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Abstract 
Understanding health differences among racial groups in child development is crucial for 

addressing inequalities that may affect various aspects of a child's life. However, factors such as 

household and neighborhood socioeconomic status (SES) often covary with health differences 

between races, making it challenging to accurately reveal these differences using conventional 

covariate-control methods such as multiple regression. Alternative methods, such as Propensity 

Score Matching (PSM), may provide better covariate control. Supporting this notion, we found 

that PSM is more sensitive than regression-based methods in detecting health differences 

between self-reported Black and White children across a wide range of behavioral and neural 

measurements in the ABCD (5636 White, 1350 Black). Puberty status, an index of physical 

maturation, emerged as the largest difference between races and mediated the health 

differences between races on the majority of behavioral and neural variables. These findings 

highlight the importance of controlling for pubertal status and using more effective covariate-

control methods to accurately represent health differences between Black and White children. 
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Introduction 

 

Nearly half of American adolescents in 2019 identified as belonging to a racial or ethnic 

minority (Bureau, 2020), reflecting the increasing diversity of the U.S. population. Understanding 

health differences between races and ethnicities in adolescents is essential for designing and 

delivering services that are accessible, equitable, and culturally attuned to this population 

(Karcher et al., 2022). However, pinpointing health differences between races in adolescents 

presents a challenge, considering numerous covariates of race and ethnicity (e.g., SES and 

geographic variations) that can confound or mediate these differences. For instance, while 

Black children have been found to sleep less compared to White children (Giddens et al., 2022), 

controlling for additional SES variables beyond household income (e.g., parents' education 

level) may reduce this difference (Yang et al., 2022). Furthermore, the variability in the selected 

covariates and the use of potentially suboptimal covariate-control methods in some prior 

research may further add to this uncertainty (Dick et al., 2021), especially when accessing 

neurobiological correlates (Dumornay et al., 2023). Nevertheless, there is a critical need to 

accurately represent health differences among racial groups, as doing so is key to achieving 

health equity within the diverse U.S. adolescent population. 

The longitudinal behavioral and neural data in 11,878 9-10-year-olds from the ABCD 

study (Casey et al., 2018) present a unique opportunity to systematically address this issue. To 

this end, our primary objective is to investigate health differences between two major self-report 

racial groups among the participants in the ABCD study, namely Black and White children. We 

compared their differences in behavioral and neural measures based on a unified selection of 

basic covariates across different covariate-control methods (i.e., multiple regression and PSM 

(Rosenbaum & Rubin, 1983)). These covariates include age, sex, the interaction between age 

and sex, household income, parents' education level, Area Deprivation Index (ADI), and study 

sites. As analysis revealed improved sensitivity of PSM in detecting health differences between 

races during early adolescence, we noticed that pubertal status exhibited the largest difference 

(Cohen's d > 0.60) at baseline. 
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This finding further prompted us to investigate puberty status as an essential mediator of 

health differences between races, encompassing aspects of physical and mental health, as well 

as brain health. We found that many health-related differences between self-reported Black and 

White children are mediated by their differing rates of pubertal development. Adjusting for 

between-group differences in pubertal status reduced the health differences observed between 

Black and White children. By clarifying this relationship, we can better interpret racial differences 

in adolescents and promote educational programs that are tailored to children at different stages 

of pubertal development to help address these differences. 
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Materials and Methods 

Data source 

Data used in the current study were from the ABCD data release 5.1 (2023) 

(https://abcdstudy.org), which includes behavioral and neural data from 11,878 9-10-year-olds 

collected at baseline, 1-year (FL1), 2-year (FL2), 3-year (FL3) and 4-year follow-ups (FL4). 

Detailed protocols and designs have been described previously on the website. Informed 

consent from the primary caregiver and assent from the children were obtained before the 

study. This project was approved by institutional review boards (IRB) at the University of 

California, San Diego as well as at each local site (21 in total). Participants were recruited using 

stratified sampling to reflect the diversity of the U.S. population. Participants who were excluded 

from data analysis had missing data for the seven basic covariates (n = 971, out of 7,957 Black 

or White children). To study health differences between Black and White children, 6,986 (5,636 

White, 1,350 Black) out of the entire 11,878 participants were included in this study.  

Behavioral measurements 

The independent variable is Children’s race (Black and White), obtained by the following 

question answered by their parents/caregivers, “Race Ethnicity (Child): 1 = White; 2 = Black; 3 = 

Hispanic; 4 = Asian; 5 = Other”. We chose Black and White children because these two racial 

groups comprise the majority (~80%) of the population in the ABCD study. 

