Mueller et al., 

2018), which has been utilized to develop low-cost and non-invasive linguistic biomarkers for 

early detection of AD (Eyigoz et al., 2020). This data scarcity problem has made it difficult for 

medical AI models to characterize individual disease progression and biomarker changes for 

accurate prognosis of LOAD. 

Recent advancements in generative AI (GAI) and large language models (LLMs), such as 

ChatGPT, have offered new perspectives to tackle this data scarcity challenge. General-purpose 

LLMs pre-trained on massive amounts of data from the internet can encode biomedical 

knowledge and pass medical exams (Singhal et al., 2023). Some also allow for multi-modal 

inputs, such as electronic health records (EHRs) and imaging (Moor et al., 2023; 

Thirunavukarasu et al., 2023). One key feature of GAI is generating new data samples that are 

synthetic yet realistic, making it promising to tackle the data scarcity challenge (Bansal et al., 

2022). Some studies have investigated using LLMs for data generation in low-data scenarios, 
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leveraging the prior knowledge of LLMs pre-trained on a large amount of data across different 

domains (Borisov et al., 2022; Seedat et al., 2023). Given that data generation may also lead to 

noisy samples, the reliability and utility of newly generated data have also been investigated to 

assess if they benefit the downstream prediction tasks (Seedat et al., 2023). These studies have 

provided new insights into building more accurate and reliable AI models in low-data settings 

with the help of GAI. 

This study proposes an AI-driven longitudinal multi-modal platform with time-series 

transformer (LMP-TX) to overcome the multi-modal data fusion and data scarcity challenges for 

the early prognosis of LOAD. It has two versions: LMP-TX utilizes full multi-modal data to 

provide more accurate prediction, while a lightweight version, LMP-TX-CL, only uses simple 

multi-modal and cognitive-linguistic (CL) data. The key novelties of this work are as follows: 

• We exploit LLM-based data generation and imputation techniques to fill in missing 

multi-modal longitudinal data, including key cognitive and CL data. 

• We develop a domain-specific deep neural network model to pre-select the most 

salient genetic biomarkers indicative of early-stage LOAD progression timings. 

• We develop a multi-modal time-series transformer that fuses different modalities and 

features to predict the timings of early-stage LOAD onsets and identify crucial 

biomarkers driving early-stage LOAD progressions. 

The rest of this paper is organized as follows. Section 2 details the data used in this study 

and the proposed methodology. Section 3 lists the experimental settings and presents the results. 

Section 4 discusses the key findings and future work. Section 5 concludes this study. 

 

2. Data and Methodology 

This study proposes LMP-TX for the early prognosis of LOAD. Specifically, it aims to predict 

the timings of early-stage LOAD onsets and identify crucial biomarkers that drive early-stage 

LOAD progressions. The proposed methodology has five steps. First, a comprehensive multi-

modal LOAD dataset (but without CL data) was obtained from the ADNI database. In parallel, a 

simple multi-modal LOAD dataset with connected speech samples was obtained from the 

DementiaBank database to complement the ADNI database. Progressive ADNI subjects with AD 

endpoints were selected, and multi-modal data were preprocessed. Second, using LLM-based 

prompting techniques, CL markers were extracted from the DementiaBank database and used to 
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impute the missing CL data in the ADNI database. Other missing values (e.g., cognitive scores)

in the ADNI database were also imputed using LLM-based data generation. Third, the top

genetic biomarkers were selected from the ADNI high-dimensional genetic data. Fourth, the

preprocessed and imputed multi-modal data were used to generate a large longitudinal dataset in

tabular format. A multi-modal time-series transformer model was developed for LOAD

progression timing prediction. Finally, feature importance analysis was performed to identify the

key multi-modal predictors indicative of different stages of LOAD progressions. Figure 1 shows

an overview of the proposed methodology. 

