1	Title:

2	Evaluation of a Next Generation Sequencing Assay for Hepatitis B Antiviral Drug Resistance on
3	the Oxford Nanopore System
4	
5	Running Title:
6	Evaluation of a NGS Assay for HBV Drug Resistance Testing
7	
8	Michael Payne ^{a b} , Gordon Ritchie ^{a b} , Tanya Lawson ^a , Matthew Young ^a , Willson Jang ^a ,
9	Aleksandra Stefanovic ^{a, b} , Marc G. Romney ^{a, b} , Nancy Matic ^{a, b} , Christopher F. Lowe ^{a, b}
10	
11	^a Division of Medical Microbiology and Virology, St. Paul's Hospital, Providence Health Care,
12	Vancouver, British Columbia, Canada
13	^b Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver,
14	British Columbia, Canada
15	
16	[#] Corresponding author at: Microbiology Laboratory, St. Paul's Hospital
17	1081 Burrard St, Vancouver, BC, V6Z 1Y6, Canada
18	Email address: christopher.lowe@ubc.ca (C. F. Lowe)
19	
20	Key Words:
21	Hepatitis B virus
22	Viral resistance testing
23	Next generation sequencing

24 Molecular methods

25

26 Word Count:1738

28 Abstract

29

30	Background:	Next-generation	sequencing	(NGS)	for Hepatitis I	3 virus ((HBV)	antiviral	resistance
----	-------------	-----------------	------------	-------	-----------------	-----------	-------	-----------	------------

- 31 (AVR) testing is a highly sensitive diagnostic method, able to detect low-level mutant
- 32 subpopulations. Our clinical virology laboratory previously transitioned from DNA hybridization
- 33 (INNO-LiPA) to NGS, initially with the GS Junior System and subsequently the MiSeq. The
- 34 Oxford Nanopore Technology (ONT) sequencing system was evaluated for HBV resistance
- 35 testing, with regards to sequencing accuracy and turn-around time.

36

37 <u>Methods</u>: We performed amplicon sequencing of the HBV polymerase gene from patient plasma

38 and external quality assessment (EQA) samples on the MiSeq Reagent Nano Kit v2 and GridION

39 ONT with R10.4.1 flowcells. Mutational analysis and genotyping were performed by

40 DeepChekAssay-HBV (version 2.0).

41

42 <u>Results</u>: A total of 49 patient samples and 15 EQA samples were tested on both the MiSeq and

43 ONT. There was high agreement for both patient and EQA samples between the MiSeq and ONT

44 systems, with regards to total drug resistance mutations detected and total patient sample

45 agreement, 68/70 (97%) and 47/49 (96%), respectively.

46

47 <u>Conclusion</u>: The ONT NGS platform provided accurate HBV AVR results, with improved turn48 around times. Sequencing error rates at AVR codons were below 1%.

49

51 1. Background

52	Hepatitis B virus (HBV) is an important cause of chronic hepatitis and hepatocellular carcinoma
53	(HCC) worldwide. Globally, there are an estimated 296 million people living with HBV, along
54	1.1 million deaths annually (1). Treatment of chronic HBV can decrease the risk of progression
55	to cirrhosis and HCC. Identification of the HBV genotype, along with antiviral resistance (AVR)
56	mutations, can help inform the management of chronic HBV infection (2-4). Newer antiviral
57	agents (Entecavir and Tenofovir) have a higher barrier to AVR mutations and viral
58	breakthrough; however, AVR testing is useful to monitor for emergence of mutations associated
59	with decreased virologic response, particularly for patients with previous exposure to HBV
60	antiviral therapies (3, 5).
61	
62	HBV AVR line probe (LiPA) testing is limited by its inability to detect novel mutations,
63	hybridization failures, and decreased sensitivity with low viral loads ($<1000 \text{ IU/mL}$) (6, 7). In
64	2014, testing in our clinical laboratory was transitioned to next-generation sequencing (NGS)
65	with the GS Junior System (454 Life Sciences, Branford, CT) and in 2017, the MiSeq (Illumina)
66	platform. MiSeq offered increased sequencing depth; however, a shorter read length did not
67	include all AVR mutation sites (8).
68	

