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Research in Context
Graphs are commonly used across the biomedical sciences to study complex relation-
ships from cellular systems to clinical outcomes. There exists a vast array of methods
to analyze graphs and real-world networks to understand human health. Yet, the use-
fulness of any graph depends on the quality of the data and ground truth structure,
and most importantly the method of learning the graph structure and validation when
no ground truth or references exist. Methods for learning and validating graphs that
best represent human multimorbidity have been poorly explored. Multimorbidity is the
existence of two or more chronic conditions within an individual, and is rising worldwide
especially in low-income countries where there is a double burden of infectious and non-
communicable diseases. An urgent example of poorly understood multimorbidity is the
complex system of inter-dependencies of hepatosplenic conditions. To identify a graph
suitable for clinical-decision making, open questions remain of how to determine the rel-
evance of condition relationships, of how best to choose a threshold for determining what
is a significant clinical relationship of public health or individual concern (i.e. deciding
the presence of an edge between conditions in the graph), and of how to validate that
threshold for understanding or predicting multimorbidity in the absence of any ultimate
ground truth given the context of complex, dynamic human diseases. Thus, a pipeline
urgently is needed for representing multimorbidity through graph learning. Henceforth,
we focus on the complex problem of hepatosplenic multimorbidity as a known complex
system with diverse biological causes.
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We conducted a systematic search of titles and abstracts in PubMed from database
inception to 12 April 2024 using the following search string: (“network*” OR “graph*”)
AND (“model*” OR “threshold*” OR “predict*”) AND (“comorbidit*” OR “co-morbidit*”
OR “multimorbidit*” OR “multi-morbidit*” OR “multiple conditions” OR “multiple dis-
eases”) AND (“spleen” OR “liver” OR “hepat*”). Our search string yielded 115 studies,
from which we removed studies, based on the title and abstract, that did not involved
the use of graphs or networks to model and understand multimorbidity data on or relat-
ing to the liver, spleen, or both, leaving us with only 25 studies. Given the low number
of studies on hepatosplenic diseases, we broadened our search string to (“network*”
OR “graph*”) AND (“model*” OR “threshold*” OR “predict*”) AND (“comorbidit*” OR
“co-morbidit*” OR “multimorbidit*” OR “multi-morbidit*” OR “multiple conditions” OR
“multiple diseases”), but reducing to titles searches only. This search returned 26 pub-
lications, of which only one was also in the 25 initially screened hepatosplenic-related
studies. We manually reviewed the abstracts and the full texts of these studies and
removed nine studies that focused on neural networks only as opposed to studying
networks as structures representative of real-world systems. The remaining 17 studies
investigated datasets such as patient clinical data, proteins, and genes datasets.

From the combined list of 25 hepatosplenic-related studies and 17 multimorbidity graph
modelling (including one study in both categories), no study developed methods to deter-
mine graph thresholds or even considered the influence of thresholding on graph quality
for the application at hand. From the relevant studies identified, no studies directly
reported using data from sub-Saharan Africa. Only one publication compared different
graph learning algorithms, but only considered three graphical models, thus comparing
from the same family of graphs with the same level of statistical assumptions on graph
generation. No studies investigated how to threshold or remove edges from the graph
in order to remove inter-dependencies that are likely due to chance and less informative
for clinical decision-making. No studies provided means of validating the graph used for
biomedical analysis. Published studies often were focused on graphs where there was
a naturally occurring ground truth (graph structure) that could be validated with ex-
perimental laboratory work (e.g. protein-protein, genes, drug interactions); otherwise,
simple co-occurrence was examined where any two conditions reported or observed to-
gether for individuals were considered multimorbid without any statistical adjustment
of chance co-occurrence. The clinical interpretation of the graphs for multimorbidity
were limited to focusing on the directly connected conditions of interest (neighbours
of nodes), notably throwing away information from the wider set of conditions within
the graph that were not directly connected (or co-reported) instead of incorporating
information from the full graph of conditions. No study investigated the use of different
populations, i.e. splitting the people studied based on how many conditions observed
in each person or questioning whether to include healthy participants in analyses. The
focus of studies was on individuals who were already multimorbid, which might limit
predicting new multimorbidity development within an individual or population or limit
insights into how the wider hepatosplenic system functions. How well the graph aided
multimorbidity prediction tasks was not explored in any of the studies identified.

Added value of this study
The value of our study lies in the insight provided into the complex system of hep-
atosplenic multimorbidity. Importantly, we provide methods for how to select thresh-
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olds for multimorbidity graphs more broadly based on the morbidity characteristics of
the population and how to assess the quality of the graphs through predictive tasks
to aid clinical decision-making. We evaluated a real-world network of hepatosplenic
conditions affecting individuals in low-income settings where both infectious and non-
communicable causes are common. Hepatosplenic conditions are known biologically to
exhibit strong inter-dependencies and here we extend this knowledge to an identifiable
graph structure between liver and spleen conditions commonly observed in rural Uganda.
Forty-five hepatosplenic conditions across 3186 individuals aged 5 years and older were
investigated within the SchistoTrack cohort that is based in 52 rural communities in
Uganda.

