1 Association between SARS-CoV-2 and Stroke: Perspectives from a metaumbrella-review.

Andreza Maria Luzia Baldo de Souza, Universidade Estadual de Campinas/ UNICAMP,
Faculdade de Odontologia de Piracicaba/FOP, departamento de Ciências da Saúde e
Odontologia Infantil, <u>https://orcid.org/0000-0002-6575-2209</u>

- 5
 6 Enoque Fernandes de Araújo, Universidade Estadual de Campinas/ UNICAMP, Faculdade de
 7 Odontologia de Piracicaba/FOP, departamento de Ciências da Saúde e Odontologia Infantil,
 8 <u>https://orcid.org/0000-0003-3239-1467</u>
- 9
 10 Nelson Carvas Junior, Universidade Paulista UNIP, <u>https://orcid.org/0000-0003-2168-8927</u>
 11
- Augusto César Raimundo, Universidade Estadual de Campinas/ UNICAMP, Faculdade de
 Odontologia de Piracicaba/FOP, departamento de Ciências da Saúde e Odontologia Infantil,
 <u>https://orcid.org/0000-0001-7736-9189</u>
- 15
 16 Antonio Carlos Pereira, Universidade Estadual de Campinas/ UNICAMP, Faculdade de
 17 Odontologia de Piracicaba/FOP, departamento de Ciências da Saúde e Odontologia Infantil
 18 https://orcid.org/0000-0003-1703-8171
- Marcelo de Castro Meneghim, Universidade Estadual de Campinas/ UNICAMP, Faculdade
 de Odontologia de Piracicaba/FOP, departamento de Ciências da Saúde e Odontologia
 Infantil, <u>https://orcid.org/0000-0003-2673-3627</u>
- 23 24
- Address Avenida Limeira 901, Bairro Areião, CEP13414903, Piracicaba- SP, Brasil.
 Corresponding author Andreza Maria Luzia Baldo de Souza E-mail: <u>andrezamlb@gmail.com</u>

28 Authors' contributions: AMLB Souza contributed to the conception and design, analysis and 29 interpretation of the data, writing of the article, and final approval of the version to be 30 published. EFA collaborated with the conception and design, writing of the article and 31 interpretation of the data. NCJ – analyses statistic, ACR collaborated with the conception and 32 design, writing of the article and interpretation of the data. AC Pereira contributed with a 33 relevant critical review of the intellectual content and final approval of the version to be 34 published. MCM contributed with a relevant critical review of the intellectual content and 35 final approval of the version to be published

- 37 Keywords- SARS-CoV-2, Stroke, Risk Factors, Metaumbrella, Systematic Review.
- 38

36

39 Word Count -5123

- 40
- 41 Figure 1- Prism
- 42 Figure 2 Quality of the ROBIS studies.
- 43 Figure 3. Meta Umbrella showing the association between COVID-19 and stroke.
- 44 Figure 4. Matrix of overlapping studies in the systematic review.
- 45 Figure 5. Umbrella Goal stratified by Evidence Classification.
- 46 Table 1 Total participants and P values from the Egger and JK test NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

47 Association between SARS-CoV-2 and Stroke: Perspectives from metaumbrella-review.

48 Abstract

49 In the face of the global COVID-19 pandemic, the need arose to investigate potential complications associated with SARS-CoV-2, including the risk of Stroke. Objective: This 50 51 study aimed to verify the association between SARS-CoV-2 and the risk of Stroke, based on 52 systematic reviews and meta-analyses, in order to assess the inclusion of the virus as a new 53 risk factor for cerebrovascular diseases. Methods: A metaumbrella was conducted, which 54 included 34 systematic reviews, of which 4 were selected for the final analysis based on methodological quality and consistency. The analysis aggregated the results of 70 primary 55 studies, considering different stroke subtypes and outcomes associated with COVID-19. 56 57 Study heterogeneity was assessed using the I² index, and significance bias was verified using 58 Egger's test. **Results**: The analysis showed that the severity of COVID-19 is significantly 59 associated with an increased risk of stroke (eOR = 2.48; 95%CI: 1.55 – 3.95), particularly for 60 ischemic stroke (eOR = 1.76; 95%CI: 1.11 – 2.80) and hemorrhagic stroke (eOR = 3.86; 61 95%CI: 1.79 - 8.33). Additionally, patients with cerebrovascular comorbidities had higher 62 mortality (eOR = 2.48; 95%CI: 2.48 - 19.63), as did those who had previously suffered a 63 stroke (eOR = 6.08; 95%CI: 3.73 – 9.91). Conclusion: The association between SARS-CoV-64 2 and stroke was consistent and significant, suggesting that COVID-19 should be considered a 65 new risk factor for cerebrovascular diseases. However, the high heterogeneity among the studies analyzed reinforces the need for further research to consolidate this relationship. 66

67 Keywords: SARS-CoV-2, Stroke, Risk Factors, Metaumbrella, Systematic Review.

68 Introduction

Responsible for millions of deaths annually, stroke is a global public health challenge¹⁻³. It is a sudden neurological deficit, which can be transient or permanent, caused by a vascular injury that results in ischemia or hemorrhage in areas of the brain². Stroke is a multifactorial disease, caused by a combination of modifiable, non-modifiable, and environmental risk factors ^{1,4,5.}

The COVID-19 pandemic, caused by the SARS-CoV-2 virus, triggered a global health
crisis^{6,7}. Although it is primarily recognized for causing respiratory infections, recent studies
have associated COVID-19 with increased risk of stroke^{8,9,10}.