Based on prior research, seven basic covariates are included to control for individual 

differences due to age, sex, socioeconomic status, and study sites (geographic differences) 

(Yang et al., 2022). They capture a child’s age as months, sex at birth, the interaction between 

age and sex, study sites (21 sites), family-level socioeconomic status: family income (10 levels, 

from under $5000 per year to more than $200,000 per year) and highest educational level of 

caregiver (22 levels, from never attended to doctoral degree), and environment-level 
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socioeconomic status: area deprivation index (ADI, 1-100, lower score means less deprivation). 

These covariates were selected because they encompass key demographic and socioeconomic 

factors that could potentially influence health-related outcomes, such as brain morphology and 

physical development (Rakesh et al., 2022). Ultimately, 64 dependent variables or candidate 

covariates were included for analysis (see https://data-dict.abcdstudy.org/ for data dictionary), 

with some of them only available at certain data collection points. For example, the NIH toolbox 

was only measured at baseline, FL2, and FL4. These 64 variables are: 

 

(i) 17 Culture & Environment variables: Cognition (wps_ss_sum), Discrimination Measure 

(dim_y_ss_mean), Neighborhood Safety & Crime (neighborhood_crime_y), Acculturation 

Heritage (via_ss_hc), Acculturation Mainstream (via_ss_amer), Family Conflict 

(fes_y_ss_fc_pr), Children's Report of Parental Behavior (crpbi_y_ss_parent and 

crpbi_y_ss_caregiver), Neglect (mnbs_ss_mean_all), Parental Monitoring (pmq_y_ss_mean), 

Peer Network Health (pnh_ss_protective_scale), Peer Influence (peerinfluence_ss_mean), 

School Grade (sag_grades_last_yr), School Environment (srpf_y_ss_ses), School Involvement 

(srpf_y_ss_iiss), School Disengagement (srpf_y_ss_dfs), and Prosocial Behavior 

(psb_y_ss_mean);  

 

(ii) 19 Mental Health variables: Brief Problem Monitor Total (bpm_y_scr_totalprob_t), Emotion 

Regulation Reappraisal (erq_ss_reappraisal_pr), Emotion Regulation Suppression 

(erq_ss_suppress_pr), NIH Toolbox Positive Affect (poa_y_ss_sum), Mood Mania 

(sup_y_ss_sum), Prodromal Psychosis Scale (pps_ss_mean_severity), Stress Life Events 

(ple_y_ss_total_number), Behavioral Inhibition (bis_y_ss_bis_sum), Behavioral Approach 

(bis_y_ss_bas_rr, bis_y_ss_bas_drive, and bis_y_ss_bas_fs), Impulsivity Behaviour 

(upps_y_ss_negative_urgency, upps_y_ss_positive_urgency, 

upps_y_ss_lack_of_perseverance, upps_y_ss_sensation_seeking, and 
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upps_y_ss_lack_of_planning) and behavior problems (cbcl_scr_syn_internal_t, 

cbcl_scr_syn_external_t, and cbcl_scr_syn_totprob_t);  

 

(iii) 12 Neurocognition variables: Cash Choice Task (cash_choice_task), Flanker task 

(flkr_scr_medrt_congruent and flkr_scr_medrt_incongruent), Game of Dice 

(gdt_scr_expressions_net_score), Little Man Task (lmt_scr_efficiency), NIH Toolbox Crystalized 

Intelligence (nihtbx_cryst_fc), NIH Toolbox Fluid Intelligence (nihtbx_fluidcomp_fc), NIH Toolbox 

Total Intelligence (nihtbx_totalcomp_fc), NIH Toolbox Verbal Learning Short Delay 

(pea_ravlt_sd_trial_i_tc), NIH Toolbox Verbal Learning Long Delay (pea_ravlt_ld_trial_vii_tc), 

Mental Arithmetic (smarte_ss_all_total_corr), and WISC-V Matrix Reasoning (pea_wiscv_tss). 

 

(iv) two screen usage variables (stq_y_ss_weekday) and (stq_y_ss_weekend). 

 

(v) three Biospecimens variables: Sex Hormone DHEA (hormone_scr_dhea_mean), Sex 

Hormone Estradiol (hormone_scr_hse_mean), and Sex Hormone Testosterone 

(hormone_scr_ert_mean).  