69 The Oxford Nanopore Technology (ONT) sequencing system (GridION ONT) with longer read 70 capability and updated R10.4.1 flowcells has reported improved error rates, allowing for more 71 accurate detection of variant subpopulations (9). In addition, this technology has less hands-on 72 library preparation and sequencing run time, allowing for improved workflow in clinical

- 13 laboratories. Our study aim was to optimize HBV AVR testing using NGS on the ONT platform,
- along with validation of this test for clinical use.
- 75
- 76
- 77 2. Materials and Methods
- 78

79 We used guidance from molecular testing references and draft recommendations from the US 80 FDA to design this NGS validation study (10–12). Parameters evaluated included: Limit of 81 detection, inclusivity/accuracy, reproducibility/precision and cross-contamination. DNA was 82 extracted from samples using the MagNA Pure LC 2.0 (Roche Diagnostics, Mannheim, 83 Germany) for MiSeq and the MagNA Pure 24 (Roche) for ONT. For both ONT and MiSeq, PCR primers amplified an 820 base pair (bp) region of the HBV polymerase gene on the Roche 84 85 LightCycler® 480. Primer sequence $(5' \rightarrow 3')$ forward (ILF) CGT GGT GGA CTT CTC TCA 86 ATT TTC and reverse (ILR) AGA AAG GCC TTG TAA GTT GGC GA. For MiSeq, the second 87 nested PCR reaction mixture consisted of the first round PCR product, and fusion indexed and 88 barcoded primers. The nested PCR final amplicon was 364 bp. ONT AVR sequencing was 89 performed using the GridION with R10.4.1 flow cells and the SQK-NBD114.24 library kit 90 (Oxford Nanopore Technologies). Guppy (v. 6.4.6) was utilized for sequence base-calling. For 91 MiSeq and ONT, mutational analysis and genotyping of FASTQ files was performed with 92 DeepChek® HBV v.2.0 (ABL SA Group). Interpretation of clinically significant AVR mutations 93 was based on the 2017 EASL Clinical Practice Guidelines (2). 94

95	The 2nd World Health Organization (WHO) International Standard for Hepatitis B Virus DNA
96	was used for evaluation of the limit of detection for the initial HBV PCR. Serial dilutions of the
97	WHO Standard were tested with 5 replicates at: 1000, 500, 250, 125, 62.5, and 30 IU/mL. Probit
98	regression was performed to determine limit of detection.
99	
100	A total of 49 patient samples and 15 external quality assurance (EQA) samples (QCMD,
101	Glasgow, United Kingdom) were selected for AVR testing by NGS, to include a broad range of
102	AVR mutations, at varying viral loads and percentage mutation frequency. There were 51 patient
103	and 35 EQA samples available for genotype testing. The ATCC 45020D plasmid DNA was
104	utilized as a control in all runs to determine error rates for base calling.
105	
106	To evaluate reproducibility/precision, a well characterized patient sample (genotype C; viral load
107	of 9.9 x 10^8 IU/mL) was utilized, with mutations at approximately 70%, 51%, 26%, and 7%, at
108	codons M204I, V173L, L180M, and T184S, respectively. The patient sample was diluted in
109	Basematrix plasma (Seracare, Milford, MA) to 10,000, 4000, 1000, 250 and 125 IU/mL. These
110	were tested in 3-5 total replicates over 2 separate NGS runs to determine the reproducibility and
111	sensitivity of NGS at detecting different percent mutations at various viral loads. In order to
112	assess cross-contamination risk, each run contained a negative control.
113	
114	3. Results
115	
116	There was a high agreement rate between MiSeq and ONT with regards to total mutations

117 detected and patient sample agreement, 68/70 (97%) and 47/49 (96%), respectively. All EASL

118 mutations were included in the study, with the exceptions of M250V, N236T and T184G (Table119 1) (2).