This association raises concerns about the mechanisms by which SARS-CoV-2 may be linked to neurological damage. Hypotheses include systemic inflammation, direct invasion of the nervous system by the virus, and complications of the immune response^{12,13}. In addition, individuals with preexisting risk factors for stroke, such as hypertension and diabetes mellitus, seem to be more likely to develop more severe cases of COVID-19 and, consequently, a higher risk of stroke^{14,15,16,17,18,19}.

This study aims to verify the association between SARS-CoV-2 and stroke, using systematic reviews as a guiding reference. The investigation seeks to contribute to the scientific debate on the possible inclusion of the virus as a risk factor for cerebrovascular diseases.

87 Methodology

This study is characterized as an Umbrella Review²⁰, which aims to synthesize the 88 evidence from multiple systematic reviews^{21,22}. The methodology used followed the PRIO-89 harms²³ checklist to ensure the rigor and quality of the analysis. The formulation of the 90 91 research question considered the following elements: population, phenomenon of interest, result, context, type of overview and general objective^{24,25,26}. Based on the hypothesis that 92 93 SARS-CoV-2 infection is associated with increased risk of stroke, the following guiding 94 question was formulated: "Does the association between SARS-CoV-2 and stroke presuppose 95 the need to include it as a new risk factor in the list for cerebrovascular disease?". The protocol of this study was registered in the International Prospective Register of Systematic 96 97 Reviews, under number CRD42022323750.

98 Search Strategy

99 Studies published in English, Spanish, or Portuguese, from March 2020 to March 100 2023, that address the association between COVID-19 and ischemic or hemorrhagic stroke, 101 small or large vessels, in any age group, were selected. The databases consulted were 102 PubMed/MEDLINE, LILACS, Scopus, and Web of Science. The search strategy used a 103 strategic combination of terms and keywords in all three languages. The terms used were: 104 "Stroke", "COVID-19", "Neurological Complications", "Systematic review"; 105 "Cerebrovascular Accident", "COVID-19", "Neurological Complications", "Systematic 106 Review"; "Stroke", "COVID-19", "Neurological Complications", "Systematic Review"

To complement and broaden the search, the following terms were used in different
combinations, using Boolean operators to improve the results: (STROKE* OR
CEREBROVASCULAR* OR NEUROLOGICAL*) AND (COVID* OR SARS-CoV-2*)
AND (SYSTEMATIC* AND REVIEW*); (("Stroke" OR "Stroke") AND ("systematic
review" OR "systematic review" OR "systematic review")) AND ("SARS-CoV-2").

112 Selection criteria

113 Scientific articles were selected that include systematic reviews, systematic reviews 114 with meta-analysis of case studies, case series, case-control studies and, preferably, 115 randomized and prospective and retrospective cohort studies. Reviews that were not available 116 in full, incomplete manuscripts, studies outside the context of systematic review, and non-117 original research articles, such as editorial comments, opinion articles, letters, protocols, 118 reports, and book chapters, were excluded. Also excluded were reported non-clinical features, 119 such as non-neurological complications, as well as studies that presented a diagnosis of 120 COVID-19 without any reports of stroke as a complication.

121 Data extraction

The selection of articles was carried out by two independent reviewers (AMLBS and EFA) in two stages. First, the titles and abstracts were independently evaluated, and any disagreements were resolved by consensus. Then, the full text of the selected articles was analyzed in the same way, with consensus being used to resolve disagreements.

The agreement between the reviewers was assessed using Cohen's Kappa coefficient²⁷.
In the screening phase of titles and abstracts, the Kappa coefficient was 0.62511, indicating a substantial agreement among the reviewers. This result suggests that the selection criteria were well defined and understood, resulting in a consistent initial selection of studies.

The use of the Covidence²⁸ software brought significant benefits to the review process, facilitating the organization and analysis of the data, including the calculation of the Kappa index and the generation of the PRISMA flowchart. This online tool allowed for real-time collaboration between reviewers, simplifying the resolution of disagreements and ensuring the transparency of the process.

135 Quality assessment

The methodological quality of systematic reviews was assessed using the ROBIS²⁹ tool, a validated and widely used instrument to assess the risk of bias in systematic reviews in healthcare. The ROBIS tool is especially useful for evaluating reviews that address interventions, diagnosis, prognosis, and etiology, and is therefore suitable for the scope of this study.

141 The evaluation process with the ROBIS tool is divided into three main phases: Phase142 1: Assessment of the relevance of the systematic review to the research question. In this step,

143 it is verified whether the selected systematic review directly addresses the research question144 of the Umbrella Review.

145 Phase 2: Identification of concerns with the systematic review process. This phase investigates four critical domains that may be sources of bias: Study eligibility criteria: 146 147 Evaluates whether the inclusion and exclusion criteria of the primary studies were adequate 148 and well-defined. Identification and selection of studies: Analyzes the search and selection 149 process of studies, checking whether there was a risk of publication bias. Data collection and 150 study evaluation: Examines the quality of data collection and the assessment of risk of bias in 151 primary studies. Synthesis and findings: Evaluates the presentation and synthesis of the 152 results, considering the heterogeneity between the studies.