 

Figure 1. Methodology Overview 

 

2.1 Subject Selection and Data Preprocessing 

Two datasets were used in this study. The main dataset was obtained from the ADNI database

(adni.loni.usc.edu). In the ADNI study, subjects were examined at the baseline visit and tracked

via multiple follow-up visits. They were labeled normal control (NC), early mild cognitive

impairment (eMCI), late mild cognitive impairment (lMCI), and AD at each visit. In particular,

the eMCI and lMCI labels were defined by ADNI to improve MCI staging (Edmonds et al.,

2019). 185 Caucasian and non-Hispanic/Latino progressive subjects with AD endpoints were

selected. Based on their diagnosis at the baseline visit, they were categorized into three groups:

NC-AD (n=24), eMCI-AD (n=32), and lLMCI-AD (n=129). Each subject’s clinical states were
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assumed to follow the same trajectory, starting from NC and progressing to eMCI, lMCI, and AD 

sequentially. Based on the diagnosis labels and dates at each clinical visit, onset timings were 

calculated for each subject (see Table 1 for the summary statistics). The maximum onset time for 

eMCI, lMCI, and AD were 10, 12, and 13 years, respectively. 

 

Table 1. Onset Timing Statistics 

Subject 

Group 

First eMCI Onset Time 

(in Years) 

First lMCI Onset Time 

(in Years) 

First AD Onset Time 

(in Years) 

Avg. Std. Min. Max. Avg. Std. Min. Max. Avg. Std. Min. Max. 

NC-AD 

(n=24) 
5.6 2.3 2.0 10.0 6.3 3.0 1.0 12.0 7.6 2.6 2.0 13.0 

eMCI-AD 

(n=32) 
- - - - 1.9 1.6 1.0 7.0 4.8 3.1 0.5 12.0 

lMCI-AD 

(n=129) 
- - - - - - - - 3.1 2.5 0.5 11.5  

Total 

(n=185) 
5.6 2.3 2.0 10.0 3.5 3.0 1.0 12.0 4.0 3.0 0.5 13.0 

 

Multi-modal longitudinal (trajectory) data were retrieved from the ADNI database. The 

following non-genetic data were obtained: (1) demographics and comorbidities (age, gender, 

family history, and comorbidities), (2) key cognitive assessments, including Mini Mental State 

Examination (MMSE), Clinical Dementia Rating (CDR), Montreal Cognitive Assessment 

(MoCA), Alzheimer’s Disease Assessment Scale – Cognitive subscale (ADAS-Cog), and 

specific items in cognitive assessments that are related to language function (e.g., fluency in 

MoCA), (3) blood and cerebrospinal fluid (CSF) biomarkers, including ABeta40, ABeta42, P-

Tau181, neurofilament light (NFL), proteomics, and metabolomics, (4) imaging, including MRI 

volumes, thicknesses, and surface areas, PET Amyloid standardized uptake value ratios (SUVRs), 

and PET Tau SUVRs. 2,110 multi-modal non-genetic features were selected. LLM-based data 

imputation was performed to impute missing values in the ADNI database (see Section 2.2 for 

more details). 

Moreover, whole-genome sequencing (WGS) data from the ADNI database were 

preprocessed using standard genetic quality control and linkage disequilibrium (LD)-pruning 
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methods. Genetic variant data from germline and somatic callers were used to incorporate both 

germline and somatic mutation biomarkers for AD (Downey et al., 2022). 1,229,413 germline 

variants and 1,495,732 somatic variants were kept after preprocessing. Deep learning-based 

variant selection was performed to select the top genetic biomarkers (see Section 2.3 for more 

details). 

The second dataset was obtained from the DementiaBank database 

(dementia.talkbank.org). The DementiaBank database is a speech-based dementia study (Lanzi et 

al., 2023) that can complement the ADNI database. Connected speech audio samples from the 

DementiaBank Pitt English corpus (Becker et al., 1994) were converted into transcripts using 

OpenAI’s Whisper model (OpenAI, n.d.-a). Speaker diarization (Bredin, 2023) was used to 

remove the examiner’s speech. Each audio sample was associated with the corresponding subject 

information, including age, gender, MMSE, CDR, and diagnosis label (NC/MCI/AD). LLM-

based CL marker extraction was performed to impute missing CL data in the ADNI database (see 

Section 2.2 for more details). 