121	There were two patient samples with a mutation detected only by MiSeq (Table 2). The
122	discrepant mutation results were found with low viral load samples (<2000 IU/mL). For one
123	sample, the mutant subpopulation was detected at a low frequency (4.3%, M204I) only on MiSeq
124	and would not have changed the genotypic resistance interpretation as a M204V mutation was
125	also detected at a high frequency on both MiSeq and ONT platforms. For the second sample, the
126	A181T mutation was found on MiSeq at a higher frequency (38%). QCMD samples with known
127	HBV AVR mutations were tested by MiSeq and ONT. There was 80% (12/15) agreement for
128	both platforms, with 3 samples having a L80I/V mutation identified only by the ONT platform.
129	This is a known limitation of the MiSeq assay, as the sequenced amplicon is shorter and does not
130	cover that particular mutation
100	eover that particular mutation.
131	
131 132	There were 35 EQA samples tested with the following genotypes: A, B, C, D, F. All were
130 131 132 133	There were 35 EQA samples tested with the following genotypes: A, B, C, D, F. All were identified accurately by MiSeq and ONT. A total of 51 patient samples were tested for genotype
130131132133134	There were 35 EQA samples tested with the following genotypes: A, B, C, D, F. All were identified accurately by MiSeq and ONT. A total of 51 patient samples were tested for genotype by both MiSeq and ONT, and all results were concordant. These were composed of HBV
 131 132 133 134 135 	There were 35 EQA samples tested with the following genotypes: A, B, C, D, F. All were identified accurately by MiSeq and ONT. A total of 51 patient samples were tested for genotype by both MiSeq and ONT, and all results were concordant. These were composed of HBV genotypes: A (9), B (12), C (22), D (5), E (2), and A/G (1).
 130 131 132 133 134 135 136 	There were 35 EQA samples tested with the following genotypes: A, B, C, D, F. All were identified accurately by MiSeq and ONT. A total of 51 patient samples were tested for genotype by both MiSeq and ONT, and all results were concordant. These were composed of HBV genotypes: A (9), B (12), C (22), D (5), E (2), and A/G (1).
 130 131 132 133 134 135 136 137 	There were 35 EQA samples tested with the following genotypes: A, B, C, D, F. All were identified accurately by MiSeq and ONT. A total of 51 patient samples were tested for genotype by both MiSeq and ONT, and all results were concordant. These were composed of HBV genotypes: A (9), B (12), C (22), D (5), E (2), and A/G (1). ONT showed reproducible sequence variant detection for replicates with high viral loads and/or

- 139 with low viral loads samples (<1000 IU/mL), particularly with low-level frequency
- 140 subpopulations (<10%). The limit of detection for the initial PCR was 119 IU/mL. From the

- 141 plasmid control, average base calling error rates at AVR codons were: V173 (0.74%), L180
- 142 (0.84%), M204 (0.36%) and M250 (0.42%). There was no evidence of sample cross-
- 143 contamination risk, with each runs negative control testing negative.
- 144
- 145 The ONT assay PCR and library preparation time was approximately 30% less than the MiSeq
- 146 assay (5 versus 7 hours for one sample with controls); however, the time required for library
- 147 preparation is also dependent on the number of samples included with each sequencing run.
- 148 Sequencing time is markedly reduced with the ONT platform: approximately 15-30 minutes for
- 149 ONT as compared to 23 hours for MiSeq assay. The time required for bioinformatic analysis for
- 150 each sample was comparable between the assays (~15 minutes).
- 151
- 152 4. Discussion
- 153