Phase 3: Judging the overall risk of bias for the systematic review. Based on the analyses
of the previous phases, the overall risk of bias of the systematic review is classified as low,
high, or unclear.

156 Data analysis

157 Initially, for each identified factor, being evaluated in more than one individual study, 158 we performed a separate random-effects meta-analysis to obtain a pooled estimate of the 159 effect size, which we assumed would follow a normal distribution with variance equal to the sum of the weights of the studies³⁰ (method of DerSimonian and Laird, 1986). The results of 160 161 the meta-analyses were the effect sizes with their corresponding 95% confidence intervals 162 (95% CI) and p-values, as well as the statistics needed to assess the level of evidence. We 163 used the effect size measure used in each original meta-analysis (i.e., RR, OR, or SMD) and 164 calculated the OR equivalents (eOR) for all effect size statistics.

We evaluated the heterogeneity between studies with the I^2 index ³¹. I2 values > 50% indicated great heterogeneity ³³. We also assessed whether there was evidence of effects from small studies using the Egger test ³³, where statistical significance would mean potential publication bias ³⁴.

169 In addition, a rating system for the strength of evidence was used, which has been 170 widely used in previous umbrella reviews^{35,36}. Specifically, we classified the levels of 171 evidence of the significant associations between each factor into convincing evidence (class 172 I), highly suggestive (class II), suggestive (class III), or weak evidence (class IV). Convincing 173 evidence would require a number ≥ 10 studies, a number of cases ≥ 500 , I2 $\leq 50\%$, and no

174 signs of influence of small studies in the meta-analysis (Egger test ≥ 0.10). The suggestive 175 evidence required a number ≥ 10 studies, a number ≥ 400 cases, an Egger test with a p-value 176 ≥ 0.10 , and I2 $\le 50\%$. Weak evidence with a case count ≥ 300 , Egger's test with a P-value \ge 177 0.10, I2 $\le 75\%$, and very weak evidence did not require a specific number of cases and 178 p<0.05.

179 Finally, the meta-analyses were repeated estimating heterogeneity with the Hartung-180 Knapp-Sidik-Johkman method for random effects. This method estimates variance as the weighted mean square error divided by degrees freedom and assumes a distribution t ^{37,38,39}. 181 182 The main difference between a normal distribution and a distribution t is that in the former, 183 we assume that we can know variance, while in the latter, we do not make this assumption, as 184 indeed is the case. This difference can be negligible when the number of studies is large, but it 185 can be relevant when the number of studies is small. All analyses were performed with 186 version 1.0.11 of the metaumbrella package, implemented in R environment.

187 Results

188

Identification and Selection of Studies

From an initial search in databases and registries, 2,490 studies relevant to the investigation of the association between COVID-19 and stroke were identified. After removing 1,289 duplicate references, 1,201 studies went through the screening process. Of these, 141 were excluded because they did not meet the relevance criteria, focusing mainly on management or medications, which was not the focus of this study. This resulted in the detailed evaluation of 1,060 studies for their eligibility.

Of these 1,060 studies, 1,026 were excluded for various reasons, including focusing on
 non-neurological manifestations of COVID-19, specific non-pertinent populations, medical
 conditions unrelated to COVID-19, inadequate methodologies, or unrelated interventions.

At the end of this process, 34 studies were considered eligible. Of these, four studies were selected for analysis in the metaumbrella, based on high methodological quality and consistency with the established criteria (Figure 1).

- 201
- 202
- 203

226 **Characteristics of the Included Studies**

The main characteristics of the 34 studies initially found demonstrate an important cohesion in the demographic and geographic profiles of the patients evaluated. The mean age of the patients was 61.2 years, which indicates that the study population consisted predominantly of individuals in an age group at higher risk for stroke. In addition, there was a clear predominance of males, with an average of 59.9% of participants being men. This disparity may be associated with men's greater susceptibility to developing severe forms of COVID-19 and its complications, including stroke.

Geographically, the studies were conducted in a variety of countries, reflecting the global spread of the pandemic. Among the most frequently cited places are the United States, Italy, India, Brazil, and Spain, with particular emphasis on China. This country has emerged as the most frequently represented location, possibly due to the initial and significant impact of the COVID-19 pandemic on its territory, which has led to increased production of data and studies on the neurological complications associated with SARS-CoV-2.

240

Risk of Bias Assessment

Figure 2 shows the evaluation of the methodological quality of the 34 studies included in the umbrela review, using the ROBIS tool. Most studies were at low risk of bias in criteria such as eligibility, identification and selection of studies, and data collection. However, some studies have shown uncertain or high risks, particularly in the selection of studies and the synthesis of results.

