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Abstract 
Electronic health records (EHRs) are digitalized medical charts and the standard method of clinical data collection. 

They have emerged as valuable sources of data for outcomes research, offering vast repositories of patient information 

for analysis. Definitions for pediatric sepsis diagnosis are ambiguous, resulting in delayed diagnosis and treatment, 

highlighting the need for precise and efficient patient categorizing techniques. Nevertheless, the use of EHRs in 

research poses challenges. EHRs, although originally created to document patient encounters, are now primarily used 

to satisfy billing requirements. As a result, EHR data may lack granularity, potentially leading to misclassification 

and incomplete representation of patient conditions. We compared data-driven ICD code categories to chart review 

using probabilistic graphical models (PGMs) due to their ability to handle uncertainty and incorporate prior 

knowledge. Overall, this paper demonstrates the potential of using PGMs to address these challenges and improve 

the analysis of ICD codes for sepsis outcomes research. 
 

Introduction 
EHRs are the digitalized medical charts and the standard method of clinical data collection. They contain valuable 

information such as patient medical history, demographics, diagnosis, treatments, and procedures, including imaging 

and lab results. They are potentially a powerful resource for research because they are cost-effective and enable rapid 

collection of large data sets for retrospective studies and trend observation in most disease spaces (1–3). EHR data, 

primarily the diagnostic and procedure codes, have been used in many studies, including outcomes research, risk 

analysis, disease prediction, drug efficacy and use, and healthcare resource utilization and medical costs (4–24).  
 

The International Classification of Diseases (ICD) is an established set of diagnosis codes used to document and bill 

patient encounters, facilitating record-keeping between healthcare providers and clinics (25). ICD codes are widely 

used in research as proxies for clinical outcomes. However, their administrative nature makes this a cause for concern 

among many healthcare professionals. Differences in coding practices across institutions, discrepancies between EHR 

documentation behavior and the real world, and the financial motivations within the healthcare system can all 

influence the accuracy of how these codes get assigned (1–3). There have been previous studies aiming to assess the 

validity of ICD codes for clinical research, but the results have been mainly inconclusive. Some studies attest to their 

use in research (26–33) while others argue they are not reliable (31,34–37). As new data sources become available 

and are combined with these clinically derived annotations, further investigation of the utility and validity of this 

coding is essential when exploring specific disease spaces. 
 
One strategy to reduce biases and increase accuracy while evaluating ICD codes as proxies for diagnosis is grouping. 

ICD code grouping methods have been successful at categorizing patients into diseases where there’s a lack of coding 

consensus, and therefore, provide better insight into a patient’s medical condition, improving the generalizability of 

EHR-based research and the predictive power of clinical outcomes models (38–41). The pediatric complex chronic 

condition (CCC) v2 system is an established grouping methodology for identifying patients with CCCs. According to 

Feudtner et al., CCC encompasses any medical condition anticipated to last at least 12 months (unless death occurs), 

involving multiple organ systems or one severely affected organ system requiring specialized pediatric care and 

possibly tertiary care hospitalization (42). This system categorizes a broad range of ICD-9 and ICD-10 codes into ten 

groups (cardiovascular, neonatal, respiratory, neurologic/neuromuscular, renal/urologic, gastrointestinal, 

hematologic/immunologic, metabolic, other congenital or genetic defects, and malignancy), in which patients can 

belong to one or more groups. This system has been previously used in pediatric research, such as risk analysis and 

prediction of disease outcomes(42). 
 

With large clinical datasets there is a need for methods that quantify the dependencies between thousands of features 

from multiple modalities in an explainable, portable, and accurate way. Bayesian networks are probabilistic graphical 

models that allow us to visualize and measure the probabilistic dependencies between features. They use directed 

acyclic graphs where the variables are represented by nodes, and their conditional dependencies are represented by 
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edges. Bayesian networks are adept at handling a wide range of inquiries, from simple tasks like predicting outcomes 

based on a single variable to more complex ones involving multiple variables and their interplay (43–45). This makes 

them powerful tools for risk analysis and decision support in healthcare.  
 