We demonstrated the usefulness of considering sparsity and thresholding to improve the
quality of the final multimorbidity graph. We presented a set of methods to select rel-
evant edges (associations) between conditions rather than simply retaining all possible
edges as commonly practised in existing studies of co-occurrence. Although thresholding
has been applied with correlation-based graphs, the exact cut-off in past studies has been
generally chosen arbitrarily, and correlation as edge weights often lead to dense graphs.
We analyzed and compared three graph learning methods with vastly different statisti-
cal assumptions on the data: co-occurrence (no assumption), signed distance correlation
(pairwise statistics), and graphical lasso (distributional assumption). Thresholds were
inferred based on structural differences, measured by graph kernels, when applied to
different population splits consisting of varying levels of morbidity. These were found to
be 50·16% for graphical lasso and 64·46% for signed distance correlation. The quality
of the graphs were then assessed through multimorbidity predictions evaluated for ev-
ery condition from graph neural networks (GNNs) where graph convolutional networks
(GCN), graph attention networks (GAT), and sample and aggregate (GraphSAGE) were
considered that used the thresholded graphs. Thresholded graphical lasso and signed
distance correlation graphs performed similarly. For example, graphical lasso, achieved
average AUCs from 0·75 - 0·85 across the GNNs when only five of the 45 conditions
were observed.

Graphical lasso, which has been rarely used in any multimorbidity graph learning papers,
showed properties of stability and sparsity that are ideal for understanding multimor-
bidity, producing more interpretable bespoke graphs to the population of study, and
larger performance improvements when integrated with predictive models. In a study
of multimorbidity, often decisions need to be made regarding whether to analyse par-
ticipants who are healthy or only have one condition for the problem of multimorbidity.
We showed that graphical lasso alleviated this step as the graph learning technique was
able to produce reliable multimorbidity graphs with high predictive value even when
healthy individuals or people with only one condition were considered. These graph-
based models were able to predict with high accuracy conditions related to liver fibrosis
such as ultrasound-based image patterns for fibrosed vessels (prominent pipe stems) and
extensive liver fibrosis extending to the parenchyma and liver capsule as well as obser-
vations of severe cases of ascites and splenorenal shunts. Additionally, demonstrating
the validity of the graph, the most common connections were between the liver pat-
terns of prominent peripheral rings and prominent pipe stems which are two different
cross-section views of mildly fibrosed vessels. Critically, we find that the predominant
method of understanding multimorbidity that uses unadjusted observed co-occurrence
for multimorbidity fails to establish relevant thresholds and does not allow for graph
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quality evaluation with no evidence for utility in predictive tasks related to hepatosplenic
conditions.

Implications of all available evidence
At worst, non-thresholded and unvalidated graphs could not only present irrelevant as-
sociations between conditions, but also could include artefacts specific to the dataset
used that are not suitable for clinical decision-making and not generalisable to other
populations. We showed that achieving sparsity in hepatosplenic multimorbidity graphs
is critical for clinical decision-making. Sparsity enables a focus on condition inter-
dependencies that co-occur with higher confidence in order to avoid misdiagnosis or
mistreatment and to save limited resources needed for case management for already
constrained health systems. The thresholded and validated hepatosplenic multimor-
bidity graphs presented in this study, if tested elsewhere, could provide clinical insight
into the inter-dependencies of complex conditions in low-income settings, and can be
used to guide screening and diagnostic strategies via ultrasound. Most importantly, the
multimorbidity modelling pipeline proposed here is anticipated to be generalisable to
systems beyond hepatosplenic multimorbidity and may guide more broadly the choice
of multimorbidity outcomes.
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Abstract (297/300)

Background
The global burden of multimorbidity is increasing yet poorly understood, owing to
insufficient methods available for modelling complex systems of conditions. In particular,
hepatosplenic multimorbidity has been inadequately investigated.

Methods
From 17 January to 16 February 2023, we examined 3186 individuals aged 5-92 years
from 52 villages across Uganda within the SchistoTrack Cohort. Point-of-care B-mode
ultrasound was used to assess 45 hepatosplenic conditions. Three graph learning meth-
ods for representing hepatosplenic multimorbidity were compared including graphical
lasso (GL), signed distance correlations (SDC), and co-occurrence. Graph kernels were
used to identify thresholds of relevant condition inter-dependencies (edges). Graph
neural networks were applied to validate the quality of the graphs by assessing their
predictive performance. Clinical utility was assessed through medical expert review.

Findings
Multimorbidity was observed in 54·65% (1741/3186) of study participants, who exhib-
ited two or more hepatosplenic conditions. Conditions of mildly fibrosed vessels were
most frequently observed (>14% of individuals). Percentage thresholds were found to
be 50·16% and 64·46% for GL and SDC, respectively, but could not be inferred for
co-occurrence. Thresholded GL and SDC graphs had densities of 0·11 and 0·17, re-
spectively. Both thresholded graphs were similar in predictive utility, although GL
produced marginally higher AUCs under certain experiments. Both GL and SDC had
significantly higher AUCs than co-occurrence. Numerous conditions were predicted with
perfect sensitivity using both GL and SDC with graph convolutional network with five
input conditions.

Interpretation
The most common method for multimorbidity (co-occurrence) provided an uninforma-
tive representation of hepatosplenic conditions with respect to sparsity and predictive
performance. More clinically useful graphs were computed when algorithms consisted
of statistical assumptions, such as graphical lasso. Future work could apply the pipeline
developed here for clinically relevant multimorbidity representations.

Funding
NDPH Pump Priming Fund, John Fell Fund, Robertson Foundation, UKRI EPSRC
(EP/X021793/1).