- Among the four studies selected for the meta-umbrella, the assessment of bias was predominantly favorable, with all being classified as low risk in terms of overall bias.
- 248

Critérios de elegibilidade Identificação e seleção dos estudos Coleta de dados e avaliação do estudo Síntese e resultados Risco de viés geral

255

261 Figure 2 - Quality of the ROBIS studies.

262

Metaumbrella Results

The results of the metaumbrella (Figure 3), which included four systematic reviews with meta-analysis, covered a total of 70 primary studies that evaluated the association between COVID-19 and stroke in five different study subjects. These objects of study were:

1. "COVID-19 severity and stroke risk": The meta-analysis showed that there is a significant association between COVID-19 severity and increased stroke risk, with an odds ratio (eOR) of 2.48 (95% CI: 1.55 – 3.95). This indicates that patients with severe COVID-19 are significantly more likely to develop stroke compared to those with less severe forms of the disease.

271 2. "COVID-19 and ischemic stroke risk": A significant association was found between
272 COVID-19 and a higher risk of ischemic stroke, with an eOR of 1.76 (95% CI: 1.11 – 2.80).
273 This suggests that COVID-19 infection may be a risk factor for developing ischemic stroke.

3. "COVID-19 and hemorrhagic stroke risk": The analysis also revealed an association
between COVID-19 and increased risk of hemorrhagic stroke, with an eOR of 3.86 (95% CI:
1.79 - 8.33). This finding indicates that, in addition to ischemic stroke, COVID-19 may also
be related to an increased risk of hemorrhagic stroke.

4. "Cerebrovascular comorbidity and mortality in patients with COVID-19": Patients with
cerebrovascular comorbidity who contracted COVID-19 had a higher mortality compared to
those who did not have a stroke, with an eOR of 2.48 (95% CI: 2.48 – 19.63). This result

highlights the adverse impact of pre-existing cerebrovascular conditions on the survival ofCOVID-19 patients.

5. "COVID-19 and stroke mortality": Mortality was significantly higher among COVID-19
patients who already had a history of stroke, with an eOR of 6.08 (95% CI: 3.73 – 9.91). This
data underlines the severity of the impact of COVID-19 on patients who had already suffered
a stroke before.

287

201	Issues	n-studies	n-cases	12	eOR 95% Cl	Ur CC	mbrella review o DVID-19 for Strok	f (e
288	Severity of COVID-19 and ACVEs	23	498	70%	2.48 [1.55; 3.95]			
	COVID-19 and risk of ischemic Stroke	17	578	57%	1.76 [1.11; 2.80]			
289	COVID-19 and risk of hemorragic Stroke	8	34	0%	3.86 [1.79; 8.33]			
	Comorbidity cerebrovascular and mortality	6	63	41%	6.97 [2.48; 19.63]			
290	COVID-19 mortality of Stroke	16	647	81%	6.08 [3.73; 9.91]			
291						0.1	0.5 1 2	10

Figure 3. Meta Umbrella showing the association between COVID-19 and stroke

In addition to these results, an overlap of two primary studies (Qureshi⁴⁰ and Merkler⁴¹) was observed (Figure 4) in three distinct systematic reviews (Cui 2022⁴², Huangfu 2023⁴³, and Quintanilla-Sánchez 2022)⁴⁴. The overlap of these studies in the different reviews indicates that they are important and frequently cited references in the literature on the relationship between COVID-19 and stroke. These findings reinforce the strong association between COVID-19 infection and the risk of different types of strokes, as well as highlight the higher mortality associated with stroke in patients with COVID-19.

300

	Systematic Review						
Study	Alzoughool 2020, N=13	Which 2022, N=4	Huangfu 2023, N=16	Quintanilla-Sánchez 2022, N=37			
Annon	-	-	+	-			
Al-Samkari et al.	-	-	-	+			
Benussi	-	+	-	-			
Chen Lin	-	-	+	-			
Chen T	+	-	-	-			
Chen TL	+	-	-	-			

Chougar et al.	-	-	-	+
Eric Jorge	-	-	+	-
Garcia-Moncó	-	-	-	+
Guan W	+	-	-	-
Guan WI	+	-	-	-
Guan WJ	+	-	-	-
Helms	-	+	-	-
Hu L	+	-	-	-
Jeffrey	-	-	+	-
Martí-Fábregas	-	-	+	-
Kimon Bekelis	-	-	+	-
Kremer	-	-	-	+
She S	+	-	-	-
Li, Li & Wang	-	-	-	+
Litton & It's Good	-	-	-	+
Lodigaiani	-	-	-	+
Ludovico Ciolli	-	-	+	-
M Mehrpour1	-	-	+	-
Makda	-	-	-	+
Mandip S. Dhamoo	-	-	+	-
Merkler	-	+	•	+
Minghuan Wang	-	-	+	-
Naval-Baudin	-	-	+	-
Peterson & Brown	-	-	-	+
Qin C	+	-	-	-
Qureshi	-	+	+	-
Rifino	-	-	-	+
Rohit Bhatia	-	-	+	-
Romero-Sánchez	-	-	-	+
Seby John	-	-	+	-
Shadi Yagh	-	-	+	-
1				

Shajoueia	-	-	-	+
Shimin Koh	-	-	-	+
Siepmann	-	-	-	+
Studart-Neto	-	-	-	+
Zhang	-	-	+	-
Wang D	+	-	-	-
Yan Y	+	-	-	-
Yang X	+	-	-	-
Zhang G	+	-	-	-

301 Figure 4. Matrix of overlapping studies in the systematic review.

302 A

Analysis of heterogeneity and bias

Table 1, which presents the metaumbrella stratified by the classification of the evidence, it was observed that two of the study objects showed low heterogeneity, with I^2 *values* below 50%. This indicates that the variability between the studies included in these study objects was relatively low, suggesting a greater consistency in the results. In particular, the "Severity of COVID-19 and stroke" and "Cerebrovascular comorbidities and mortality" demonstrated this characteristic of low heterogeneity, which strengthens confidence in the interpretation of the observed effects.