 

(vi) 11 Physical Health variables: Pain Scale (painscale), Activity Involvement Read 

(sai_read_hrs_wk_y), Activity Involvement Music (sai_lmusic_hrs_day_y), Activity Level 

(physical_activity1_y and physical_activity2_y), Sleep Disturbance (sds_p_ss_total), Sleep 

Duration (mctq_sdweek_calc), Chronotype (mctq_msfsc_calc), Waist Size (anthro_waist_cm), 

BMI, and Pubertal Status (pds_p_ss_female_category_2/pds_p_ss_male_category_2), which is 

based on different levels of physical maturation, was measured by parent-reported Youth 

Pubertal Development Scale and Menstrual Cycle Survey. In this survey, individuals rate their 

child’s development on a four-point Likert scale from “had not begun” to “already complete” with 

respect to specific physical characteristics (e.g., skin changes, breast development; a subset of 
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the items was administered based on sex). Pubertal Status is a sum score of all the physical 

characteristics, and it has four levels: 1-pre-puberty, 2-early-puberty, 3-mid-puberty, and 4-post-

puberty.  

Neural measurements 

All children underwent standardized resting-state fMRI and structural MRI imaging scans 

at baseline, FL2, and FL4. Acquired images were processed and quality controlled at the Data 

Analysis, Informatics and Resource Center of the ABCD study (Hagler et al., 2019). Resting-

state functional connectivity (rs-FC) of cortical networks was calculated as the average Fisher-

transformed correlation between the time courses of each pair of regions within or between 12 

cortical networks defined by the Gordon atlas. In addition, rs-FC between the 12 cortical 

networks and 19 subcortical regions were also calculated. Gray matter volumes (GMV) from 

148 regions were extracted based on the Destrieux Parcellation. Subcortical volumes of 30 

regions were also calculated based on protocols in the ABCD study. In total, 416 rs-FC and 178 

GMV measurements were included. 

Data Analysis 

We employed two different methods for controlling covariates. In the regression-based 

approach, we first regressed out seven basic covariates from the dependent variables in the full 

sample of 6,986 children. We then compared the standardized mean difference between Black 

and White children on the resulting residual scores using an independent-sample t-test 

(Kolisnyk et al., 2023). This method captures the unique variance attributed to race groups and 

estimates the corresponding effect size in terms of Cohen’s d (Black children - White children). 

This is analogous to the traditional method of estimating the regression coefficient for a key 

predictor after accounting for the variance explained by the covariates (Cohen et al., 2002).  For 

the PSM method, we used the ‘MatchIt’ package in R. Children were matched based on the 

probability of being in a comparison group conditioned on seven basic covariates using logistic 

regression. Specifically, White children were matched with Black children using one-to-one 
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matching without replacement within a predefined propensity score radius (i.e., caliper = 0.1). 

Quality-check showed all seven basic covariates were balanced between groups after matching 

(standardized mean difference lower than 0.05, see Figure S1). In the end, 924 pairs were 

identified. PSM-based Cohen’s d was calculated using an independent sample t-test on these 

matched pairs. For rs-FC analysis, mean motion and the number of time points remained after 

preprocessing were added as additional covariates. For GMV analysis, intracranial volumes 

were added as an additional covariate. 

Mediation analysis 

The mediation toolbox (https://github.com/canlab/MediationToolbox) (Wager et al., 2008, 

2009) was used to perform all the mediation analyses. Here, in Figure 2A the independent 

variable (X) was the racial group, the dependent variable (Y) was behavioral measurements or 

brain measurements, and the mediator (M) was pubertal status. The test of mediation involves 

two linear equations (see equations 1 and 2 below). The path coefficient a reflects the effects of 

X on M. The path coefficient b effect reflects the effect of M on Y. The coefficient c’ is the direct 

effect of X on Y after controlling for M. The product a*b (mediation effect/indirect effect) reflects 

how the association between X and Y changed according to M. d1 and d2 are intercept terms 

(content). The total effect c (not shown in the equation, c = a*b + c’) is the effect of X on Y 

without controlling for M. All seven basic covariates were controlled in the mediation analyses. 

The effect size of meditation was calculated as the beta value of path a*b divided by the beta 

value of total effect c. The significance of the mediation analyses was estimated using bootstrap 

sampling with 10,000 random-generated samples on the product of the a and b path coefficients 

(a*b). 

 

 
� � ����1   (1) 
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Results 

To study health differences between self-reported Black and White children in the ABCD 

data release 5.1, seven basic covariates, including age, sex, interaction between age and sex, 

household income, parents' education level, ADI, and study sites, were controlled either using 

the multiple regression method or PSM. After PSM, 924 pairs of Black and White children were 

identified, and then independent t-tests were performed on these matched pairs (PSM sample n 

= 1,846). For multiple regression, the basic covariates were first regressed out from the 

dependent variables, and the residuals were then compared using independent t-tests 

(regression sample n = 6,986, including 5,636 White, 1,350 Black). See Table 1 for the 

demographic and socioeconomic variables of these 6,986 children. 