Keywords: multimorbidity; graph learning; graph neural network; complex network;
threshold; graphical lasso; correlation networks; co-occurrence networks; schistosomia-
sis; spleen; liver; hepatic; ultrasound; Africa
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Introduction
The burden of multimorbidity is growing worldwide with an estimated pooled prevalence
of at least 33% across high and low-middle income countries.1 Multimorbidity is defined
as the co-occurrence of two or more chronic health conditions within an individual. Indi-
viduals with multimorbidity often are of low socioeconomic status, have greater number
of years lived with disability, and experience early mortality.2 Hepatosplenic diseases
are a particularly complex multimorbidity problem in sub-Saharan Africa with diverse
causes ranging from infectious pathogens to non-communicable aetiologies.3 There are
unique challenges posed by multimorbidity to conventional medical curricula and con-
strained health systems that cannot be solved by studies focusing on single conditions or
diseases. For medical training, there is a need to move from more specialist to generalist
medicine, and understand how to provide guidance given the intractability of creating
guidelines needed for every possible set of co-occurring conditions. For health systems,
there are issues of polypharmacy, misdiagnosis, mistreatment, and more frequent and
possibly redundant, costly patient visits. Fundamentally, there remain serious chal-
lenges for accurate representation of what multimorbidity exists or will develop in a
population.4

The epidemiology of multimorbidity has been studied as simplified problems, with well
established methods overlooking the inter-dependencies between health conditions to
focus on aggregate outcomes. The most common method of classifying individuals as
multimorbid is simply counting two or more observed conditions from a predefined,
non-exhaustive set of chronic conditions.2 This approach ignores how co-occurrence of
two disorders arise, which may be by chance, or due to actual shared aetiologies. It
is inevitable that the more conditions considered, the more likely an individual will be
classified as multimorbid. Meanwhile, factorisation and dimensionality reduction have
been considered to model shared underlying patient characteristics of multimorbidity.5
However, dimensionality reduction diminishes the discriminative information available
from condition inter-dependencies, neglecting the differences between individuals and
only allowing clinicians to infer multimorbidity over a homogeneous population.

Graphs can be used to represent the inter-dependencies between conditions and the
overall structure of multimorbidity, retaining information that is unique to the patient
or diverse populations. The simplest and most common graph construction method is to
connect two conditions based on the frequency of co-occurrence.6–8 These graphs have
a strong assumption that every co-occurrence is equally important and should be con-
sidered in the wider multimorbidity graph, inferring relatedness even when conditions
manifest together by chance. Graphs also have been learned using pairwise metrics,
including t-tests, relative risk, cross entropy loss, cosine similarity, and log odds.3,9–13

However, there currently are no validated decision rules to evaluate the choice of met-
ric or assess its suitability for different multimorbidity problems. Graphical models
constitute a different class of graph learning algorithms underpinned by distributional
assumptions on the data,13–15 wherein relationships between nodes are represented by
probabilistic likelihoods. Graphical models can broadly be classified into two types:
directed acyclic Bayesian networks and symmetric and undirected Markov networks.
Generally, graphical models excel in capturing hierarchical data structures, but can be
computationally expensive. As such, edges often are found through search algorithms
designed to not exhaustively consider all possibilities, to reduce run time at the expense
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of potentially sub-optimal graphs. Despite the numerous applications of graphs in clini-
cal studies, there is a notable lack of investigation into the quality of the multimorbidity
graphs. Currently graphs are constructed using unvalidated algorithms, often without
proper thresholding, and without comparison to alternative algorithms. There is an
urgent need to understand hepatosplenic multimorbidity in rural, low-income settings
where identification and management strategies are lacking within local health systems.
Hepatosplenic multimorbidity in sub-Saharan Africa is complex and often arises due
to chronic infections such as hepatitis B/C and parasitic blood flukes of Schistosoma

mansoni, as well as concurrent alcohol use or aflatoxin exposure.

We assessed 45 hepatosplenic conditions using point-of-care ultrasound to examine 3186
individuals in rural Uganda. We compared algorithms from three families of graph learn-
ing with different levels of statistical assumptions to represent complex hepatosplenic
multimorbidity. We identified decision rules for thresholding multimorbidity graphs
while accounting for the level of morbidity in the population. The quality of the graphs
were evaluated based on their utility in multimorbidity prediction, and their ability to
uncover insights for medical interpretation. Here we answer the question, how can mul-
timorbidity be assessed and validated in a manner that provides confidence for clinical
decision-making?

Methods

Participants
This study was conducted within the SchistoTrack prospective cohort16 during the first
annual follow-up between 17 January and 16 February 2023. 1952 households were
randomly sampled from 52 villages across Buliisa, Pakwach, and Mayuge Districts of
Uganda; 38 of the villages were sampled in the baseline of 2022.17 One child aged 5-17
years and one adult aged 18 years or older were selected by the household head or spouse
and invited for clinical assessments. 3224 individuals were clinically assessed. 3186 of
3224 individuals had non-missing ultrasound data and were analysed.