None of the study subjects analyzed showed the effect of small studies, as indicated by the non-significant values of the Egger test (Egger p). This suggests that the results of the meta-analyses were not significantly influenced by smaller studies, which could skew the conclusions.

However, two study subjects showed excess significance bias (ESB), which was identified by significant p-values: "COVID-19 and stroke mortality" (p = 0.0252) and "COVID-19 and risk of ischemic stroke" (p = 0.0159). This bias occurs when there is an excessive number of studies with positive results relative to what would be expected by the normal distribution of true effects, indicating that findings in these domains should be interpreted with caution.

- 320
- 321

322

323

324 Table 1. Total participants and P values from the Egger and JK test

	Number of	Number of	Number of		
Object of study	patients	Cases	Controls	Egger p	ESB p
COVID-19 Severity and LVCAs	15279	498	14781	8.45E-01	5.14E-01
COVID-19 and ischemic stroke risk	36154	578	35576	2.84e-01	1.59e-02
COVID-19 and hemorrhagic stroke risk	1303	34	1269	1.81e-01	7.31e-01
Cerebrovascular comorbidities and mortality	2271	63	2208	8.07e-01	9.56e-01
COVID-19 and stroke mortality	4781	647	4134	1.10e-01	0.252e-02

325 Egger p = Egger's test for bias due to the influence of small studies

326 ESB p = test for bias due to Statistical Excess Significance.

327 The five study objects evaluated had a statistically significant effect size (p<0.05), 328 which reinforces the validity of the findings. However, based on the criteria previously 329 established for the classification of evidence, three of these study objects were classified as 330 having weak evidence. This reflects limitations such as possible biases or inconsistencies in 331 the results, suggesting the need for further studies to confirm these associations.

Figure 5 complements this information by stratifying the metaumbrella by the classification of evidence, visually highlighting the relative robustness of each object of study. This detailed analysis allows for a more nuanced understanding of the effects of COVID-19 in relation to stroke, while identifying areas where the evidence is weaker and where future studies could be more informative.

337

338

339

340

21	1
34	

Issues	n-studies	n-cases	12	eOR 95%	СІ	Umbr COVIE	ella rev -19 fo	view of r Strok
Class = III								
Severity of COVID-19 and ACVEs	23	498	70%	2.48 [1.55;	3.95]		-	+
COVID-19 and risk of ischemic Stroke	17	578	57%	1.76 [1.11;	2.80]			
Class = IV								
COVID-19 mortality of Stroke	16	647	81%	6.08 [3.73;	9.91]			
Class = V								
Comorbidity cerebrovascular and mortality	6	63	41%	6.97 [2.48; 1	9.63]			
COVID-19 and risk of hemorragic Stroke	8	34	0%	3.86 [1.79;	8.33]	T T		
					0.1 0	0.2 0.5	1 2	5

348 Figure 5. Umbrella Goal stratified by Evidence Classification.

349 Discussion

This study started from the hypothesis that SARS-CoV-2 infection is associated with increased risk of stroke and sought to answer the guiding question: "Does the association between SARS-CoV-2 and stroke presuppose the need to include it as a new risk factor in the list for cerebrovascular disease?" since it proposes to deepen the understanding of the influence of COVID-19 on stroke risk, a global public health problem that is among the main causes of death and disability^{45,46}.

A point to consider is the incidence of stroke in patients with COVID-19, which is significantly higher than in patients infected with other coronaviruses, suggesting a specific pathological mechanism associated with SARS-CoV-2 that predisposes to stroke⁴⁷.

The meta-umbrella methodology used in this study offers significant advantages over individual systematic reviews. The comprehensive analysis of multiple meta-analyses, considering the overlap of primary studies, as exemplified by the inclusion of the study by Qureshi ⁴⁰, Merkler⁴¹ in different analyses, ensures greater robustness and reliability of the results. The convergence of evidence from multiple sources, confirming the association between COVID-19 and different stroke subtypes, as well as associated mortality, strengthens the conclusion that COVID-19 represents an independent risk factor for stroke.

The finding of a link between COVID-19 and increased risk of stroke, especially the ischemic type, corroborates the literature that points to prothrombotic mechanisms induced by the virus^{11,12,14}. Among these mechanisms, SARS-CoV-2 infection stands out, which triggers

an acute inflammatory response that can result in endothelial dysfunction and a prothrombotic
 state⁴².

371 COVID-19 is associated with a state of hypercoagulability, increasing the risk of blood 372 clots forming that can obstruct blood vessels in the brain, leading to stroke. SARS-CoV-2 can 373 directly damage endothelial cells, which line blood vessels, making them more prone to the 374 formation of these clots^{48,49}. The high incidence of thrombotic complications in patients with 375 severe COVID-19 reinforces the link between coagulation and viral infection, consolidating 376 the relevance of the findings of this study.