 

2.2 LLM-based CL Marker Extraction and Longitudinal Data Imputation 

Many longitudinal observations, such as cognitive scores, are sparse and incomplete in the ADNI 

database, and connected speech data are completely unavailable. LLM-based prompting 

techniques (Borisov et al., 2022; Seedat et al., 2023) were utilized to impute CL and other 

missing data, exploiting the prior knowledge encoded in LLMs pre-trained on large amounts of 

data to tackle this data scarcity challenge. OpenAI’s GPT-4o model was used (OpenAI, n.d.-b). 

The details are described as follows. 

For CL data completely unavailable in the ADNI database, CL markers were first 

extracted from connected speech (Cookie Theft picture description) data from the DementiaBank 

database (Lanzi et al., 2023). The extracted CL markers were used to recover missing CL data in 

the ADNI database. Specifically, based on the connected speech transcripts, LLM was prompted 

to extract CL markers (linguistic patterns) (Mo et al., 2024), for example, “repetitive descriptions” 

and “fragmented sentence structure”. The prompting included four parts: (1) background 

information to provide the AD context, such as variable definitions and ranges; (2) the subject’s 

connected speech transcript; (3) the connected speech transcripts from subjects of different 

diagnosis labels to help LLM better understand the distinctive CL markers; and (4) step-by-step 
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instructions to elicit the LLM’s reasoning capability for CL marker extraction. The detailed 

prompting is listed in Section 1 in the Appendix. The average number of extracted CL markers 

per DementiaBank Pitt subject/visit was five. Some of these extracted CL markers were of high 

similarity, e.g., “repeated phrases for emphasis or clarity” and “repetition for emphasis or clarity”. 

K-means clustering was further used to group similar CL markers into the same cluster based on 

their text embeddings, and the optimal number of clusters (K=96) was determined using the 

Silhouette coefficient (Rousseeuw, 1987). Finally, for each ADNI subject at each visit, CL 

markers associated with similar characteristics (i.e., age, gender, education, MMSE, CDR, and 

diagnosis label, the common information between ADNI and DementiaBank Pitt) were matched 

for longitudinal CL data imputation. Based on the observed frequencies of the matched CL 

markers, the top five CL markers were selected for each ADNI subject/visit using a frequency-

weighted randomized sampling approach. 

For missing data in the ADNI database, LLM-based longitudinal data imputation was 

performed recurrently (see Figure 2). Specifically, LLM was prompted to predict one subject’s 

characteristics during the current visit, and the predicted values were used to fill in missing 

values and fed into the LLM for the next visit prediction. The prompting included three parts: (1) 

background information to provide the AD context, such as the variable definitions and ranges; 

(2) subject information, including demographic information and longitudinal clinical records; 

and (3) step-by-step instructions to elicit the LLM’s reasoning capability for missing value 

recovery. The detailed prompting is listed in Section 2 in the Appendix. The newly generated 

data were used to fill in missing values. Key cognitive variables in the ADNI tabular dataset, 

including MMSE, MoCA, CDR, and ADAS-Cog, were imputed. 
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Figure 2. LLM-based Longitudinal Data Imputation 

 

2.3 Genetic Biomarker Selection from High-dimensional WGS Data 

Preprocessed WGS data still had large amounts of genetic biomarkers (i.e., millions of variants 

or mutations), making it computationally challenging to incorporate them into LMP-TX. A 

domain-specific deep feedforward neural network model was developed to pre-select the most 

salient genetic biomarkers indicative of early-stage LOAD progression timings (see Figure 3). 

Specifically, each subject was represented by a large high-dimensional feature vector (consisting 

of millions of features) at the input layer. Each element in the vector indicated whether the 

subject carried a particular genetic variant (mutation). WGS variants were first clustered by 

genes. These variants were then connected to the corresponding neurons in the first hidden layer, 

each representing one gene. This hierarchical design can utilize the sparse connections between 

the input layer and the first hidden layer, mimicking the gene-based WGS analysis while 

significantly reducing the number of parameters compared to fully connected layers (Kassani et 

al., 2022; Zhang et al., 2023). The later hidden layers were standard fully connected layers using 

the ReLU activation function to learn complex non-linear relationships from the grouped genetic 

data. The output, a high-level genetic representation vector, was concatenated to the subject’s 

demographic information (age and gender) for the final prediction. A binary classification was 

performed based on the concatenated vector to predict whether the subject was a slow or fast 

progressor using a two-year cut-off of the corresponding onset timing. The onset event was 

