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Background

Emerging evidence highlights the dysregulation of mitophagy, the process of clearing 

damaged mitochondria, as a potential contributor to Alzheimer's disease (AD) pathology. 

However, the precise mechanisms linking mitophagy to AD remain poorly understood. This 

study utilized summary-data-based Mendelian Randomization (SMR) combined with multi-

omics data to explore the causal relationships between them, and to uncover potential 

epigenetic mechanisms of gene regulation.

Methods

Mitophagy-related genes were identified through the integration of three databases, and 

transcriptomic data of AD patients were obtained from the Gene Expression Omnibus (GEO) 

database. A meta-analysis was conducted to recognize differentially expressed genes (DEGs) 

associated with mitophagy in AD. Through SMR tools, genome-wide association study (GWAS) 

summary data of AD from the GWAS Catalog (n=487,511) were separately integrated with 

expression quantitative trait loci (eQTLs) and DNA methylation quantitative trait loci (mQTLs) 

from blood and brain tissues to identify potentially causal genes and methylation sites. The 

findings from primary analysis were validated with data from the UK Biobank (n=301,478).

Results 

In total, 111 mitophagy-related genes were found to be differentially expressed in AD. The 

three-step SMR analysis identified two genes, PARL and BCL2L1, from blood tissues and three 

genes, ATG13, TOMM22, and SPATA33, from brain tissues as causal candidate genes 

associated with AD. The analysis pinpointed the possible epigenetic mechanisms, where 

specific methylation sites regulate the expression of these genes, potentially contributing to 
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their association with AD. All findings were successfully replicated in UK Biobank cohorts.

Conclusions 

The study emphasized the putatively causal relationships of mitophagy-related gene with AD. 

These underlying pathogenic mechanisms could pave the way for new approaches in early 

detection and therapeutic intervention for AD.

Keywords Mitophagy, Alzheimer's disease, multi-omics, Mendelian randomization
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1 Background
2 Alzheimer's disease (AD), the leading cause of dementia in older adults worldwide, is a 

3 progressive, age-related neurodegenerative disorder characterized by memory impairment, 

4 cognitive decline, personality changes, and language disorders [1]. Its major pathological 

5 features include amyloid beta (Aβ) plaques, neurofibrillary tangles of hyperphosphorylated 

6 tau (p-tau), and neuroinflammation. Although the etiology of AD remains poorly understood, 

7 it is generally believed that the multifaceted interplay of genetic variation, environmental 

8 factors, and lifestyle underpins the pathogenesis of AD, especially in sporadic cases [2]. 

9 The brain is one of the most energy-demanding organs, and brain cells are particularly 

10 vulnerable to mitochondrial damage [3]. The homeostasis of both neurons and glial cells is 

11 heavily dependent on the normal function of mitophagy, the central component of 

12 mitochondrial quality control [4]. Mitophagy refers to the selective degradation of defective 

13 mitochondria via the autophagy pathway [5]. By removing dysfunctional mitochondria in 

14 neurons and supporting glial cells, mitophagy not only reduces cellular damage caused by 

15 reactive oxygen species (ROS) and mitochondrial DNA (mtDNA) leakage, but also enhances 

16 microglial phagocytosis of misfolded proteins like Aβ and tau in neurodegenerative diseases 

17 [6]. This process helps to attenuate neuroinflammation, primarily induced by the release of 

18 pro-inflammatory cytokines or ROS, and maintain cellular homeostasis in AD models, thereby 

19 preventing bioenergetic failure and cell death [7]. 

20 Mounting evidence implicates that mitophagy is significantly dysregulated in the brains of AD 

21 patients and AD models, which may be one of the underlying contributors to the 

22 manifestation and pathophysiology of the disease [8]. Altered expression levels of several 
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23 mitophagy-related proteins, such as PINK1, p62, and LC3, have been observed in post-

24 mortem human AD brains [9, 10].