The identification of SARS-CoV-2 as a risk factor for stroke has crucial implications for the prevention, diagnosis, and treatment of this condition⁵⁰. It is essential to integrate this information into clinical practice, adopting measures such as: monitoring patients with COVID-19 for neurological symptoms, especially those at high risk of stroke, considering prophylactic anticoagulation in patients with COVID-19 and high risk of thromboembolic events, implementing screening protocols for stroke in patients hospitalized with COVID-19, especially in those with additional risk factors for cerebrovascular diseases⁵¹.

384 Some limitations should be considered, such as the heterogeneity in the diagnostic 385 criteria for stroke among the studies, the variability in the sample size, and the inadequate 386 control of confounding factors, such as hypertension and diabetes.

Future prospective, multicenter studies are essential to investigate the mechanisms underlying the association between COVID-19 and stroke in greater depth, to develop comprehensive clinical guidelines for the management of patients with COVID-19 and stroke risk, and to evaluate the efficacy of preventive interventions, such as anticoagulation, in reducing the incidence of stroke in patients with COVID-19.

392 Conclusion

The association between SARS-CoV-2 and stroke was consistent and significant, suggesting that COVID-19 should be considered a new risk factor for cerebrovascular diseases. However, the high heterogeneity among the studies analyzed reinforces the need for further research to consolidate this relationship.

397 Conflict of Interest Statement

398 The author(s) declared that there are no potential conflicts of interest with respect to the 399 research, authorship and/or publication of this article.

400

- 401 Financing
- 402 The author(s) did not receive financial support for the research, authorship and/or publication
- 403 of this article.

404 References

- World Health Organization. The top ten causes of death [Internet]. 2019 [cited 2024
 Sep 20]. Available from: <u>https://www.who.int/news-room/fact-sheets/detail/the-top-</u>
 <u>10-causes-of-death</u>
- 408
 408 2. Santos D, Marques G, Almeida L, et al. Stroke as a complication of COVID-19 409 infection [Internet]. 2021 [cited 2024 Sep 20]. Available from: 410 <u>https://doi.org/10.51249/easn01.2021.12</u>
- 3. Sirisha S, et al. Conscientização, reconhecimento e resposta ao AVC entre o público em geral – um estudo observacional. J Neurosci Rural Pract. 2021;12(4):704. doi: 10.1055/s-0041-1735822
- 414
 4. Cui Q, Naikoo NA. Modifiable and non-modifiable risk factors in ischemic stroke: a meta-analysis. Afr Health Sci. 2019 Jun;19(2):2121-9. DOI: <u>10.4314/ahs. v19i2.36</u>.
 416
 416 PMID: 31656496; PMCID: PMC6794552.
- 5. Choudhury MS, Chowdhury Md, Nayeem A, et al. Modifiable and Non-Modifiable
 Risk Factors of Stroke: A Review Update. J Natl Inst Neurosci Bangladesh. 2015;
 1:22. https://doi: 10.3329/jninb. v1i1.22944.
- 420 6. Zhou P, et al. A pneumonia outbreak associated with a new coronavirus of probable
 421 bat origin. Nature. 2020. Available from: <u>https://doi.org/10.1038/s41586-020-2012-7</u>
- 422 7. Gorbalenya AE. Severe acute respiratory syndrome-related coronavirus the species
 423 and its viruses, a statement of the Coronavirus Study Group. bioRxiv. 2020. Available
 424 from: <u>https://doi.org/10.1101/2020.02.07.93786</u>
- 425 8. Zhu N, et al. A novel coronavirus of pneumonia patients in China, 2019. N Engl J
 426 Med. 2020; 382:727-33. https://doi.org/10.1056/nejmoa2001017
- 427 9. Qi X, Keith KA, Huang JH. COVID-19 and stroke: A review. Brain Hemorrhages.
 428 2021 Jun;2(2):76-83. doi: 10.1016/j.hest.2020.11.001. Epub 2020 Nov 17. PMID:
 429 33225251; PMCID: PMC7670261.
- 430 10. Bass DI, Meyer RM, Barros G, et al. The impact of the COVID-19 pandemic on
 431 cerebrovascular disease. Semin Vasc Surg. 2021 Jun;34(2):20-7. doi:
 432 10.1053/j.semvascsurg.2021.05.001. Epub 2021 May 20. PMID: 34144743; PMCID:
 433 PMC8136291.