154 This study describes the clinical validation of a NGS HBV AVR assay using the ONT platform. 155 Results for ONT were highly concordant with MiSeq, with 100% (51/51) accuracy for genotype 156 and 96% (47/49) accuracy for AVR testing on patient samples. Two samples had an additional 157 AVR mutation detected by MiSeq which were not detected by ONT. These additional mutations 158 were detected only on MiSeq from samples with low viral loads (<2000 IU/mL). The increased 159 detection of low-level subpopulations by the MiSeq assay could be a result of the increased read 160 depth per run with the MiSeq platform (~12,500) as compared to ONT (~8000). Additionally, the 161 MiSeq assay used a more sensitive nested PCR for amplicon sequencing, which may explain 162 improved detection of AVR mutations in low viral load samples. The nested PCR step was 163 discontinued for the ONT assay, as it was more labour intensive, and had increased risks for

164 sample cross-contamination. In addition, for samples with HBV viral load <500 IU/mL, our 165 laboratory routinely reports a qualifying comment regarding decreased sensitivity for detecting 166 mutant subpopulations of <10%, which is consistent with the reproducibility results from Table 167 3. ONT was able to improve PCR/library preparation and sequencing TAT, which has been 168 previously demonstrated (13). Using the 45020D plasmid DNA control, which has a known 169 sequence, ONT sequencing error rates were found to be less than 1% (0.36-0.84%). This is 170 consistent with error rates reported for the R10.4.1 flow cells (9). Sequencing error rates are 171 minimized by further quality filtering by Q score and forward/reverse read bias performed during 172 bioinformatic analysis. This allows for confidence in reporting mutations found at a frequency of 173 3.5% or greater.

174

175 Although resistance to antiviral agents is uncommon with entecavir and tenofovir, particularly in 176 treatment-naïve patients, accessibility to HBV AVR is required for clinical follow up of patients 177 with virological breakthrough to guide treatment (2–4). While *de novo* resistance to entecavir is 178 rare, resistance can develop over time with chronic entecavir treatment: 0.9% at \geq 5 years for 179 treatment naïve and 20.1% for nucleos/tide analogue experienced (14). Limited data exist 180 regarding tenofovir resistance, though suspected mutations have been reported which were not 181 described in the EASL guidance (2, 5). In addition to tenofovir, novel antiviral agents aiming for 182 functional cure are in the pipeline, and AVR sequencing will be needed to provide ongoing 183 surveillance for any potential novel mutations associated with drug resistance (15, 16). 184

There are practical barriers to the introduction of NGS in clinical laboratories, including cost,
technical expertise and data analysis/interpretation (17, 18). As a clinical laboratory without a

187	dedicated bioinformatician, we utilized a commercial platform to analyze FASTQ sequencing
188	data and to remove the barrier relating to bioinformatics. Laboratories can also consider other
189	commercial bioinformatic tools, which may increasingly become available as more laboratories
190	launch NGS testing programs (19). With developing infrastructure and demand for clinical
191	sequencing, laboratories may also consider the feasibility of in-house developed bioinformatic
192	pipelines to enable customization of sequence interpretation, particularly for novel
193	drugs/mutations (20).
194	
195	Limitations of our study include, despite attempts to include a broad array of AVR mutations and
196	genotypes (patient and EQA samples), less frequently encountered AVR mutations and
197	genotypes could not be included. In addition, the clinical relevance of identifying low-level
198	subpopulations of AVR mutations through NGS is still unclear, and further research is required
199	to determine relevant thresholds for identification of low-level subpopulations.
200	
201	In conclusion, a single real-time PCR followed by NGS with the ONT platform was found to be
202	highly accurate for the detection of HBV AVR mutations and HBV genotype testing in a clinical
203	laboratory. This was consistent across a wide variety of HBV genotypes and resistance
204	mutations. Benefits of the ONT HBV assay included increased read length, decreased sample
205	processing time, and improved TAT.
206	
207	
208	Conflict of Interest
209	No relevant conflict of interests to declare.