Hepatosplenic outcomes
We obtained hepatosplenic conditions by point-of-care ultrasound. Philips Lumify C5-2
curved linear array transducers were used with the Philips Lumify Ultrasound Appli-
cation v3·0 on Lenovo 8505-F tablets with Android 9 Pie. Lossless DICOM images
and videos were saved for quality assurance.17 A number of indicators were measured
including focal and diffuse liver fibrosis patterns, liver surface irregularities, caudal liver
edge assessments, fatty and cirrhotic livers, liver and spleen organometry, portal vein di-
lation or restriction, portosystemic collaterals, ascites, gall bladder obstruction, among
others. For the left and right liver lobes, spleen, and portal vein diameter, we measured
organometry against an internal healthy reference population standardised by height.
We assessed a total of 45 hepatosplenic conditions. Detailed definitions are in the sup-
plementary methods of the Appendix Page 1.
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Population selection
While individuals who were healthy or had only one condition were often excluded
from studies on multimorbidity (e.g.6,11,18), here, all participants were examined, and
the similarity or lack thereof between graphs learned across three populations were
compared including a mixed population (excluding no one), a morbid population where
individuals had at least one condition, and a multimorbid population where individuals
had two or more conditions (the conventional population for multimorbidity studies).
We refer to a full population henceforth when all participants from the mixed population
are used in analyses without splitting the dataset for training and testing.

Graph learning algorithms
We chose graph learning algorithms from three families of graphs characterized by vary-
ing levels of statistical assumptions. Henceforth the conditions are referred to as nodes
and the inter-dependencies as edges in the graph. Negative edges were excluded as they
arose predominantly due to mutually exclusive conditions or the absence of conditions.
As a baseline reference, we used co-occurrence, where edge weights were determined
by the total number of individuals that exhibited both conditions concurrently. Hence,
edge weights therefore depended on the size of the selected population for analysis.
This method lacks any explicit statistical justification and may include edges from only
one person and operates under the assumption that each additional co-occurrence con-
tributes equally to the edge weight while ignoring chance.

As an alternative to co-occurrence, we considered the hierarchical correlation of signed
distance correlation (SDC) where the coefficients were the edge weights.19 This method
combined distance correlation and Pearson correlation between two inputs as

sdc(xi,xj) = dcor(xi,xj) · sgn(Cor(xi,xj)). (1)

The distance correlation was computed as

distcov(xi,xj)p
distcov(xi) · distcov(xj)

2 [0, 1] (2)

where L2 norm distcov(xi,xj) =
q

1
n2

P
n

P
m(xin � xjm)(xjn � xjm), which allowed de-

tection of non-linear dependencies between the data not possible with a simple Pearson
correlation. With distance correlation being restricted to positive values, the sign from
Pearson correlation was introduced to identify and remove negative correlations as de-
scribed in.19

Moving beyond pairwise metrics to graphical approaches, graphical lasso (GL)20 was
applied, which assumed the data followed a multi-variate Gaussian distribution and
minimized the negative log-likelihood with a sparsity term. Compared to typical graph-
ical models, graphical lasso has advantages in that there exist computationally efficient
solutions, and integrated sparsity. The objective function consisted of

min
⇥

(� log det(⇥) + tr(S⇥) + �k⇥k1) (3)

where ⇥ was the precision matrix (inverse covariance) used to construct the graph,
� log det(⇥)+tr(S⇥) came from the multi-variate Gaussian negative log-likelihood with
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sample empirical covariance S. The k⇥k1 term induced sparsity by penalizing the mag-
nitude of the entries in ⇥, while � was the tuning parameter that controlled the trade-off
between the log-likelihood and the sparsity term selected through 5-fold cross-validation
using the GraphLassoCV package from sklearn 1·5·0 in Python 3·9.

Thresholding via maximising graph dissimilarity
Thresholding was applied to remove weak connections that may be uninformative and
potentially influenced by noise in the data. The algorithms we considered produced
different magnitudes of edge weights, therefore percentage thresholding was used to
determine the appropriate cutoff. We determined the best threshold by maximising
the structural difference between graphs generated on the three populations used to
represent multimorbidity. Graph kernels were used to measure structural similarity
between two graphs,21 where the lower the value the more different the two graphs.
We considered three graph kernels from the GraKeL library v0·1·10 in Python 3·9,
Weisfeiler-Lehman,22 Subgraph matching,23 and Neighborhood hash,24 details can be
found in Appendix Page 5.

We measured the similarity between graphs learned on every combination of the three
populations. Kernels were computed over graphs constructed from 500 random samples
(to obtain standard deviations) where each sample consisted of a uniform probability
random sample of 50% of the study population. The optimal threshold was the location
of the minimum kernel value. We averaged over the three kernels and across the three
possible population comparisons. Each threshold from each algorithm was applied to
the sample graphs to obtain the thresholded graphs, as well as the final graphs produced
from each algorithm when re-learned over all participants.

Algorithm comparison via predictive modelling with GNNs
To evaluate the quality of the graphs from each algorithm, we utilized graph neural
networks (GNNs) for the task of multimorbidity prediction. Given the observed status
of m conditions in an individual, we predicted the status of the full set of 45 conditions
assessed in this study. This problem could be viewed as utilizing a partially observed
graph representing a scenario of when not all conditions are diagnosed in an individual.
We only considered 10 training splits in this experiment, using the first 10 seeds from
the previous experiment. 50% of participants were used to train the GNN and the
remaining 50% were held out as test set. For each split we randomly selected a subset of
m conditions to predict both the set of observed conditions and a wider set of unobserved
conditions. This approach was taken to represent the problem of where some conditions
are known to occur in a population yet there is a need to predict statuses in new patients.
The status of each condition was binary, making this a vectorial binary classification over
the 45 conditions, and we evaluated performance by AUC, sensitivity, and specificity.
All GNNs were set to two layers and a fixed width to allow for comparison across GNNs.
Three architectures of graph convolutional network (GCN),25 graph attention network
(GAT),26 and sample and aggregate (GraphSAGE)27 were chosen based on their spatial
usage of the graph and ease of interpretability. Details can be found in Appendix Page
5. We applied the GNNs to the thresholded graphs with the number of condition inputs
m = 5, 10, . . . , 25. In this experiment, we also present predictions for only unobserved
conditions to represent when new diagnoses need to be evaluated within a patient. As
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validation analyses, we also varied the threshold to test and compare against the optimal
thresholds, and, fixing m = 5, applied the GNNs to populations with different levels of
morbidity (full population, morbid, and multimorbid), to examine the effect of excluding
individuals from the study population.