434 435 436 437	11.	Lashkari A, Ranjbar R. A case-based systematic review on the SARS-COVID-2- associated cerebrovascular diseases and the possible virus routes of entry. J Neurovirol. 2021 Oct;27(5):691-701. doi: 10.1007/s13365-021-01013-8. Epub 2021 Sep 21. PMID: 34546547.
438 439 440	12.	Stein LK, Mayman NA, Dhamoon MS, et al. The emerging association between COVID-19 and acute stroke. Trends Neurosci. 2021;44(7):527-37. Available from: <u>https://doi.org/10.1016/j.tins.2021.03.005</u>
441 442 443	13.	Tsivgoulis G. Epidemiology of ischemic stroke during the COVID-19 pandemic: navigating uncharted waters with tidal changes. Stroke. 2020; 51:1924-6. <u>https://doi.org/10.1161/strokeaha.120.030791</u>
444 445 446	14.	Vogrig A, Bagatto D, Gigli GL, et al. Causality in COVID-19-associated stroke: a uniform case definition for use in clinical research. J Neurol. 2021;268(3):758-61. Available from: <u>https://doi.org/10.1007/s00415-020-10103-2</u>
447 448 449 450	15.	John S, Kesav P, Mifsud VA, et al. Characteristics of Large-Vessel Occlusion Associated with COVID-19 and Ischemic Stroke. AJNR Am J Neuroradiol. 2020 Dec;41(12):2263-8. doi: 10.3174/ajnr. A6799. Epub 2020 Aug 27. PMID: 32855182; PMCID: PMC7963240.
451 452 453	16.	Jillella DV, Janocko NJ, Nahab F, et al. Ischemic stroke in COVID-19: An urgent need for early identification and management. PLoS One. 2020;15(9). https://doi.org/10.1371/journal.pone.0239443
454 455 456	17.	Belani P, Schefflein J, Kihira S, et al. COVID-19 is an independent risk factor for acute ischemic stroke. Am J Neuroradiol. 2020;41(8):1361-4. https://doi.org/10.3174/ajnr.a6650
457 458 459	18.	Lee KW, Yusof Khan Ahh, Ching SM, et al. Stroke and novel coronavirus infection in humans: A systematic review and meta-analysis. Front Neurol. 2020;11. https://doi.org/10.3389/fneur.2020.579070
460 461	19.	Avula A, Nalleballe K, Narula N, et al. COVID-19 presenting as stroke. Brain Behav Immun. 2020; 87:115-9. <u>https://doi.org/10.1016/j.bbi.2020.04.077</u>
462 463 464	20.	Pollock M, Fernandes RM, Becker LA, et al. Overview of revisions. Cochrane Handb Rev Interv Syst Version. 2018;6. Available from: <u>https://training.cochrane.org/handbook/current/chapter-v</u>
465 466 467	21.	Smith V, Devane D, Begley CM, et al. Methodology in conducting a systematic review of systematic reviews of health interventions. BMC Med Res Methodol. 2011;11(1):15.
468 469 470 471	22.	Aromataris E, Fernandez R, Godfrey CM, et al. Summarizing systematic reviews: methodological development, conduct and reporting of an umbrella review approach. Int J Evid Based Healthc. 2015 Sep;13(3):132-40. doi: 10.1097/XEB.00000000000055. PMID: 26360830.

472 473 474	23.	Donato H, Donato M. Revisão de revisões: Guia passo a passo. Porto Acta Med [Internet]. 2024 Jul 1 [cited 2024 Sep 20];37(7-8):547-55. Available from: https://actamed.com/re/indice.php/amp/artigo/visualizar/21796
475 476 477	24.	Hunt H, Pollock A, Campbell P, et al. An introduction to reviews overviews: planning a relevant and objective research question for an overview. Syst Rev. 2018; 7:39. Available from: <u>https://doi.org/10.1186/s13643-018-0695-8</u>
478 479 480 481	25.	Becker LA, Oxman AD. Chapter 22: Overview of Revisions. In: Higgins JPT, Green S, editors. Cochrane Handbook for Systematic Reviews of Interventions. Version 5.1.0 [updated 2011 Mar]. The Cochrane Collaboration; 2011 [cited 2024 Sep 20]. Available from: <u>http://training.cochrane.org/handbook</u>
482 483 484	26.	Deeks JJ, Bossuyt PM, Gatsonis C, editors. Cochrane Handbook for Systematic Reviews of Diagnostic Test Accuracy. Version 0.9. The Cochrane Collaboration; 2013. Available from: <u>http://methods.cochrane.org/sdt/handbook-dta-reviews</u>
485 486	27.	Oliveira NS, Oliveira JM, Bergamaschi DP. Inter-raters' agreement in the selection of articles in systematic reviews. Rev Bras Epidemiol. 2006; 9:309-15.
487 488	28.	Covidence systematic review software. Veritas Health Innovation, Melbourne, Australia. Available from: <u>www.covidence.org</u>
489 490	29.	Whiting P, et al. ROBIS: a new tool to assess the risk of bias in systematic reviews has been developed. J Clin Epidemiol. 2016;69. <u>https://doi.org/10.1016/j.jclinepi.2015.06.005</u>
491 492	30.	DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. 1986; 7:177-88. Available from: <u>https://doi.org/10.1016/0197-2456(86)90046-2</u>
493 494 495	31.	Ioannidis JPA, Trikalinos TA. An exploratory test for an excess of significant findings. Clin Trials. 2007; 4:245-53. Available from: <u>https://doi.org/10.1177/1740774507079441</u>
496 497 498	32.	Higgins JPT, Green S. Cochrane Handbook for Systematic Reviews of Interventions. Version 5.1.0. Cochrane Handbook for Systematic Reviews of Interventions. Version 5.1.0. <u>https://handbook-5-1.cochrane.org/</u>
499 500 501	33.	Egger M, Davey Smith G, Schneider M, et al. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997; 315:629-34. Available from: <u>https://doi.org/10.1136/bmj.316.7129.469</u>
502 503 504	34.	Sterne JAC, Sutton AJ, Ioannidis JPA, et al. Recommendations for examining and interpreting funnel plot asymmetry in meta-analyses of randomised controlled trials. BMJ. 2011;343. Available from: <u>https://doi.org/10.1136/bmj.d4002</u>
505 506 507	35.	Fusar-Poli P, Radua J. Ten simple rules for conducting umbrella reviews. Evid Based Ment Health. 2018; 21:95-100. Available from: <u>https://doi.org/10.1136/ebmental-</u> 2018-300014