2	1	Λ
4	T	υ

- 211 <u>Funding</u>
- 212 This research did not receive any specific grant from funding agencies in the public, commercial
- 213 or not-for-profit sectors.
- 214
- 215 <u>Authorship</u>
- 216 Conceptualization, MP, GR, NM, CFL; Data curation, MP, GR, TL, MY, WJ; Formal analysis,
- 217 MP, GR; Sequencing and analysis, GR; Funding acquisition, N/A; Investigation, MP, GR, AS,
- 218 MGR, NM, CFL; Methodology, GR, TL, MY; Project administration, WJ, MGR, NM, CFL;
- 219 Supervision, NM, CFL; Visualization, MP; Writing original draft, MP; Writing review &

220 editing, MP, GR, TL, MY, WJ, AS, MGR, NM, CFL.

- 221
- 222
- 223 References
- World Health Organization. 2024. Guidelines for the prevention, diagnosis, care and
 treatment for people with chronic hepatitis B infection.
- 226 2. European Association for the Study of the Liver. 2017. EASL 2017 Clinical Practice
- 227 Guidelines on the management of hepatitis B virus infection. J Hepatol 67:370–398.
- 228 3. Coffin CS, Fung SK, Alvarez F, Cooper CL, Doucette KE, Fournier C, Kelly E, Ko HH,
- 229 Ma MM, Martin SR, Osiowy C, Ramji A, Tam E, Villeneuve JP. 2018. Management of
- 230 Hepatitis B Virus Infection: 2018 Guidelines from the Canadian Association for the
- 231 Study of Liver Disease and Association of Medical Microbiology and Infectious Disease
- 232 Canada. Can liver J 1:156–217.
- 233 4. Terrault NA, Lok ASF, McMahon BJ, Chang K-M, Hwang JP, Jonas MM, Brown RSJ,

234		Bzowej NH, Wong JB. 2018. Update on Prevention, Diagnosis, and Treatment of Chronic
235		Hepatitis B: AASLD 2018 Hepatitis B Guidance. Clin liver Dis 12:33–34.
236	5.	Mokaya J, McNaughton AL, Bester PA, Goedhals D, Barnes E, Marsden BD, Matthews
237		PC. 2020. Hepatitis B virus resistance to tenofovir: fact or fiction? A systematic literature
238		review and structural analysis of drug resistance mechanisms. Wellcome open Res.
239		England.
240	6.	Solmone M, Vincenti D, Prosperi MCF, Bruselles A, Ippolito G, Capobianchi MR. 2009.
241		Use of Massively Parallel Ultradeep Pyrosequencing To Characterize the Genetic
242		Diversity of Hepatitis B Virus in Drug-Resistant and Drug-Naive Patients and To Detect
243		Minor Variants in Reverse Transcriptase and Hepatitis B S Antigen. J Virol 83:1718-
244		1726.
245	7.	Qutub MO, Germer JJ, Rebers SPH, Mandrekar JN, Beld MGHM, Yao JDC. 2006.
246		Simplified PCR protocols for INNO-LiPA HBV Genotyping and INNO-LiPA HBV
247		PreCore assays. J Clin Virol Off Publ Pan Am Soc Clin Virol 37:218–221.
248	8.	Lowe CL, Merrick L, Harrigan PR, Mazzulli T, Sherlock CH, Ritchie G. 2016. Next-
249		generation sequencing for hepatitis B genotype and resistance testing in a clinical
250		microbiology laboratory. J Clin Microbiol 54:127–133.
251	9.	Kim BY, Gellert HR, Church SH, Suvorov A, Anderson SS, Barmina O, Beskid SG,
252		Comeault AA, Crown KN, Diamond SE, Dorus S, Fujichika T, Hemker JA, Hrcek J,
253		Kankare M, Katoh T, Magnacca KN, Martin RA, Matsunaga T, Medeiros MJ, Miller DE,
254		Pitnick S, Simoni S, Steenwinkel TE, Schiffer M, Syed ZA, Takahashi A, Wei KH-C,
255		Yokoyama T, Eisen MB, Kopp A, Matute D, Obbard DJ, O'Grady PM, Price DK, Toda
256		MJ, Werner T, Petrov DA. 2023. Single-fly assemblies fill major phylogenomic gaps