I. Background Information

III. Step-by-step 
Instructions

…

TimelineAge: …
MMSE: …
CDR: …
…
Diagnosis: …

Age: …
MMSE: …
CDR: …
…
Diagnosis: …

LLM Prompting Structure

II. Subject Information
(Demographics and Clinical 

Visit Information)

…
GPT-4o GPT-4o

… …

Visit i Visit i+1

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 4, 2024. ; https://doi.org/10.1101/2024.10.02.24314019doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.02.24314019
http://creativecommons.org/licenses/by-nc-nd/4.0/


 10

eMCI and lMCI for NC and eMCI subjects, respectively. Feature importance analysis was

performed to identify the most important genetic biomarkers predicting slow or fast progression

using the saliency scores (Simonyan, 2013) calculated based on the trained genetic model. The

top K (K=100) genetic biomarkers were selected. 

 

Figure 3. Domain-Specific Deep Neural Network for Genetic Biomarker Selection 

 

2.4 LOAD Progression Timing Prediction 

The preprocessed subject trajectory data were combined with the top genetic biomarkers

(unchanged over multiple visits) to generate a large longitudinal dataset in tabular format. Each

row included one subject’s information recorded at one clinical visit, including multi-modal

covariates and outcomes (onset timings). Two versions of LMP-TX were developed using the

same methodology. The full version utilized all available multi-modal data (demographics, CL

biomarkers, genetic biomarkers, cognitive tests, blood/CSF biomarkers, and imaging

biomarkers). The CL version only used CL data plus simple multi-modal data (e.g.,

demographics, MMSE, MoCA, and blood biomarkers). The detailed methodology is elaborated

as follows (see Figure 4). 
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Figure 4. Multi-modal Time-series Transformer for LOAD Progression Timing Prediction 

 

A time-series transformer-based framework was developed for progression timing

prediction. Specifically, a transformer-based encoder (Gorishniy et al., 2021) was adopted to

embed multi-modal tabular data into the same latent space while capturing their shared and

specific semantics. Categorical and numerical values were first mapped to embeddings as the

transformer model inputs. A self-supervised learning procedure was adopted to predict one

masked part of the input based on the remaining input, making the encoder capable of addressing

noisy/missing data by design and capturing the contextual representations of multi-modal

features. After the pre-training process, the pre-trained encoder generated a high-level multi-

modal representation for each subject at each visit. The representations obtained from the current

and previous visits were fed into a time-series transformer for longitudinal data modeling. Fully

connected layers were used to predict the final outcomes, i.e., the probability of onset time (from

1 to T, where T was determined by the maximum period observed in the dataset). Onset time was

represented by disjoint time windows, , , , …, , to model the onset risk over time. A

binary classification was performed to predict the onset event in a given k-year time window

(Zhang et al., 2020). Three transformer models were trained for each onset event (i.e., eMCI,

lMCI, and AD). 
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2.5 LOAD Progression Biomarker Identification 

Feature importance analysis was performed to identify the multi-modal predictors indicative of 

different stages of LOAD progressions, especially early-stage progressions, including NC-eMCI 

and eMCI-lMCI. Based on the trained models, Shapley values were computed using the Kernel 

SHapley Additive exPlanations (SHAP) method (Lundberg, 2017). The average Shapley values 

across all time windows were used to assess the contributions of different multi-modal features 

in progression timing prediction. 

 

3. Results 

3.1 Experimental Settings 

A 70/30 stratified split of all selected subjects was used for model development and testing, 

preserving a balanced distribution of NC-AD, eMCI-AD, and lMCI-AD subjects. The 

progression prediction model was trained using the following hyper-parameters: batch size (32), 

learning rate (1e-3), and maximum epochs (100). The following hyper-parameters were fine-

tuned and selected using a subset of the training data as a validation set: the hidden dimension 

size (16, 32, or 64), the depth (1 to 4), and the number of multi-head attention (1 to 4). An early 

stop was adopted if the validation performance was not improved over ten epochs. 