508 509 510	36.	Ioannidis JPA. Integration of evidence from multiple meta-analyses: a primer on umbrella reviews, treatment networks and multiple treatments meta-analyses. CMAJ. 2009; 181:488-93. Available from: <u>https://doi.org/10.1503/cmaj.081086</u>
511	37.	Hartung J. An alternative method for meta-analysis. Biom J. 1999;901-16.
512 513	38.	IntHout J, Ioannidis JP, Borm GF. Obtaining evidence by a single well-powered trial or several modestly powered trials. Stat Methods Med Res. 2016;25(2):538-52.
514 515	39.	Sidik K, Jonkman JN. Robust variance estimation for random-effects meta-analysis. Comput Stat Data Anal. 2006;50(12):3681-701. doi: 10.1016/j.csda.2005.07.019
516 517 518	40.	Qureshi AI, Baskett WI, Huang W, et al. Acute ischemic stroke and COVID-19: an analysis of 27 676 patients. Stroke. 2021;52(3):905-12. https://doi.org/10.1161/strokeaha.120.031786
519 520 521 522	41.	Alzoughool F, Alanagreh L, Abumweis S, et al. Cerebrovascular comorbidity, high blood levels of C-reactive protein and D-dimer are associated with disease outcomes in COVID-19 patients. Clin Hemorheol Microcirc. 2021;77(3):311-22. https://doi.org/10.3233/ch-201002. PMID: 33185593.
523 524 525 526	42.	Cui Y, Zhao B, Li T, et al. Risk of ischemic stroke in patients with COVID-19 infection: a systematic review and meta-analysis. Brain Res Bull. 2022 Mar; 180:31-7. doi: 10.1016/j.brainresbull.2021.12.011. Epub 2021 Dec 31. PMID: 34979237; PMCID: PMC8719366.
527 528 529	43.	Huangfu X, Li X, Chen M, et al. A meta-analysis of the impact of COVID-19 on stroke mortality. Chin Gen Pract. 2023;26(3):348. <u>https://doi.org/10.12114/j.issn.1007-9572.2022.0480</u>
530 531 532 533	44.	Quintanilla-Sánchez C, Salcido-Montenegro A, González-González JG, et al. Acute cerebrovascular events in severe and non-severe COVID-19 patients: a systematic review and meta-analysis. Rev Neurosci. 2022 Feb 10;33(6):631-9. doi: 10.1515/revneuro-2021-0130. PMID: 35142148.
534 535	45.	Ellul MA, Benjamin L, Singh B, et al. Neurological associations of COVID-19. Lancet Neurol. 2020;19(9):767-83. <u>https://doi.org/10.1016/s1474-4422(20)30221-0</u>
536 537 538 539	46.	Collaborators GBD, et al. Global, regional, and national burden of stroke and its risk factors, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet Neurol. 2021;20(10):795-820. <u>https://doi.org/10.1016/s1474-4422(21)00252-0</u>
540 541	47.	Nannoni S, de Groot R, Bell S, et al. Stroke in COVID-19: a systematic review and meta-analysis. J Stroke. 2021;16(2):137-49. doi: 10.1177/1747493020972922.
542 543	48.	Klok FA, Kruip MJ, van der Meer NJ, et al. Incidence of thrombotic complications in critically ill ICU patients with COVID-19. Thromb Res. 2020 Jul; 191:145-7. doi:

544 545		10.1016/j.thromres.2020.04.013. Epub 2020 Apr 10. PMID: 32291094; PMCID: PMC7146714.
546 547 548	49.	Oliveira LMDM, Nascimento NSD, Pereira ABCNDG. COVID-19 and the incidence of ischemic stroke after infection: an integrative literature review. Rev Bras Neurol (Online). 2024;5-10. <u>https://doi.org/10.46979/rbn.v60i1.64134</u>
549 550 551	50.	Paniz-Mondolfi A, Bryce C, Grimes Z, et al. Central nervous system involvement by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). J Med Virol. 2020. Available from: <u>https://doi.org/10.1002/jmv.25915</u> .
552 553 554 555	51.	Katsoularis I, Fonseca-Rodríguez O, Farrington P, et al. Risk of acute myocardial infarction and ischemic stroke following COVID-19 in Sweden: a self-controlled case series and matched cohort study. Lancet. 2021;398(10300):599-607. https://doi.org/10.1016/s0140-6736(21)00896-5
556		
557		
558 559		All worksheets can be provided by the corresponding author through the email request <u>andrezamlb@gmail.com</u>
560		