In this study, we are interested in understanding the risk factors contributing to pediatric sepsis. Sepsis is among the 

leading causes of pediatric death worldwide, and in 2017, it accounted for 2.9 million deaths in children under five 

years of age (46). Sepsis is a syndrome of life-threatening organ dysfunction that occurs when the body’s natural 

response to infection damages tissues. Unfortunately, disease development remains poorly understood due to the 

highly varying signs and symptoms that are nonspecific, making sepsis difficult to diagnose in an accurate and timely 

manner (46). Another challenge involves the absence of universally accepted definitions to classify pediatric patients 

with sepsis. Diagnosing and categorizing pediatric patients with severe sepsis depends on factors such as patient age 

and the presence of comorbidities. This categorization is further influenced by factors such as provider judgment and 

varying coding practices between healthcare systems (41,47). 
 

The gold standard methodology for classifying patients in cohort studies and outcomes research is chart review. 

However, obtaining physician-validated datasets is burdensome, expensive, and time-consuming. In this study, we 

explore the use of ICD code groupings into clinically meaningful categories to increase our capability of identifying 

and measuring risk factors associated with sepsis severity. We use Bayesian networks to compare ICD categories to 

chart review and its associations with pediatric sepsis outcomes. A concern about using billing codes for research 

purposes is that they represent administrative information rather than biological or clinical reality. At face value, if 

the codes are applied in a consistent manner, then they represent useful information about the patients that can be used 

in cohort selection and outcomes research. Further, the categorization of these codes should serve to mitigate some of 

the biases that may be introduced administratively.  
 
Methods 
Setting and Study Population 
We identified children aged 18 years and younger who had a culture-documented E. coli infection and were 

hospitalized at Primary Children’s Hospital (PCH) in Salt Lake City, UT, between 2012 and 2019. PCH is a standalone 

children's hospital with 289 beds, serving as a pediatric community hospital for Salt Lake County, Utah, and the sole 

pediatric tertiary care center in the Intermountain West region. Demographic and clinical data were sourced from the 

Intermountain Health Care Enterprise Data Warehouse, with medical records manually reviewed to verify diagnoses 

and validate electronic data for all patients. Given the study's timeframe and subjects' ages, ICD-9 and ICD-10 codes 

were collected for these patients. The Institutional Review Boards of the University of Utah and Primary Children’s 

Hospitals approved this study with a waiver of informed consent as the data has been analyzed anonymously 

(IRB#00097637).   
 
Diagnosis Code categorization 
1359 distinct ICD codes were collected by collating the patient's records. Given the large number and the diversity of 

the coding terms, three different grouping strategies were implemented to reduce the number of terms by aggregating 

them based on clinical similarity.  
 
Data-Driven ICD code categorization: sepsis-associated body systems 
Infection-associated codes were categorized into four body system groups (lower genitourinary tract, central nervous 

system, gastrointestinal, and blood) using expert knowledge. These body systems were selected because they represent 

the primary pathways through which severe infection typically arises. The infection-related diagnosis codes in each 

group were searched for within the list of patient diagnoses using a pattern-matching technique to aid collection of 

terms. For example, a list of all the central nervous system ICD codes relating to infection found within our cohort 

was created by searching all the patient diagnoses using prefixes, suffixes, and root words such as  “cereb,” “brain,” 

“crani-,” etc to create a list for manual inspection. We constructed a presence-absence matrix where 1 represents a 

patient found to have any of the ICD codes in a given group, and 0 (an absence) if no ICD codes were found for that 

particular group. We repeated this process for each of the four groups.  
 
Data-Driven ICD code categorization: Frequency of medical terms and context 
After compiling the terms directly associated with infection, we extracted the frequency of the remaining terms across 

all patients in our cohort. The frequencies were further explored to identify over-occurrence and common clinical 
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phenotypes. We specifically focused on medical concepts related to prematurity, gastrostomy status, and 

thrombocytopenia, as they are known to impact severe sepsis outcomes. Using a pattern-matching technique, we 

searched for ICD-9 and ICD-10 codes corresponding to each medical concept within the pool of patient diagnoses. 