 

3.2 Predictive Performance Evaluation 

The area under the ROC curve (AUC) score was used to evaluate progression timing predictions 

at different years (from 1-year prediction up to 10-year prediction). Two versions of LMP-TX 

were assessed. The full version utilized all multi-modal data, while the CL version utilized only 

simple multi-modal data. Prognosis accuracy based on the AUC scores for subjects who 

progressed from NC to eMCI and eMCI to lMCI is respectively 89% maximum (predicted by 

LMP-TX) and 81% maximum (predicted by LMP-TX-CL) (see Table 2 for more details). In 

general, predicting eMCI onset events is more challenging compared to other LOAD states. 

When comparing the full version to the CL version, higher predictive accuracy is achieved by 

including more multi-modal features. 

 

Table 2. Prognosis Performance 
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Prediction (from Year 1 up to Year 10) AUC (Full Version) AUC (CL Version) 

NC-eMCI (with AD endpoint) 76% − 86% 61% − 79% 

eMCI-lMCI (with AD endpoint) 77% − 89% 64% − 81% 

lMCI-AD (with AD endpoint) 73% − 89% 63% − 81% 

 

3.3 Key Multi-modal Biomarkers Predicting Progression Timings 

Tables 3-5 list the results of the top multi-modal biomarkers predicting progression timings at 

different stages. Among the identified top biomarkers, gender is consistently the most salient at 

each stage. Triglycerides, a serum biomarker related to lipid metabolism, is also implicated in 

different stages. The other biomarkers vary across different stages. Specifically, for the NC-

eMCI stage (see Table 3), the top biomarkers cover various aspects, including genetics, imaging 

(MRI and PET), biospecimen (proteins and metabolites), and connected speech. The genetic 

biomarkers, including CBX2 and ST8SIA2, are related to neurodevelopment and have been 

reported by previous literature on AD and neurodegeneration (Gu et al., 2018; Stefano et al., 

2016). The CL-based biomarker (“fragmented sentence structure”) is related to syntactic 

impairment in AD (Fraser et al., 2015; Lofgren & Hinzen, 2022). Moreover, imaging biomarkers 

highlight the brain regions implicated in the early AD stage, including the superior frontal cortex 

(Keith et al., 2023), frontal pole cortex (Finger et al., 2017), and left superior parietal (Hänggi et 

al., 2011). Further, the identified serum metabolite biomarkers, including very-low-density 

lipoprotein and triglycerides, are related to brain inflammation and metabolism (Bernath et al., 

2020; Lin et al., 2021), while the CSF protein biomarker, CO8B, is involved in the innate 

immunity complement system and related to inflammatory responses in AD (Fukuda et al., 2024). 

 

Table 3. Top Biomarkers Predicting NC-eMCI Progression 

Rank Modality Feature 

1 Demographics Gender (male) 

2 Connected Speech CL Marker (fragmented sentence structure) 

3 Genetics Gene (CBX2) 

4 Imaging PET Tau SUVR (superior frontal cortex) 

5 Imaging MRI (cortical volume of left superior parietal) 
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6 Biospecimen CSF Protein (CO8B) 

7 Biospecimen Serum Metabolite (very-low-density lipoprotein) 

8 Genetics Gene (ST8SIA2) 

9 Imaging PET Amyloid SUVR (frontal pole cortex) 

10 Biospecimen Serum Metabolite (triglycerides) 

 

For the eMCI-lMCI stage (see Table 4), the top genetic biomarkers are mostly related to 

the immune system and neuroinflammation: LINC01162 is a long non-coding RNA (lncRNA) 

gene involved in B-cell differentiation (Lagou et al., 2018) and ATP2A2 is related to calcium 

homeostasis (Lim et al., 2021) which is linked to neuroinflammation (Sama & Norris, 2013). The 

imaging biomarkers reveal the left lingual region related to visual processing and faster cognitive 

decline (Meulenbroek et al., 2010) and the left pallidum region implicated in brain network 

topology changes in late MCI converters (Pereira et al., 2016). Further, the serum metabolite 

biomarkers include serum short-chain fatty acids (hexanoic acid and valeric acid) that can 

mediate gut-brain interactions and affect neuroinflammation (Qian et al., 2022), serum 

phosphatidylcholine related to choline metabolism (Whiley et al., 2014), and CSF protein CRP 

related to inflammation (Brosseron et al., 2018). 