25 Impaired mitophagy exacerbates oxidative damage and cellular energy depletion, leading to 

26 the aggregation of Aβ and p-tau proteins, which in turn disrupt the mitophagy mechanism 

27 itself [11]. PINK1/Parkin signaling, involving proteins such as PINK1, Parkin, and p62, is an 

28 important pathway regulating mitophagy [12]. PINK1-deficient mAPP mice exhibited earlier 

29 and increased Aβ accumulation, mitochondrial dysfunction, and cognitive impairment [13], 

30 while knocking out the p62 gene accelerated p-tau aggregation and neurodegeneration in 

31 PS19 mice [14]. Experimental evidence showed that upregulation of mitophagy-related 

32 proteins by genetic or pharmacological intervention could potentially increase mitophagy flux 

33 and ameliorate cognitive deficits in AD models [11, 13, 15]. 

34 Epigenetic modifications, particularly aberrant DNA methylation (DNAm) at CpG sites 

35 introduced by environmental factors, also play a vital role in AD development [16]. Both global 

36 and site-specific DNA hypomethylation have been found in post-mortem AD human brains 

37 and AD animal models [17, 18]. DNA methylation status in specific gene promoter or enhancer 

38 regions can affect Aβ deposition and neurofibrillary tangle formation by altering gene 

39 expression [19]. For example, hypomethylation in the promoter of BACE1 or PSEN1, both 

40 integral to the Aβ production, increases Aβ aggregates in AD mice by upregulating the 

41 expression of these genes [20, 21].

42 Multiple genome-wide association studies (GWAS) in AD patients have successfully identified 

43 several genetic susceptibility loci related to mitochondrial function, including APOE, TOMM40, 

44 and CLU, especially in late-onset AD cases [22-24]. Furthermore, methylome-wide association 
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45 studies (MWAS) have also detected numerous AD-related DNA methylation marks, notably 

46 in genes such as APOE, MAPT, ANK1, and HOXA3 [25-27] .

47 Despite these findings, which have expanded our knowledge of the genetic architecture and 

48 epigenetic mechanisms in AD, the associations identified from GWAS and MWAS may not be 

49 the direct genetic causes of the disease due to confounding effects from environmental and 

50 genetic factors [28, 29]. The specific role of mitophagy-related genes and their regulatory 

51 elements in AD remains elusive. 

52 Summary data-based Mendelian randomization (SMR) is a method that combines GWAS data 

53 with molecular trait data, such as expression quantitative trait loci (eQTL) and DNA 

54 methylation QTL (mQTL), with the objective of investigating putative causal relationships 

55 between the molecular signatures and diseases [30]. Given that AD is a progressive 

56 neurodegenerative disorder affecting the central nervous system [31], analyzing the putative 

57 effects of genetic variants on brain-expressed genes may yield more meaningful insights than 

58 blood-based analyses. Accordingly, we employed a three-step SMR approach, integrating AD 

59 GWAS summary statistics with eQTL/mQTL data from blood and brain tissues separately, to 

60 investigate gene expressions and DNAm sites potentially causally linked to AD.

61 Furthermore, the replication analysis using data from UK Biobank datasets validated findings 

62 from the primary analysis to ensure the robustness and reliability of the discovery. 

63 Methods
64 Study design 

65 The study design is illustrated in Figure 1. Initially, a meta-analysis of transcriptomic data was 

66 conducted to recognize differentially expressed genes (DEGs) associated with mitophagy in 
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67 AD patients. Subsequently, the three-step SMR approach integrated AD GWAS summary 

68 statistics with eQTL/mQTL data of DEGs to identify potential causal relationships between 

69 these genes and AD. The SMR tests were conducted using eQTL and mQTL data from blood 

70 tissues, separately. Genes and methylation sites identified as significant in the primary analysis 

71 were then validated using data from UK Biobank.

72 Fig 1. Flowchart of the study. AD, Alzheimer’s disease; cis-eQTLs, cis-expression quantitative 

73 trait loci; cis-mQTL, cis-methylation quantitative trait loci; GWAS, Genome-wide association 

74 studies; SMR, summary-based Mendelian randomization; SNP, single nucleotide 

75 polymorphisms.