We incorporated these new groupings into our previous presence-absence matrix using the NLP approach mentioned 

above.  
 
Feudtner’s complex chronic condition v2 system 
A presence-absence matrix for each CCC category was generated through SQL queries applied to patient data using 

standard code sets (42). This study only used the renal/urologic, gastrointestinal, hematologic/immunologic, 

malignancy, and other congenital or genetic defect categories as diagnostic code categories, resulting in five additional 

groups.   
 
Chart Reviewed Features 
The electronic medical records and paper charts were retrospectively reviewed to obtain data regarding clinical 

presentation, extent of disease, infection risk factors, test results, and patient outcomes. Study data were collected and 

managed using REDCap electronic data capture tools hosted at PCH(48).  The definition for each chart reviewed 

category is given below: 
 

• Severe sepsis: Children with an invasive E. coli infection and evidence of tissue hypoperfusion or organ 

dysfunction due to the infection were categorized as having severe sepsis (49). 

• Bacteremia: A positive blood culture for E. coli. 

• Meningitis: 1) a positive cerebrospinal fluid (CSF) culture for E. coli, or 2) positive BioFire FilmArray 

Meningitis Encephalitis Panel result for E. coli, or 3) a positive blood culture for E. coli and evidence of 

infection in the CSF (WBC>5 cells/mm
3
), or 4) a positive blood culture for E. coli and a clinical diagnosis 

of meningitis as determined by the pediatric infectious disease physician. 

• Preterm infant: Infant born prior to 37 weeks gestational age.   

• Preterm under 12 months: Patient born prematurely, under 12 months of age at time of admission. 

• Urinary tract infection (UTI): 1) positive urine culture (defined as growth greater than 10
5
 CFU/mL) and 

urinalysis with evidence of pyuria (³ 5 white blood cells or +leukocyte esterase) or +nitrites per American 

Academy of Pediatrics guidance (50). 

• Cancer: Children admitted with an E. coli infection who were currently being treated for cancer.   

• Thrombocytopenia calculation: Platelet count less than 150,000/uL of blood.  

• Gastrostomy tube: Validation of the set of ICD derived cases using review of notes. 

 
Bayesian Network 
A Bayesian network was built using the resulting ICD code categories, chart-reviewed diagnosis, lab values, and 

clinical outcomes as features. A Hill-Climbing greedy search algorithm was used to determine the network structure, 

employing the BDE score-based learning algorithm to search for the directed acyclic graph that maximized the 

network score. The learning process was bootstrapped 500 times. The R package bnlearn, version 4.9.1, was used to 

build the network and propagate the learned structure of the data to construct joint probabilities tables. The visual 

representation of our network was obtained using the visNetwork package from R, version 2.1.2.  
 
Risk Analysis 
Relative risk (RR) and absolute risk (AR) are commonly used metrics to assess the association between an exposure 

and an outcome (43,44). RR quantifies the strength of association by comparing the risk of an outcome in an exposed 

group to the risk of an outcome in the non-exposed group. A RR above 1 indicates a higher risk of the outcome 

compared to the non-exposed group. On the other hand, AR measures the actual risk of an outcome. It is the ratio of 

the probability of an outcome in exposed individuals to the total number of individuals with the outcome. 