Clinical validation
To clinically interpret the graphs and GNNs, the relational information were reviewed
by experts including a clinical epidemiologist, and a local sonographer and gastroen-
terologist to provide insights into the complex root mechanisms of each condition and
biological plausibility of inter-dependencies. AUC, sensitivity, and specificity were cal-
culated for each condition averaged over the 10 splits. For sensitivity and specificity,
a universal cut-off was selected based on the highest of the two quantities combined
over the 45 conditions. One-hop neighbours of the most reliably predicted conditions
(highest AUC) were examined to assess their direct influences to compare to standard
practice. Global graph properties were examined to assess improvements in sparsity
between thresholded and non-thresholded graphs as well as to assess graph stability for
clinical decision-making.

Results

Observed hepatosplenic conditions
All 45 hepatosplenic conditions were observed at least once in the study population. The
most observed conditions were mildly fibrosed vessels, including prominent peripheral
rings (462/3186, 14·50%) and prominent pipe stems (456/3186, 14·31%) indicative of
early stage periportal fibrosis (Table. 1). Only 18·05% (575/3186) of participants did
not exhibit any of the hepatosplenic conditions and 27·31% (870/3186) of individuals
exhibited only one condition. Most of the study participants were multimorbid with
54·65% (1741/3186) of individuals with two or more conditions. The median number
of conditions across all participants was two (inter-quartile range 1-3). All conditions
co-occurred with another condition within at least one person.

Learned graphs and thresholds
GL and SDC both consistently produced the strongest edge between prominent periph-
eral rings and prominent pipe stems. These conditions were two different cross-section
views of the same pathology and the most observed co-occurrence with a frequency of
437 of 3186 participants. Other regularly observed edges across the samples for each
algorithm and population are in Appendix Fig. S1, S2, & S3. Fig. 2 presents the thresh-
olding analysis using graph kernels. The final thresholds were 50·16% for graphical lasso
and 64·46% for signed distance correlation.

Global properties of the 500 thresholded graphs are presented in Table 2 (non-thresholded
graphs in Appendix Table S1). Despite a higher percentage threshold, SDC was denser
than GL, and had a more discernible degree structure fitting to a log-normal distribu-
tion while GL did not fit common degree distributions. SDC and GL had edge densities
of 0·17 and 0·11 with average degree of 7·29 and 4·84, respectively. There was a 54%
overlap in edges between the two graphs when considering the union of edges. GL
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maintained similar global properties between the final graph and the training samples,
whereas SDC was sensitive to the sample size, and the final and training samples from
SDC were significantly different in a number of statistics. Concerning co-occurrence,
there were no identifiable thresholds as co-occurrence edges were only defined by mul-
timorbid participants and excluding the healthy and morbid did not change the graph.
Consequently, co-occurrence had the highest edge density of 0·55 and average degree of
24·23 (exhibiting a power law degree distribution) where all nodes were connected in a
single component (Appendix Table S1). The final thresholded graphs computed over
all participants are shown in Fig. 3, whereas the unthresholded co-occurrence graph is
presented in Appendix Fig. S6 along with the unthresholded GL (Appendix Fig. S4)
and SDC (Appendix Fig. S5).

Graph quality evaluation by GNN predictive analysis
Fig. 4 compares the thresholded graphs and GNNs used for multimorbidity prediction
(further validation by varying thresholds shown in Appendix Fig. S8 - S18). The pre-
diction problem, which used a partially observed graph, represented a scenario for when
only some conditions are observed in a patient and there is a need to also predict undi-
agnosed conditions. For example, when only 11% (5/45) of conditions were observed by
the GCN, the average AUC was 0·75, 0·73, and 0·56 for GL, SDC, and co-occurrence,
respectively. Out of the 10 training splits, the highest test AUC (0·78) was achieved
when indicators of liver fibrosis, fatty livers, portal vein enlargement possibility indica-
tive of portal hypertension, and hypersplenism were observed. The worst performing
split included rounded liver edges, recanalized paraumbilical veins, gall bladder injuries,
and abnormal spleen organometry (AUC of 0·69). GL and SDC performed similarly
if not better when AUCs were evaluated over only unobserved conditions. Generally,
GL and SDC produced similar AUCs with all three GNNs. Although marginally, GL
performed best when considering consistent differences to SDC across varying num-
bers of condition inputs for GAT and GraphSAGE. Co-occurrence on the other hand,
with 0% thresholding, was the worst performing graph when evaluated with GCN and
GAT, although co-occurrence showed comparable performance for GraphSAGE. Simi-
lar results on unobserved conditions only are presented in Appendix Fig. S7. All three
GNNs performed similarly for GL and SDC when tested over each of the mixed, morbid,
and multimorbid populations; whereas the co-occurrence graph construction was only
possible for a multimorbid population (see Appendix Fig. S9 - S18).