 

Table 4. Top Biomarkers Predicting eMCI-lMCI Progression 

Rank Modality Feature 

1 Demographics Gender (male) 

2 Biospecimen CSF Protein (CRP) 

3 Genetics Gene (LINC01162) 

4 Biospecimen Serum Metabolite (hexanoic acid) 

5 Biospecimen Serum Metabolite (valeric acid) 

6 Imaging MRI (surface area of left lingual) 

7 Biospecimen Serum Metabolite (triglycerides) 

8 Imaging PET Tau SUVR (left pallidum) 

9 Genetics Gene (ATP2A2) 

10 Biospecimen Serum Metabolite (phosphatidylcholine) 
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 For the lMCI-AD stage (see Table 5), the top genetic biomarker, BANK1, encodes a B-

cell-specific protein related to the immune system (Blokland et al., 2017). Imaging biomarkers 

include the brain stem and the right rostral anterior cingulate regions related to cognitive aging 

(Haller et al., 2020; Pezzoli et al., 2024). Serum metabolites include fatty acids (palmitoleic acid 

and docosatetraenoic acid) that have exhibited dysregulation in AD cases (Hosseini et al., 2020). 

CSF proteins include LYSC, PCSK1, and RET4. Some of them (e.g., PCSK1) have been found 

to improve AD diagnosis and prognosis accuracy (Guo et al., 2024). 

 

Table 5. Top Biomarkers Predicting lMCI-AD Progression 

Rank Modality Feature 

1 Demographics Gender (male) 

2 Imaging PET Amyloid SUVR (brain stem) 

3 Biospecimen Serum Metabolite (palmitoleic acid) 

4 Biospecimen Serum Metabolite (docosatetraenoic acid) 

5 Genetics Gene (BANK1) 

6 Imaging MRI (cortical thickness of right rostral anterior cingulate) 

7 Biospecimen CSF Protein (LYSC) 

8 Biospecimen Serum Metabolite (triglycerides) 

9 Biospecimen CSF Protein (PCSK1) 

10 Biospecimen CSF Protein (RET4) 

 

4. Discussion and Future Work 

This study proposes LMP-TX for early LOAD prognosis. LMP-TX uses LLM-based data 

imputation techniques and a transformer model for longitudinal multi-modal data fusion. Two 

versions of LMP-TX have been developed, including a full version using all available multi-

modal data and a lightweight version, LMP-TX-CL, which utilizes simple multi-modal and CL 

data. Results have demonstrated the effectiveness of LMP-TX in providing accurate predictions 

for LOAD progressions at different stages. Prognosis accuracy based on the AUC scores for 

subjects progressing from NC to eMCI and eMCI to lMCI is respectively 89% maximum 

(predicted by LMP-TX) and 81% maximum (predicted by LMP-TX-CL). 
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Moreover, results have revealed key multi-modal biomarkers indicative of early-stage 

LOAD progressions. These biomarkers, covering genetics, imaging, metabolites, proteomics, and 

connected speech, highlight the diversity of the biological processes involved in LOAD and the 

complex interplay of biomarkers across different stages of LOAD. An interesting finding about 

the connected speech-based CL marker is the identification of fragmented sentence structure as a 

biomarker for early-stage LOAD progression. This linguistic feature can be related to syntactic 

impairment in LOAD (Fraser et al., 2015; Lofgren & Hinzen, 2022), which can be used as an 

early, non-invasive marker of cognitive decline, offering a novel way to assess AD-related 

neurodegeneration through natural language processing. This finding highlights the potential of 

linguistic-based biomarkers in detecting subtle cognitive changes even before more pronounced 

memory deficits appear. Moreover, early-stage biomarkers highlight neurodevelopmental genes 

and dysregulation in metabolic and inflammatory pathways. As the disease progresses, 

neuroinflammation, immune responses, and metabolic dysfunction become more pronounced. 

These multi-modal biomarkers provide crucial insights into the pathophysiology of LOAD, 

opening new avenues for early prognosis and targeted therapeutic interventions. 