 

𝑅𝑅 =  
𝑃(𝑂𝑢𝑡𝑐𝑜𝑚𝑒 | 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑒𝑑 𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑎) 𝑖𝑛 𝐺𝑒𝑛𝑒𝑟𝑎𝑙 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛

𝑃(𝑂𝑢𝑡𝑐𝑜𝑚𝑒 | 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑒𝑑 𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑎 𝑎𝑏𝑠𝑒𝑛𝑡)
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𝐴𝑅 =  
𝑃(𝑂𝑢𝑡𝑐𝑜𝑚𝑒 | 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑒𝑑 𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑎) 𝑖𝑛 𝐺𝑒𝑛𝑒𝑟𝑎𝑙 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛

𝑃(𝑂𝑢𝑡𝑐𝑜𝑚𝑒)𝑖𝑛 𝐺𝑒𝑛𝑒𝑟𝑎𝑙 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛
 

 
We calculated the RR and AR of a patient having severe sepsis, given the presence of one or more features by querying 

the Bayesian network. We repeated this process using bacteremia and meningitis as outcomes. The dataset was 

bootstrapped 1000 times to obtain the median RR, median AR, and 95% confidence intervals for each query. The risk 

calculations were performed using the gRain package in R, version 1.4.1.  
 
Results 
Patient Demographics 
The overall patient population included in this study is described in Table 1. We identified 280 children with an E. 

coli infection treated at PCH over the 7-year study period. One-hundred and six cases (37.9%) occurred in children 5 

years and older, and 85 (30.4) cases occurred in children 30 days to 2 years old (Table 1). In this study, age, ethnicity, 

and gender were not evaluated as risk factors. The most common clinical characteristic in our cohort was bacteremia 

(187 children; 66.8%), followed by severe sepsis (50 children; 17.9%) and meningitis (18 children; 6.4%: Table 1). 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Bayesian Network 
The final Bayesian network resulted in 21 features after removing those present in less than 5% or more than 95% of 

the cohort. Five nodes represent CCCs v2, seven nodes represent data-driven diagnoses, and nine nodes represent 

chart-reviewed diagnoses, including the severe sepsis outcome. Unlike traditional statistics, the Bayesian network 

allows us to visualize the relationships between all the variables as well as the association of the variables with the 

outcome (Figure 1). A univariable analysis was performed using the Bayesian network (Figure 2). This allowed for 

the comparison between the effects of data-generated variables versus chart-reviewed variables on an outcome. The 

Table 1 

Demographic and clinical characteristics of patients included in this study (n=280). 
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RR of severe sepsis was increased more than two-fold by the presence of chart-review thrombocytopenia, data-driven 

thrombocytopenia, data-driven gastrointestinal infection, data-driven gastrostomy tube, and chart-reviewed 

gastrostomy tube. And the RRs of severe sepsis, given the presence of related data-driven and chart review diagnoses, 

are comparable. A web application was created to allow users to explore and query the Bayesian network. It was 

developed and deployed using the R package shiny, version 1.8.0, and is publicly accessible on a server at: https://lulu-

valdez.shinyapps.io/sepsis_clinical_shinyapp/. 
 

Figure 1. Bayesian network of clinical manifestations related to severe sepsis 

Each node represents clinical categories (see methods), and lines represent the conditional dependencies between the nodes. Navy 

blue nodes represent data-driven clinical conditions, pink nodes represent Feudtner et al.’s CCC v2 system, and light purple nodes 

represent chart-reviewed clinical conditions.  
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Sensitivity Analysis 
The sensitivity analysis shown in Table 2 compares the difference between data-driven variables, the associated chart-

reviewed variables, and their conditional dependency on severe sepsis. We analyzed nine pairs of nodes and identified 

five pairs of data-driven v. chart-review nodes as being significantly similar using Pearson’s Chi-squared test. The 

difference in the association between the two variables and severe sepsis was measured using the odds ratio (OR). OR 

= 1 indicates that the two predictors have an equal strength of association with the outcome. The closer the OR is to 

one, the more similar the two variables are to each other regarding their dependency on severe sepsis.  
 