76 Data resources

77 Mitophagy-related genes were retrieved from the Gene Set Enrichment Analysis (GSEA), 

78 Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology Resource (GO) using 

79 the search terms “mitophagy”. Five microarray datasets for AD patients were gained from the 

80 Gene Expression Omnibus (GEO) database (http://www.ncbi.nlm.nih.gov/geo/) (S1 Table) [32-

81 44]. 

82 In the primary analysis, GWAS summary statistics for AD from the GWAS Catalog were used, 

83 consisting of a total of 487,511 individuals, including 39,106 clinically diagnosed AD cases, 

84 46,828 proxy cases, and 401,577 controls [45]. These data were obtained from a meta-analysis 

85 of AD GWAS datasets collected across 15 European countries, combining results from the 

86 European Alzheimer & Dementia Biobank (EADB) consortium and the UK Biobank. The data 

87 can be accessed publicly via the GWAS Catalog - GCST90027158 

88 (https://www.ebi.ac.uk/gwas/studies/GCST90027158).
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89 For external validation, we utilized GWAS summary data from the UK Biobank, encompassing 

90 a total of 301,478 individuals, with 25,392 AD cases and 276,086 controls [45]. The proxy-AD 

91 cases were determined based on questionnaire data in which individuals were asked if their 

92 parents had a diagnosis of dementia. All individuals analyzed in both the primary analysis and 

93 validation stages were of European ancestry.

94 Blood eQTL summary data of mitophagy-related genes were procured from eQTLGen, which 

95 contains statistics on blood gene expression from 31,684 individuals [46]. Blood mQTL data 

96 obtained through a meta-analysis implemented on two cohorts (n=1,980) [47]. Brain eQTL 

97 data were derived from BrainMeta v2 cis-eQTL summary data project (n= 2,865) [48], while 

98 the brain mQTL data were derived from the Brain-mMeta mQTL dataset (n = 1,160), generated 

99 through a meta-analysis that combined data from the studies by ROSMAP et al., Hannon et 

100 al., and Jaffe et al. [49]. This study focused on cis-eQTLs and cis-mQTLs, defined as single 

101 nucleotide polymorphisms (SNPs) located within a 1000 kb range upstream or downstream 

102 of the gene of interest.

103 For comprehensive details about the data used in the study, please refer to Supporting 

104 information.

105 Statistical analysis

106 Identification of DEGs 

107 DEGs related to mitophagy between AD patients and healthy controls (HCs) were identified 

108 using linear regression models for each dataset, with adjustments for age, sex, and other 

109 relevant covariates to account for potential confounding factors. A meta-analysis with a fixed-

110 effects model was then carried out using the R package metafor to integrate the DEGs from 
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111 individual datasets and derive the final set of DEGs [50]. 

112 SMR for detecting putative causal relationship 

113 SMR tools were specifically designed to assess whether genetic variants influence complex 

114 traits through intermediate molecular traits, such as gene expression, DNA methylation, or 

115 protein abundance [30]. The 1000 Genomes European reference was used to calculate linkage 

116 disequilibrium [51], while the heterogeneity of dependent instruments (HEIDI) tests were 

117 employed for the assessment of heterogeneity [30]. 

118 The SMR analysis was conducted three times respectively using molecular QTL data from 

119 blood and brain tissues, with SNPs serving as genetic instrument variables in all three steps: 

120 (1) blood or brain eQTLs as exposures, with AD as the outcome; (2) blood or brain mQTLs as 

121 exposures, with AD as the outcome; (3) significant findings from step 1 as exposures, and 

122 findings from step 2 as outcomes. The significant causal associations were identified in 

123 accordance with the following criteria: (1) passing all three-step SMR with the threshold of 

124 PSMR-multi < 0.05; (2) demonstrating genome-wide significance, with P < 1×10⁻⁵ across all QTL 

125 datasets; and (3) displaying no significant heterogeneity (PHEIDI >0.05). 