Hepatosplenic multimorbidity
Fig. 5 presents the GCN model performance broken down for each condition using GL
due to the marginally superior performance when compared to SDC. For conditions
not exhibited by anyone in the test set, AUC cannot be computed, so we observed the
training set for an indication of their performances (Appendix Fig. S19, S20, & S21).
With a range of AUCs from 0·992-0·975, the conditions best predicted included mod-
erate periportal fibrosis (prominent pipe stems) and severe conditions of portal fibrosis
extending to the liver capsule (bird’s claw pattern), ascites, and splenorenal shunts.
These generally had degrees close to the mean degree of the graph, while the frequency
of these conditions vastly varied. Sensitivity and specificity for each condition are shown
in Appendix Fig. S22 and S25 (more comprehensive plots presented in Appendix Fig.
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S22 - S27). Using GL, the GCN model showed higher sensitivity than specificity for 37
of 42 conditions (88%; where three conditions could not be evaluated) with an average
sensitivity of 0·91 and average specificity of 0·67. The final graphs from GL and SDC
are presented in Figs. 3a and 3b. Biologically relevant information for the hepatosplenic
system where, for example, splenic enlargement was one of the most central conditions
was produced from both graphs. One-hop neighbourhood subgraphs for the best pre-
dicted conditions from the GL are shown in Fig. 6. For example, conditions considered
multimorbid with the liver condition of prominent pipe stems, which was predicted with
high accuracy (AUC 0·992), included ascites, patches, enlarged mean portal vein, and
ruff portal bifurcation. Conditions of situs inversus, some portosystemic collaterals,
polycystic kidneys, and gall bladder not visible appeared in both graphs as isolates,
indicating that they were independent to the rest of the conditions.

Discussion
Graph learning is an essential step towards understanding complex multimorbidity. 3186
individuals within the SchistoTrack study in rural Uganda were diagnosed with 45 hep-
atosplenic conditions using point-of-care ultrasound. Analysing these conditions, we
presented a machine learning pipeline to learn clinically useful graphs. We established
decision rules for thresholding statistically relevant condition inter-dependencies and
evaluated the graphs for multimorbidity prediction. We showed that co-occurrence
graphs were poorly suited for problems of multimorbidity. Our study produced sparser,
more interpretable graphs using GL and SDC that offered clearer clinical insights for
understanding hepatosplenic morbidity in low-income countries.

While co-occurrence has been regularly used to construct multimorbidity graphs,6–8

we found co-occurrence graphs to be over-specified (overestimating multimorbidity),
dense with little discriminatory information for conditions, and with low predictive util-
ity. Sparser graphs than those observable with co-occurrence enable superior predictive
modelling and are easier to interpret.28 We showed that thresholding graphs based
on maximising structural differences between full, morbid, and multimorbid popula-
tions removed weak inter-dependencies (edges) that represented insignificant relations
or noise in the data, producing clinically informative sparse multimorbidity graphs.
In particular, GL had the lowest edge density and average degree when compared to
co-occurrence or SDC. Both GL and SDC detected nodes as isolates, indicating the
lack of significant clinical associations with other conditions, while co-occurrence forced
inter-dependencies between these conditions that co-existed in a small number of people
(often just 1), which is insufficient evidence to identify any aspect of multimorbidity as
a public health problem across a population.

The limited utility of co-occurrence was further evident when applied to the task of mul-
timorbidity prediction. Graphs from GL and SDC both improved neural network models
by similar margins, and significantly better than co-occurrence in two of the three GNNs.
A near complete removal of all graph edges led to the lowest AUCs from each GNN,
highlighting the utility of the graphs. These results indicate that multimorbidity could
be represented accurately by multiple graphs from inherently different algorithms that
had at least some level of statistical assumption. Although co-occurrence performed
well with GraphSAGE, GraphSAGE has a sampling framework that is well-suited to
denser graphs, as only a subset of neighbours were used from each node. Although
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GraphSAGE could potentially alleviate the need for thresholding, this model is less in-
terpretable clinically as the stochasticity makes it difficult to identify inter-dependencies
for a diagnosed condition, whereas conditions might not be included in the aggregation
steps of GraphSAGE despite belonging to the neighbourhood of the condition of inter-
est. Thus, despite the better performance of GraphSAGE,18 when building models for
predictions with good interpretability, GCN and GAT were better supported here for
multimorbidity problems.

Methods of analysing graphs in order to define multimorbidity vary widely. Commu-
nity detection often is performed on graphs, with each cluster of conditions labelled
as multimorbid.5,6 Edge prediction has been explored and multimorbidity has been
conceptualized as pairwise relationships between two conditions of interest.29 Here we
proposed a different approach to understanding multimorbidity that takes into account
the entire complex system of hepatosplenic conditions. We characterized multimorbid-
ity by the diagnosis and prediction of multiple conditions, extending far beyond the
prediction of two conditions and retaining information specific to each individual con-
dition. Connectivity between two conditions in the learned graph implied the pair were
multimorbid. The practical usage of these graphs may be as follows. If a patient was di-
agnosed with one condition, the sub-graph centred on that condition could be inspected
to identify what the patient also is likely to have or what later conditions they are
likely to develop. For example, our study suggests that individuals with mild periportal
fibrosis might later develop severe conditions indicative of portal hypertension such as
ascites, extensive portal fibrosis, and enlarged main portal vein diameters. In the case of
multiple positive diagnoses, a clinician may consider using the union of neighbourhoods
in our graphs to derive the full set of multimorbidity in a patient.