 

 

 

 

 

 

 

 

Figure 2. Relative risk of severe sepsis in pediatric patients 

 
This figure shows a univariable analysis using the Bayesian network. Median relative risk scores and 95% confidence 

intervals were obtained after bootstrapping the network 1000 times. 
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Discussion 
We used the power of Bayesian networks to compare the effectiveness of data-driven ICD code categories as risk 

factors for sepsis-related outcomes and compared them to chart-reviewed diagnoses. Our Bayesian network identified 

four data-driven ICD code groupings that performed similarly to chart-reviewed diagnoses in predicting the risk of 

severe sepsis (Figure 1 and Table 2). The data-driven groupings were central nervous system infection, blood infection, 

lower genitourinary tract infection, and prematurity. Prematurity was compared to two different chart-reviewed 

prematurity variables (Prematurity and Prematurity, under 12 months), causing five pairs of variables to be identified 

but only four data-driven ICD code groupings. 
 

We note that there are circumstances in which data-driven ICD groupings are less reliable than chart review. In our 

dataset, a grouping of ICD codes related to thrombocytopenia identified 37 cases, whereas chart review identified 89. 

This difference is seen when comparing the two categories with the outcomes. The most likely cause for this 

observation is that chart review used laboratory values to identify cases of thrombocytopenia, whereas the data-driven 

ICD code grouping only included the cases that were coded as thrombocytopenia as an indication for testing, but not 

those that were tested for other indications without a thrombocytopenia ICD code in their chart. We include the 

comparison of similar but non-overlapping groupings of terms to explore the impact on the outcomes using the 

Bayesian network. We created a grouping of terms involved in gastrointestinal infections and compared this grouping 

to the Gastrointestinal CCC category, which includes congenital anomalies, chronic liver disease/cirrhosis, and 

Table 2. Sensitivity analysis of data-driven variables, chart-review variables, and CCC variables. 

 

This table represents a bivariate analysis performed using traditional statistical methods. Significant differences were 

assessed using Pearson’s Chi-squared test. P-values were adjusted for multiple comparisons using the Bonferroni correction 

method. P-value < 0.05 indicates independence of association between each category and severe sepsis. Darker red 

represents decreasing OR while darker blue represents increasing OR. 
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inflammatory bowel disease. While both of these groupings are connected in the network, it can be seen that they have 

very different impacts on the outcome. A gastrointestinal infection increases the risk of severe sepsis outcome 

threefold, but a chronic GI condition does not impact the outcome. This is to be expected.  
 

In our exploration, we found a situation in which a temporal relationship might be missed by data-driven ICD 

groupings. ICD codes relating to prematurity were grouped in order to investigate infection relating to preterm infants. 

However, our cohort contained individuals from birth to 18 years of age, and therefore, our grouping included children 

who were premature at birth but who had the E.coli infection occur later in life. Chart review was capable of isolating 

the individuals who were infants when faced with infection with a higher level of certainty.  
 
The use of data-driven ICD code groupings holds significant promise for understanding and predicting various medical 

outcomes. Bayesian networks offer a probabilistic framework that allows for the integration of diverse sources of data 

and the modeling of complex relationships between variables, thereby enhancing the accuracy and reliability of 

predictive models. Our investigation revealed key groupings that exhibited notable predictive capabilities in relation 

to sepsis-related outcomes. By leveraging Bayesian networks, we were able to effectively compare the performance 

of these data-driven groupings against chart-reviewed diagnoses, highlighting their potential utility in healthcare 

analytics.  
 

Conclusions 
Our study demonstrates the potential of using data-driven ICD code groupings within Bayesian networks to effectively 

predict outcomes, particularly severe sepsis. We identified four distinct groupings—central nervous system infection, 

blood infection, lower genitourinary tract infection, and prematurity—that showed comparable performance to chart-

reviewed diagnoses. However, it is important to recognize the limitations of solely relying on data-driven 

methodologies. There are instances where chart review may offer a more comprehensive and accurate assessment, 

particularly when dealing with temporal clinical findings or when the use of laboratory values is warranted. Thus, 

while data-driven approaches have proven valuable for outcome prediction within the context of Bayesian networks, 

certain situations require they be complemented by traditional methods to ensure robustness and reliability. Using this 

combination of this data-driven classification of patients by ICD code with Bayesian networks to explore the 

conditional probability topology of data enables rapid exploration of clinical datasets. This process can be iterative 

and amenable to the integration of further datasets.  
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