257		across the Drosophilidae Tree of Life. bioRxiv Prepr Serv Biol. United States.
258	10.	FDA US. 2016. Infectious disease next generation sequencing based diagnostic devices:
259		microbial identification and detection of antimicrobial resistance and virulence markers:
260		draft guidance for industry and Food and Drug Administration staff. U.S. Food and Drug
261		Administration, Silver Spring, MD.
262	11.	Burd EM. 2010. Validation of Laboratory-Developed Molecular Assays for Infectious
263		Diseases. Clin Microbiol Rev 23:550–576.
264	12.	Gargis AS, Kalman L, Lubin M. 2016. Assuring the Quality of Next-Generation
265		Sequencing in Clinical Microbiology and Public Health Laboratories. J Clin Microbiol
266		54:2857–2865.
267	13.	Colson P, Boschi C, Bengone-Abogourin JG, Brechard L, Motte A, Allemand I. 2021.
268		Concurrent Nanopore Next-Generation Sequencing of Hepatitis B and Delta Virus
269		Genomes Directly From Patient Plasma. Ann Lab Med. Korea (South).
270	14.	Lumley SF, Delphin M, Mokaya JF, Tan CCS, Martyn E, Anderson M, Li KC, Waddilove
271		E, Sukali G, Downs LO, Said K, Okanda D, Campbell C, Harriss E, Shimakawa Y,
272		Matthews PC. 2024. A systematic review and meta-analysis of the risk of hepatitis B virus
273		(HBV) resistance in people treated with entecavir or tenofovir. J Clin Virol Off Publ Pan
274		Am Soc Clin Virol 174:105711.
275	15.	Wong GLH, Gane E, Lok ASF. 2022. How to achieve functional cure of HBV: Stopping
276		NUCs, adding interferon or new drug development? J Hepatol 76:1249–1262.
277	16.	Yuen M-F, Lim S-G, Plesniak R, Tsuji K, Janssen HLA, Pojoga C, Gadano A, Popescu
278		CP, Stepanova T, Asselah T, Diaconescu G, Yim HJ, Heo J, Janczewska E, Wong A, Idriz
279		N, Imamura M, Rizzardini G, Takaguchi K, Andreone P, Arbune M, Hou J, Park SJ, Vata

280	A, Cremer J	Elston R. L	ukić T. Ouinn	G. Maynar	d L, Kendrick S,	Plein H, Cam	pbell F.
	,	,,		-,			

- 281 Paff M, Theodore D. 2022. Efficacy and Safety of Bepirovirsen in Chronic Hepatitis B
- 282 Infection. N Engl J Med 387:1957–1968.
- 283 17. Boers SA, Jansen R, Hays JP. 2019. Understanding and overcoming the pitfalls and biases
- 284 of next-generation sequencing (NGS) methods for use in the routine clinical
- 285 microbiological diagnostic laboratory. Eur J Clin Microbiol Infect Dis Off Publ Eur Soc
 286 Clin Microbiol 38:1059–1070.
- 287 18. Greninger AL. 2018. The challenge of diagnostic metagenomics. Expert Rev Mol Diagn
 288 18:605–615.
- 289 19. Ringlander J, Andersson ME, Prakash K, Larsson SB, Lindh M. 2022. Deep sequencing
 290 of hepatitis B virus using Ion Torrent fusion primer method. J Virol Methods 299:114315.
- 20. Wang H. 2024. Practical updates in clinical antiviral resistance testing. J Clin Microbiol
- 292 62:e0072823.
- 293