 However, this study has some limitations that can be addressed in future work. First, this 

study mainly focuses on the ADNI dataset. However, AI models require large datasets integrating 

genetics, imaging, biospecimen, and connected speech data to achieve high generalizability. 

Such comprehensive datasets are rare, especially those with speech modality covering different 

stages of LOAD progression. The lack of high-quality multi-modal datasets limits the 

generalizability of AI models. Future work will incorporate more LOAD datasets, such as those 

from the Alzheimer’s Disease Sequencing Project – Phenotype Harmonization Consortium 

(ADSP-PHC) and from UK Biobank, to improve and validate the generalizability of the 

proposed AI approach. Second, this study is based on data from a specific population (i.e., 

Caucasian), which may not represent the full spectrum of AD across different ethnicities and 

genetic backgrounds. To date, the study subjects in AD datasets have been mostly Caucasians, 

and other ethnicities are often underrepresented. As a result, AI models may not generalize well 

to disease progressions among the underrepresented, leading to biased prediction. For example, 

lower sensitivity was observed for predicting MCI to AD conversion among certain minority 

ethnic groups in the ADNI study (Yuan et al., 2023). In the past, transfer learning techniques 

have been adopted for cross-population learning. For example, English corpus data has 
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facilitated speech-based AD detection using the Chinese AD corpus data (Guo et al., 2020). 

Future work will investigate transfer learning techniques to improve cross-population LOAD 

prognosis limited by low-resource data. 

Finally, in future work, a more fine-grained LMP-TX will be developed. Clinical stages, 

such as eMCI, lMCI, and AD used in this study, are discrete and less fine-grained labels, often 

depending on cognitive scores and failing to fully capture the pre-symptomatic phase of LOAD. 

A Disease Progression Score (DPS), ranging from 0 (corresponding to NC) to 1 (corresponding 

to AD), will be calculated to re-label each subject’s discrete diagnosis along the AD continuum at 

each visit based on the corresponding progression timing predictors. Specifically, based on the 

initial four labels (NC, eMCI, lMCI, and AD) of the ADNI dataset, the DPS scale will be divided 

into three intervals, namely, NC-eMCI, eMCI-lMCI, and lMCI -AD. The cut-offs to determine 

the three intervals will be optimized to separate different labels. Given the most salient 

biomarkers during these three stages shown in Section 3.3, for each interval per subject, the 

corresponding most salient biomarkers will be used to determine a DPS value. As a result, 

someone who was labeled NC originally but with higher biomarker values will be placed on the 

DPS scale closer to eMCI than to NC. After DPS calculation, LMP-TX will be re-trained to 

predict DPS over time. The rate of change in DPS at different stages will be calculated. A pre-

symptomatic state between NC and eMCI can also be determined based on the maximum rate of 

change in progression. Finally, feature importance analysis will be performed based on the 

trained fine-grained LMP-TX model for DPS prediction to determine the most important 

biomarkers driving fast progressions at early stages. Candidate drugs and combinations targeting 

early-stage LOAD progression-driven biomarkers will be identified and verified (Li et al., 2024). 

 

5. Conclusion 

Early prognosis of LOAD is critical for timely intervention. This study proposes LMP-TX, an 

AI-driven integrated longitudinal multi-modal platform for the early prognosis of LOAD. It 

exploits LLM-driven data imputation techniques to fill in missing multi-modal data, including 

CL data. It utilizes a transformer model to fuse different modalities and features from 

longitudinal multi-modal data to predict the timings of LOAD progressions at early stages and 

identify the key biomarkers deterministic of early-stage LOAD progression timings. Results have 

demonstrated up to 89% accuracy for progression timing prediction and revealed key multi-

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 4, 2024. ; https://doi.org/10.1101/2024.10.02.24314019doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.02.24314019
http://creativecommons.org/licenses/by-nc-nd/4.0/


 18

modal biomarkers driving early-stage LOAD progressions. Future work will use the identified 

biomarkers during different LOAD progression stages, especially the early stages, to calculate 

disease progression scores, develop a more fine-grained LMP-TX for predicting disease 

progression scores, and identify the key multi-modal and CL-based biomarkers predictive of fast 

AD progression rates at early stages. 
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Appendix 

 

1. LLM Prompting Example for CL Marker Extraction 

Background information: Three labels are used to indicate one's diagnosis: Normal Control 

(NC), Mild Cognitive Impairment (MCI), and Alzheimer's Disease (AD). Clinical Dementia 

Rating (CDR) ranges from 0 to 5. Mini-Mental State Examination (MMSE) ranges from 0 to 30. 