126 Results
127 DEGs associated with mitophagy 

128 After removing duplicates, 167 unique mitophagy-related genes were collected from three 

129 databases (S2 Table). The recognition of DEGs was conducted on each of the five microarray 

130 datasets to contrast the expression levels of transcripts between AD patients (n=401) and HCs 

131 (n=388) (S1 Table). After the meta-analysis of results from these five datasets, 111 mitophagy-

132 related genes were recognized as DEGs in AD (P < 0.05) (Fig 2 and S3 Table). 
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133 Fig 2. Volcano Plot of differentially expressed genes (DEGs) related to mitophagy in AD. A 

134 meta-analysis of five microarray datasets was conducted to compare gene expression 

135 between AD patients and healthy controls. In volcano plot, the x-axis represents meta-analysis 

136 effect sizes, while the y-axis shows the −log of meta p value, indicating statistical significance. 

137 Red dots highlight the 111 significant differentially expressed genes (DEGs), while black dots 

138 represent non-significant genes. The dashed line marks the significance threshold at p < 0.05.

139 Integration of GWAS and mitophagy‑related eQTL/mQTL data from 

140 blood and brain tissues

141 As outlined previously, we sought to identify candidate causal genes for AD and elucidate the 

142 epigenetic mechanisms involved. Our three-step SMR analysis combined AD GWAS summary 

143 statistics from the GWAS Catalog with blood or brain cis-eQTLs/cis-mQTLs data of 111 

144 mitophagy-related DEGs.

145 Integrating blood eQTL data from the eQTLGen Consortium (n = 31,684) with AD GWAS 

146 summary data identified 5 mitophagy-related genes (PSMR-multi <0.05, PHEIDI >0.05) (S4 Table). 

147 Similarly, the integration of blood mQTL data (n = 1,980) with the same AD GWAS data 

148 identified 676 CpG sites (PSMR-multi <0.05, PHEIDI >0.05) (S5 Table). Further analysis combining 

149 the putative causal signals from the first two steps resulted in the identification of 6 CpG sites 

150 associated with the expression of two genes: PARL and BCL2L1 (PSMR-multi <0.05, PHEIDI >0.05) 

151 (S6 Table).

152 In a similar manner, leveraging eQTL (n = 2,865) and mQTL (n = 1,160) data from brain tissues 

153 along with the same AD GWAS summary statistics, we identified 9 mitophagy-related genes 

154 and 83 CpG sites (PSMR-multi <0.05, PHEIDI >0.05) (S7 and S8 Table). By combining findings from 
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155 transcriptome and methylome data, the third analysis filtered out 7 CpG sites that putatively 

156 regulate the expression of three genes: ATG13, TOMM22, and SPATA33 (PSMR-multi <0.05, PHEIDI 

157 >0.05) (S9 Table). 

158 The integration of multi-omics data from blood and brain tissues provides evidence 

159 supporting the causal relationships between mitophagy-related gene expression and AD 

160 pathogenesis, as shown in Table 1.

161 Table 1. Associations of mitophagy-related gene expression with AD identified through three-

162 step SMR analysis 

nsnp
Analysis Type Gene Top SNPa PSMR-multi PHEIDI

HEIDI
betaSMR

PARL rs7644746 4.69 × 10⁻³ 0.18 20 -0.13Blood-based 

analysis BCL2L1 rs6088962 5.04 × 10⁻³ 0.11 20 0.41

ATG13 rs756343 1.94 × 10⁻² 0.15 20 0.03

TOMM22 rs926299 2.89 × 10⁻² 0.61 20 0.05
Brain tissue 

analysis
SPATA33 rs258334 1.81 × 10⁻³ 0.10 20 -0.05

163 AD, Alzheimer’s disease; SMR, summary-based Mendelian randomization; SNP, single 

164 nucleotide polymorphism; PSMR-multi, p value from multi-SNP-based SMR method; PHEIDI, p 

165 value from HEIDI test (Heterogeneity in Dependent Instruments); nsnp HEIDI: The number of 

166 SNPs used in the HEIDI test; betaSMR, effect size from SMR analysis. 

167 a Top SNP refers to the most significantly associated SNP with gene expression within a cis-

168 eQTL region and it is used to estimate the effect of gene expression on trait.