EASLIdentifiedIdentifiedMutationONTMiSeqM204V1616M204I1213L180M2525A181T/V12N236T00I169T11V173L77M250V00T184G00S202I/G66Total6870Mutations		-	Number	Number	-
MutationONTMiSeqM204V1616M204I1213L180M2525A181T/V12N236T00I169T11V173L77M250V00T184G00Samples3938Negative for Mutations3938SequencingSamples3938Negative for MutationsEASL: European Association for the Study of the LiverConstrained and the sult AnalysisSample0SampleGenotypeViral Load (IU/mL)ONT1D1,360L180M M204V M204V2C1710A181T(38%	EAS	SL I	dentified	Identified	
M204V 16 16 M204I 12 13 L180M 25 25 A181T/V 1 2 N236T 0 0 I169T 1 1 V173L 7 7 M250V 0 0 T184G 0 0 S202I/G 6 6 Total 68 70 Mutations	Mutat	ion	ONT	MiSeq	
M204I 12 13 L180M 25 25 A181T/V 1 2 N236T 0 0 I169T 1 1 V173L 7 7 M250V 0 0 T184G 0 0 S202I/G 6 6 Total 68 70 Mutations	M204	4V	16	16	
L180M2525A181T/V12N236T00I169T11V173L77M250V00T184G00S202I/G66Total6870Mutations $$	M20	4I	12	13	
A181T/V12N236T00I169T11V173L77M250V00T184G00S202I/G66Total6870Mutations $\overline{Samples}$ 39Samples3938Negative for Mutations $\overline{Samples}$ EASL: European Association for the Study of the LiverNGS: Next-generation sequencing DNT: Oxford NanoporeFable 2 Discordant Result Analysis Sample Genotype Viral Load (IU/mL)ONT1D1,360L180M M204V M204V M204V2C1.710A181T(38%)	L180	Μ	25	25	
N236T00I169T11V173L77M250V00T184G00S202I/G66Total6870Mutations	A1817	Г/V	1	2	
II 69T11V173L77M250V00T184G00S202I/G66Total6870Mutations $$	N236	6T	0	0	
V173L77M250V00T184G00S202I/G66Total6870MutationsImage: Samples 39 38Samples39 38Negative for MutationsImage: Sample for MutationsEASL: European Association for the Study of the Liver NGS: Next-generation sequencing ONT: Oxford NanoporeTable 2 Discordant Result Analysis Sample Genotype Viral Load ONT MiSeq (IU/mL)MiSeq1D1,360L180M M204V M204V M204V2C1.710A181T(38%	I169	Т	1	1	
M250V00T184G00S202I/G66Total6870Mutations I Samples3938Negative for Mutations I EASL: European Association for the Study of the LiverNGS: Next-generation sequencing DNT: Oxford NanoporeTable 2 Discordant Result AnalysisSampleGenotypeViral Load (IU/mL)ONT1D1,360L180MM204V M204VM204VM204VM204I(4.3%)	V173	3L	7	7	
T184G 0 0 S202I/G 6 6 Total 68 70 Mutations	M250)V	0	0	
S202I/G 6 6 Total 68 70 Mutations	T184	ŀG	0	0	
Total 68 70 Mutations 39 38 Negative for Mutations 39 38 EASL: European Association for the Study of the Liver Study of the Liver NGS: Next-generation sequencing ONT: Oxford Nanopore Study of the Liver Fable 2 Discordant Result Analysis Sample Genotype Viral Load ONT MiSeq (IU/mL) 1 D 1,360 L180M M204V M204V M204V M204I(4.3%	S202	I/G	6	6	
Mutations Samples 39 38 Negative for Mutations	Tota	al	68	70	
Samples 39 38 Negative for Mutations	Mutati	ions			
Negative for Mutations EASL: European Association for the Study of the Liver NGS: Next-generation sequencing ONT: Oxford Nanopore Table 2 Discordant Result Analysis Sample Genotype Viral Load ONT MiSeq (IU/mL) 1 D 1 D 1,360 L180M M204V M204V M204V M204I(4.3%)	Samp	les	39	38	