The GCN had the most interpretable architecture and was therefore analyzed to reveal
the best and worst predicted conditions. Conditions with very few degrees or isolate
conditions generally had the lowest AUCs. Hence, connectivity was important for mod-
elling multimorbidity and the use of neighborhood information supported more accurate
predictions of undiagnosed conditions. Interestingly, the best predicted conditions were
not the most connected (hubs) nor necessarily the most frequent (highest population
prevalence). When focusing on the prediction of individual conditions, our interpretable
GCN model was much better at predicting positive diagnoses rather than the absence of
a diagnosis or condition (higher sensitivity than specificity). This trend is to be expected
as in clinical practice, with limited time and resources, it often is an insurmountable
problem to confirm true negatives without extensive, exhaustive alternative diagnostics
such as alternative imaging modalities or biopsies that would have been needed here.
Thus, if using our model for hepatosplenic conditions, one may envision confidence in
providing treatments when a patient is predicted to have a set of conditions, but we
would recommend further clinical review and follow-up if a patient is predicted as un-
likely to have a set of conditions. All of which is in line with standard general medicine
practice. Moreover, we discovered that no population selection was needed for the study
of multimorbidity. GL alleviated the need to focus on only individuals with two or more
conditions, which is needed for co-occurrence graphs. Graph learning methods based
on statistical assumptions make better use of the full information available from a pop-
ulation, which might enable better prediction for individuals who are yet to develop
multimorbidity.

Learning how to accurately represent multimorbidity using graph learning for clinical-
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decision making opens avenues for more advanced modelling of multimorbidity that
incorporates individual patient characteristics into multi-output models (e.g.30) where
we move beyond current medical practice focusing on one disease per patient. Our work
not only revealed the complex system of inter-dependencies for hepatosplenic conditions,
but also provides a validated machine learning pipeline for the wider clinical and research
community that could be followed to understand multimorbidity as a public health
problem across populations.
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Tables
Variable Outcomes # All Participants (%) # 1+ Conds (%) # 2+ Conds (%)

Total = 3186 Total = 2611 Total = 1741
Liver Patterns

Normal 2340 (73·45) 1765 (67·60) 949 (54·51)
Unclear 15 (0·47) 15 (0·57) 15 (0·86)

Feather Streaks 239 (7·50) 239 (9·15) 213 (12·23)
Flying Saucers, Starry Sky 195 (6·12) 195 (7·47) 179 (10·28)

Spider Thickening 53 (1·66) 53 (2·03) 48 (2·76)
Prominent Peripheral Rings 462 (14·50) 462 (17·69) 459 (26·36)

Prominent Pipe Stems 456 (14·31) 456 (17·46) 455 (26·13)
Ruff, Portal Bifurcation 185 (5·81) 185 (7·09) 182 (10·45)

Patches (occluded, bright white vessels) 45 (1·41) 45 (1·72) 45 (2·58)
Bird’s Claw 8 (0·25) 8 (0·31) 8 (0·46)

Other Abnormalities
None 2951 (92·62) 2376 (91·00) 1525 (87·59)

Cirrhosis-like Liver 12 (0·38) 12 (0·46) 12 (0·69)
Fatty-like Liver 65 (2·04) 65 (2·49) 61 (3·50)

Heptatitis-B-like Liver 65 (2·04) 65 (2·49) 62 (3·56)
Polycystic Kidney Disease 2 (0·06) 2 (0·08) 2 (0·11)

Liver Cysts 4 (0·13) 4 (0·15) 3 (0·17)
Situs Inversus 1 (0·03) 1 (0·04) 1 (0·06)

Other 47 (1·48) 47 (1·80) 44 (2·53)
Liver Surface

None 3135 (98·40) 2560 (98·05) 1691 (97·13)
Slight/Serrated 17 (0·53) 17 (0·65) 16 (0·92)

Gross/Undulating 34 (1·07) 34 (1·30) 34 (1·95)
Caudal Liver Edge

Sharp 2908 (91·27) 2333 (89·35) 1495 (85·87)
Rounded 278 (8·73) 278 (10·65) 246 (14·13)

Left Liver Lobe
Normal 2212 (69·42) 1637 (62·70) 923 (53·01)

Moderately Enlarged 428 (13·43) 428 (16·39) 364 (20·91)
Moderately Shrunken 357 (11·21) 357 (13·67 285 (16·37)

Enlarged 85 (2·67) 85 (3·26) 81 (4·65)
Shrunken 104 (3·26) 104 (3·98) 88 (5·05)

Right Liver Lobe
Normal 2198 (68·99) 1623 (62·16) 929 (53·36)

Moderately Enlarged 410 (12·87) 410 (15·70) 326 (18·72)
Moderately Shrunken 412 (12·93) 412 (15·78) 330 (18·95)

Enlarged 52 (1·63) 52 (1·99) 51 (2·93)
Shrunken 114 (3·58) 114 (4·37) 105 (6·03)

Mean Portal Vein
Normal 2156 (67·67) 1581 (60·55) 902 (51·81)

Moderately Enlarged 425 (13·34) 425 (16·28) 360 (20·68)
Moderately Restricted 388 (12·18) 388 (14·86) 284 (16·31)

Enlarged 168 (5·27) 168 (6·43) 154 (8·85)
Restricted 49 (1·54) 49 (1·88) 41 (2·35)

Portosystemic Collaterals
Not Detected 3152 (98·93) 2577 (98·70) 1707 (98·05)

Splenic Varices 12 (0·38) 12 (0·46) 12 (0·69)
Gastro-oesophageal Varices 11 (0·35) 11 (0·42) 11 (0·63)
Pancreaticoduodenal Varices 5 (0·16) 5 (0·19) 5 (0·29)