169 Plausible epigenetic regulation of mitophagy-related genes by DNA 

170 methylation in AD
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171 The three-step SMR analysis gave us an opportunity to speculate on the genetic regulation 

172 model of mitophagy-related genes in AD. One illustrative case is the PARL gene, which 

173 encodes a serine rhomboid protease located in the mitochondrial intermembrane space and 

174 is involved in regulating mitophagy by mediating the cleavage of PINK1 and PGAM5 [52, 53]. 

175 DNAm site cg22921096 in the 5' untranslated region, 453 kbp downstream of PARL, was 

176 identified in the integration analysis of mQTL and AD GWAS summary statistics. The 

177 methylation level of this site exerted a positive effect on PARL expression (betaSMR = 0.07) and 

178 a negative effect on AD (betaSMR = -0.03). In addition, the PARL expression level was inversely 

179 related to the disease onset (betaSMR = -0.13). Collectively, these results suggest that higher 

180 methylation level at this site upregulates the transcript level of PARL, potentially offering a 

181 protective effect against AD risk (Fig 3A). 

182 ATG13, a key component of the ULK1 complex, is integral to the initiation of autophagy and 

183 mitophagy. Our analysis revealed a positive causal correlation between the ATG13 expression 

184 and DNAm site cg05585544, 957 kbp downstream of ATG13 (betaSMR = 0.13). The elevated 

185 expression of ATG13 gene (betaSMR = 0.03) and methylation levels of this CpG site (betaSMR = 

186 0.05) potentially increased the susceptibility to AD. Therefore, it is hypothesized that the 

187 genetic variation modulates the DNAm status at this CpG site, leading to upregulation of 

188 ATG13 expression, which could contribute to a heightened risk of AD (Fig 3B).

189 Fig 3. Three-step SMR analyses using molecular traits from blood and brain tissues. SMR tools 

190 were used to prioritize the mitophagy-related genes potentially causally associated with AD, 

191 along with relevant epigenetic mechanisms of genetic regulation (all PSMR-multi < 0.05, PHEIDI > 

192 0.05). The panels, from left to right, depict the following analysis results: SMR between gene 
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193 expression and AD GWAS on the left, SMR between gene methylation and AD GWAS in the 

194 middle, and SMR between gene methylation and gene expression. Panels A and B present 

195 the respective results for the genes PARL and ATG13. eQTL, expression quantitative trait loci; 

196 GWAS, Genome-wide association studies; mQTL, DNA methylation quantitative trait loci

197 External replication of mitophagy-related DEGs in AD GWAS summary 

198 statistics from UK Biobank

199 For external replication, we made use of AD GWAS data from the UK Biobank (n=361,141) and 

200 integrated them with eQTLs and mQTLs of previously detected genes to validate our primary 

201 findings. All tested genes and relevant DNAm sites showed significant associations with AD 

202 in the UK Biobank cohort, thereby reinforcing the validity of our primary research results (S10 

203 Table).

204 Discussion
205 This is the first study to identify mitophagy-related genes and their corresponding 

206 methylation sites potentially causally linked to AD. Dysregulation of mitophagy results in the 

207 buildup of defective mitochondria, which contribute to progression of AD pathologies such 

208 as Aβ aggregation, tau protein abnormalities, and neuroinflammation [5]. Targeting 

209 mitophagy has emerged as a promising therapeutic strategy, with animal model studies 

210 demonstrating its effectiveness in counteracting these pathological features and clinically 

211 improving cognitive deficits [54]. Since mitophagy-related DEGs in AD may either be a cause 

212 or an outcome of neurodegenerative processes [5, 55], it is essential to clarify the roles of 

213 these genes in AD development and their interactions with other biomolecules from a genetic 

214 perspective. By incorporating multi-omics data from different tissues through the SMR 
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215 method, we identified a potentially causal relationship between five mitophagy-related genes 

216 and AD, and investigated their genetic regulatory mechanisms via epigenomic modifications. 