Mutations EASL: European Association for the Study of the Liver NGS: Next-generation sequencing ONT: Oxford Nanopore Fable 2 Discordant Result Analysis Sample Genotype Viral Load ONT MiSeq (IU/mL) 1 D 1,360 L180M L180M Mutations 2 C 1,710 A181T(38%	Negativ	ve for			
EASL: European Association for the Study of the Liver NGS: Next-generation sequencing ONT: Oxford Nanopore Fable 2 Discordant Result Analysis Sample Genotype Viral Load ONT 1 D 1,360 L180M M204V M204V M204V 2 C 1,710 A181T(38%)	Mutati	ions			
NGS: Next-generation sequencing ONT: Oxford Nanopore <u>Table 2 Discordant Result Analysis</u> Sample Genotype Viral Load ONT MiSeq (IU/mL) 1 D 1 D 1 D 1,360 L180M M204V M204V M204I(4.3%) 2 C	EASL: Eu	ropean Asso	ociation for th	e Study of the Li	iver
Solution Control Nanopore Sample 2 Discordant Result Analysis Sample Genotype Viral Load ONT MiSeq (IU/mL) 1 D 1 D 1,360 L180M M204V M204V M204I(4.3%) 2 C 1 T10	NGS: Nex	t-generation	sequencing		
Table 2 Discordant Result Analysis Sample Genotype Viral Load ONT MiSeq (IU/mL) 1 D 1,360 L180M L180M M204V M204V M204V 2 C 1,710 A181T(38%)	UNT: UXI	ord Manopo	le		
Table 2 Discordant Result Analysis Sample Genotype Viral Load ONT MiSeq (IU/mL) 1 D 1,360 L180M L180M M204V M204V M204V 2 C 1,710 A181T(38%)					
Table 2 Discordant Result Analysis Sample Genotype Viral Load ONT MiSeq (IU/mL) 1 D 1,360 L180M L180M M204V M204V M204V 2 C 1,710 A181T(38%					
Table 2 Discordant Result Analysis Sample Genotype Viral Load ONT MiSeq (IU/mL) 1 D 1,360 L180M M204V M204V M204V M204V M204I(4.3% M204I(4.3% M204I)) 2 C 1,710 A181T(38% M204V)					
Table 2 Discordant Result Analysis Sample Genotype Viral Load ONT MiSeq (IU/mL) 1 D 1,360 L180M L180M 1 D 1,360 L180M M204V M204V M204V M204I(4.3%) 2 C 1,710 A181T(38%)					
SampleGenotypeViral Load (IU/mL)ONTMiSeq1D1,360L180ML180MM204VM204VM204VM204V2C1,710A181T(38%)	Table 2 D	iscordant Re	sult Analysis		
(IU/mL) 1 D 1,360 L180M L180M M204V M204V M204I(4.3% 2 C 1,710 A181T(38%	Sample	Genotype	Viral Load	ONT	MiSeq
1 D 1,360 L180M L180M M204V M204V M204I(4.3%	-		(IU/mL)		_
M204V M204V M204I(4.3%	1	D	1,360	L180M	L180M
2 C 1 710 A181T(38%				M204V	M204V
2 C 1.710 $A181T(38\%)$					M204I(4.3%)
2 C 1,710 A1011(3070	2	С	1,710		A181T(38%)
NT: Oxford Nanopore	NT: Oxf	ord Nanopo	re		. ,

295 Table 1 Hepatitis B Antiviral Resistance Mutations Identified by Next Generation Sequencing

Variant		ONT	
	Viral	Mean	Coefficient
	Load	(%)	of variation
	(IU/mL)		
M204I	10000	70.3	7.8
	4000	67.7	10.8
	1000	72.0	17.6
	250	89.3	17.1
	125	41.6	115.8
V173L	10000	50.5	7.5
	4000	48.2	10.1
	1000	61.4	22.3
	250	45.2	84.5
	125	24.0	195.3
I 180M	10000	257	21.6
LIGOWI	4000	23.7	21.0
	1000	25.0	2 4 .8 48 3
	250	23.0 7 9	190.7
	125	54.5	86.5
T184S	10000	6.5	16.4
	4000	10.3	92.7
	1000	1.1	120.9
	250	2.5	95.2
	125	0.3	15.4

308 Table 3 Reproducibility in minority variant analysis with

309 decreasing viral loads

310 ONT: Oxford Nanopore

311

312