Entirely Recanalized Paraumbilical Vein �3mm 1 (0·03) 1 (0·04) 1 (0·06)
Splenorenal Shunt 13 (0·41) 13 (0·50) 13 (0·75)

Other 1 (0·03) 1 (0·04) 1 (0·06)
Ascites

Not Detected 3174 (99·62) 2599 (99·54) 1730 (99·37)
Yes 12 (0·38) 12 (0·46) 11 (0·63)

Gall Bladder Visible
No 30 (0·94) 30 (1·15) 19 (1·09)

Yes, but blocked by stone or collapsed 117 (3·67) 117 (4·48) 101 (5·80)
Yes, Clearly Visible 3090 (95·39) 2464 (94·37) 1621 (93·11)

Gall Bladder Wall
Normal 2939 (92·25) 2364 (90·54) 1512 (86·85)
Thick 247 (7·75) 247 (9·46) 229 (13·15)

Spleen Length
Normal 2188 (68·68) 1613 (61·78) 938 (53·88)

Moderately Enlarged 387 (12·15) 387 (14·82) 315 (18·09)
Moderately Shrunken 392 (12·30) 392 (15·01) 289 (16·60)

Enlarged 182 (5·71) 182 (6·97) 168 (9·65)
Shrunken 37 (1·16) 37 (1·42) 31 (1·78)

Table 1: List of conditions and the number of participants.
Outcomes in italic indicate the healthy form and were not included in the multimorbidity
graph.
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Graphical Lasso Samples Final GL Graph Signed Distance Correlation Samples Final SDC Graph
Number of Edges 110·99 ± 4·60 109 148·37 ± 4·84 164
Average Degree 4·93 ± 0·20 4·84 6·59 ± 0·22 7.29
Average Clustering Coefficient 0·21 ± 0·03 0·26 0·37 ± 0·03 0.39
Diameter 6·30 ± 0·93 6 6·23 ± 0·99 7
Edge Density 0·11 ± 0·00 0·11 0·15 ± 0·00 0.17
Largest Component Size 39·64 ± 1·65 39 36·37 ± 1·81 36
Number of Isolated Nodes 4·73 ± 1·27 6 6·83 ± 1·63 7
Assortativity 0.12 ± 0.08 0.12 0.25 ± 0.07 0.32
Largest Component Spectral Gap 0.66 ± 0.30 0.32 0.04 ± 0.04 0.03
Degree Distribution None None Log-normal Log-normal

Table 2: Sample and final graph statistics.
Sample graph statistics were computed over 500 samples at optimal thresholds, and
final graphs were learned on training and testing sets combined. Final graphical lasso
and signed distance correlation graphs share 92 edges, and 34 nodes in their largest
components. Degree distribution of none indicated that the graphs did not fit any of
exponential, power law, or log-normal.
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Figures
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Figure 1: Overview of the graph learning pipeline.
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(a) (b) (c)

(d) (e) (f)

Figure 2: Graph kernels results.
Blue: Weisfeiler Lehman, Orange: Subgraph Matching, Green: Neighborhood Hash. (a)
Graphical lasso full vs morbid. (b) Graphical lasso full vs multimorbid. (c) Graphical
lasso morbid vs multimorbid. (d) Signed distance correlation full vs morbid. (e) Signed
distance correlation full vs multimorbid. (f) Signed distance correlation morbid vs multi-
morbid. Plots show the similarity measures between graphs learned the full population,
morbid (1+ condition), and multi-morbid people (2+ conditions) using graph kernels.
This experiment cannot be applied to co-occurrence graphs as they are identical when
constructed from any of the three populations.
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(a) (b)

Figure 3: Final graphs using optimal percentage thresholds.
Each graph is learned on the full dataset using the average thresholds found from the
graph kernels experiment for (a) graphical lasso (50·16%) (b) signed distance correlation
(64·46%).

(a) (b) (c)

Figure 4: Multimorbidity prediction with varying number of inputs.
(a) GCN, (b) GAT, & (c) GraphSAGE, the model uses graphs with optimal thresholds,
Red: graphical lasso 50·16%, Purple: signed distance correlation 64·46%, Brown: Co-
occurrence 0%. An optimal threshold could not be found for the co-occurrence graph, so
0 threshold was used instead; this matched with what had been done in the literature.6,7

All AUCs were averaged over 10 training-testing splits.
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Figure 5: Performance on each condition ordered by AUC.
Results were produced by a GCN using graphical lasso at optimal threshold on the test
sets. Results on signed distance correlation and co-occurrence can be found in Appendix
Fig. S19, S20, & S21. For conditions only observed once, the positive patients were
required to be in the training set to run the graph learning algorithms, so the testing
set consisted of only one class and AUCs did not exist. For these conditions one can
observe the performances on the training sets from the additional results in Appendix
Fig. S19, S20, & S21 for an informed indication of performance.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6: Neighbourhood subgraphs of the conditions with the highest AUCs. Examples
are taken from Fig. 5.
The subgraphs are taken from thresholded final graphical lasso graph. (a) AUC = 0.992
± 0.007. (b) AUC = 0.990 ± 0.011. (c) AUC = 0.987 ± 0.010. (d) AUC = 0.987 ±
0.013. (e) AUC = 0.987 ± 0.007. (f) AUC = 0.978 ± 0.030. (g) AUC = 0.975 ± 0.021.
(h) AUC = 0.973 ± 0.011.
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