217 Among the genes filtered out by the three-step SMR, most of them have been characterized 

218 in AD field. For instance, PARL, a susceptibility locus for AD, regulates mitophagy through the 

219 PINK1-Parkin pathway [56]. A recent genome-wide survival study and gene analysis have 

220 reported that the downregulation of PARL expression correlated with worsening clinical 

221 symptoms of AD [57]. Lower PARL expression has been shown to increase p-tau levels in 

222 different AD models, while overexpression of PARL reduced this accumulation in basic 

223 experiment [57]. Our study further identified the CpG methylation in the 5' untranslated 

224 region increased transcript level of PARL, potentially promoting its protective effect against 

225 AD (betaSMR = -0.13).

226 Elevated levels of Bcl-xL have been observed in the brain tissues of AD patients [58]. The 

227 BCL2L1 gene encodes the Bcl-xL protein, an anti-apoptotic member of the Bcl-2 family, which 

228 modulates both apoptotic pathways and autophagy process, including mitophagy. 

229 Specifically, Bcl-xL inhibits mitophagy by binding to the BH3-like domain of Beclin 1, a key 

230 protein in the initiation and regulation of the process [59]. The inhibitory interaction between 

231 Beclin 1 and Bcl-xL could suppress activity of Beclin 1, thereby impairing mitophagy and 

232 exacerbating AD pathology [60].

233 ATG13, a vital component of the autophagy machinery, also plays an essential role in 

234 mitophagy processes [61]. At the onset of mitophagy, ATG13 forms the ULK complex with 

235 ULK1/2, ATG101 and FIP200, and the ULK complex initiates mitophagy by facilitating the 

236 formation and maturation of mitophagosomes [62], a structure that engulfs damaged 
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237 mitochondria and delivers them to lysosomes for degradation. 

238 Another significant finding from the three-step SMR analysis in brain tissue is the identification 

239 of TOMM22, a critical receptor within the translocase of the outer mitochondrial membrane 

240 (TOMM) complex, responsible for importing Parkin into mitochondria under normal 

241 conditions [63]. Previous studies have demonstrated that the destabilization of TOMM22 and 

242 TOMM40 acts as the switch to trigger the mitophagy [64]. Moreover, overexpression of 

243 TOMM22 partially inhibits Parkin-mediated mitochondrial clearance, suggesting that the 

244 proper regulation of TOMM22 is important for maintaining mitochondrial quality control [64]. 

245 Interestingly, SPATA33, identified as an autophagy mediator by recent experimental study, 

246 promotes the mitophagy in the male germline cells during spermatogenesis by interacting 

247 with the outer mitochondrial membrane protein VDAC2 and the autophagy-related protein 

248 ATG16L1 [65, 66]. The brain tissue analysis has suggested SPATA33 as a novel candidate gene 

249 potentially linked to AD development, although research in this area remains limited.

250 The strength of our investigation lies in the integration of multi-omics data from multiple 

251 tissues, providing a comprehensive analysis of the causal associations between mitophagy-

252 related genes and AD. The three-step SMR with a more stringent statistical filtering criteria 

253 provided us stronger evidence to support our inference and enhanced our understanding of 

254 the genetic regulation mechanism involved in AD. Finally, all prioritized genes from the 

255 primary analysis were replicated in the other datasets, which further supported the reliability 

256 of the findings. 

257 This study has some limitations that are worth acknowledging. First, eQTLs change in response 

258 to different cell states and environmental conditions [67]. Second, this study focused 
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259 exclusively on cis-eQTLs and cis-mQTLs. Third, the participants included in these datasets 

260 were individuals of European ancestry, and the lack of ancestral diversity limits the applicability 

261 of our findings to more ethnically diverse populations.

262 Conclusions
263 In conclusion, our study emphasized the potential causal links between mitophagy-related 

264 genes and AD. We identified biological mechanisms where DNA methylation modifications 

265 modulates the expression of specific mitophagy-related genes, thereby influencing the onset 

266 and progression of AD. These insights offer a deeper understanding of the pathogenesis of 

267 AD and hold significant implications for the development of novel therapeutic targets.
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293 PHEIDI > 0.05). 
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