Missing values are denoted as nan. 

 

One subject is diagnosed as MCI at Age: [age]. This subject's demographic information: 

Gender: [gender], Years of Education: [education] 

MMSE: [MMSE], CDR: [CDR] 

 

This subject's connected speech transcript: There's a young boy that's getting a cookie jar … 

 

Some examples extracted from other subjects: 

 

NC subject connected speech transcript example 1: Well, the mother's doing the dishes … 

NC subject connected speech transcript example 2: … 

NC subject connected speech transcript example 3: … 

 

AD subject connected speech transcript example 1: The sink is running over … 

AD subject connected speech transcript example 2: … 

AD subject connected speech transcript example 3: … 

 

Identify the linguistic markers that could potentially indicate MCI at Age: [age], based on the 

information above. The linguistic markers should be extracted from the subject's connected 

speech transcript provided above. The identified linguistic markers should not overlap with those 

extracted from the examples of NC and AD subjects above. 

 

Output the identified linguistic markers in JSON format as follows. 
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Firstly, extract a list of linguistic patterns that characterize the subject's cognitive health status 

in the field named PATTERNS. 

Secondly, extract a list of linguistic keywords or phrases that characterize the subject's cognitive 

health status in the field named KEYWORDS/PHRASES. 

Thirdly, provide a brief explanation of the linguistic markers extracted in the field named 

EXPLANATION. 

A JSON schema is provided as follows: 

{ 

    "PATTERNS": [ 

        "string" 

    ], 

    "KEYWORDS/PHRASES": [ 

        "string" 

    ], 

    "EXPLANATION": "string" 

} 

 

2. LLM Prompting Example for Longitudinal Data Imputation 

Background information: Three labels are used to indicate one's diagnosis: Normal Control 

(NC), Mild Cognitive Impairment (MCI), and Alzheimer's Disease (AD). Clinical Dementia 

Rating (CDR) ranges from 0 to 5. Mini-Mental State Examination (MMSE) ranges from 0 to 30. 

Montreal Cognitive Assessment (MoCA) ranges from 0 to 30. Alzheimer's Disease Assessment 

Scale-Cognitive Subscale (ADAS-Cog) ranges from 0 to 70. Missing values are denoted as nan. 

 

One subject is diagnosed as MCI at Age: [age]. This subject's demographic information: 

Gender: [gender], Education (in years): [education] 

This subject's clinical visit history: 

Age: […] 

Mini-Mental State Examination (MMSE): […] 

Clinical Dementia Rating (CDR): […] 

Montreal Cognitive Assessment (MoCA): […] 
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Alzheimer's Disease Assessment Scale - Cognitive Subscale (ADAS-Cog): […] 

Diagnosis Label: […] 

 

Predict this subject's missing values at Age: [age], based on the information above. 

Do it step by step and output in JSON format as follows. 

Predict the subject's diagnosis using 'NC', 'MCI', or 'AD' in the field named LABEL. 

Predict the subject's MMSE score in the field named MMSE. 

Predict the subject's CDR score in the field named CDR. 

Predict the subject's MoCA score in the field named MoCA. 

Predict the subject's ADAS-Cog score in the field named ADAS-Cog. 

Finally, output the reasons for 'LABEL', 'MMSE', 'CDR', 'MoCA', and 'ADAS-Cog' in the field 

named REASONING. 

A JSON schema is provided as follows: 

{ 

    "LABEL": "string", 

    "MMSE": "number", 

    "CDR": "number", 

    "MoCA": "number", 

    "ADAS-Cog": "number", 

    "REASONING": { 

        "LABEL": "string", 

        "MMSE": "string", 

        "CDR": "string", 

        "MoCA": "string", 

        "ADAS-Cog": "string" 

    } 

} 
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