Table 1. Demographic and socioeconomic information for the participants included in the study 

Note: ADI: area deprivation index; BMI: body mass index. 

Physical and Mental Health differences between Black and White children at baseline 

We first examined health differences in variables depicting a child’s physical and mental 

health (PSM v.s. Multiple regression). This includes 64 dependent variables from the ABCD 

9 
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dataset, capturing the family/community environment (e.g., parent neglect), mental health (e.g., 

behavior problems), physical health (e.g., puberty status), technology use (e.g., screen time), 

neurocognition (e.g., total intelligence), and biospecimen variables (e.g., sex hormones). Among 

the 41 variables available at baseline, 27 showed significant racial differences based on PSM 

between self-reported Black and White children, while 26 showed similar significant racial 

differences based on multiple regression analyses (FDR-corrected p-value < 0.05). For 18 

variables with a Cohen’s d value greater than 0.15, the PSM-based effect size is significantly 

larger than the regression-based effect size, extending outside the 95% confidence interval of 

the regression-based effect size estimates (Figure 1A). This indicates that PSM is more 

sensitive than the regression-based method in detecting health differences between races. 

Notably, pubertal status, as an index based on physical maturation measured by the parent-

reported Youth Pubertal Development Scale and Menstrual Cycle Survey, emerged as the 

largest difference between Black and White children (Cohen’s d = 0.64 based on PSM and 0.53 

based on regression analysis; Figure 1A).  

 

Figure 1. Effect size (Cohen’s d) comparisons between PSM-based (red) and regression-based 

(blue) methods. (A) Cohen’s d values of 41 variables at baseline. For details about variable 

names, see Methods. (B) The change of Cohen’s d value of pubertal status across five 
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timepoints. The change of Cohen’s d value of BMI across five timepoints without (C) or with (D) 

controlling for pubertal status at each time point.  

Difference of Pubertal status between races and its impact on child development 

The gap in pubertal status between Black and White children aligns with past findings 

(Argabright et al., 2022). We further examined how differences in pubertal status between races 

change throughout development. Across both the PSM and conventional regression-based 

methods, the difference in pubertal status between races diminished as children progressed 

from ages 9-11 to 13-15 over a 4-year longitudinal follow-up time window. White children tended 

to catch up with Black children in their pubertal status at the ages of between 13 and 15 years 

(Figure 1B). Notably, the magnitude of these effects estimated by PSM remained larger than 

that estimated by multiple regression, highlighting the sensitivity of PSM in detecting health 

differences over time. 

We then investigated how such an obvious health difference between Black and White 

children could account for the other health differences observed during child development. For 

example, relative to White children, Black children have a higher BMI in the current dataset. 

This BMI difference between races can be partially explained by differences in pubertal status 

during child development. Controlling for pubertal status, either using PSM or multiple 

regression, can significantly diminish the difference in BMI between Black and White children by 

approximately 50% across 4-year longitudinal follow-ups (Figure 1C & 1D). These findings 

suggest that the magnitude of health differences between races may be inaccurately assessed 

if important health covariates such as pubertal status are not taken into account. 

These findings further prompted us to investigate the extent to which pubertal status 

mediates health differences across diverse behavioral and neural measurements in adolescents 

( Figure 2A). We find that at baseline, pubertal status mediated 20 out of 40 (50%) behavioral, 

192 out of 416 (46%) resting-state functional connectivity (rs-FC), and 173 out of 178 (97%) 

gray matter volume (GMV) measurements (Figure 2B). Among the 148 cortical GMVs, the 

strongest mediation effects emerge at the superior temporal gyrus and dorsal lateral as well as 
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ventral medial prefrontal cortex (Figure 2C) – key brain regions previously implicated in social 

affective and cognitive development (Atzil et al., 2018; Fedorenko et al., 2024).  

 

Figure 2. Mediation analyses. (A) The mediation diagram of pubertal status mediated the health 

differences between races. (B) Percentage of significant mediation effects (yellow) in 41 

behavioral, 416 rs-FC, and 180 GMV measurements. (C) Illustration of mediation effect size on 

148 cortical regions.  
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Discussion  

By leveraging a large dataset that captures the diverse characteristics of contemporary 

U.S. adolescents, our analyses suggest that PSM may offer a more sensitive covariate-control 

approach for assessing health-related differences between racial groups, as compared with 

traditional regression-based methods. Using this approach, we identified pubertal status as the 

most prominent difference between self-reported Black and White children. Controlling for 

pubertal status could diminish some of the health-related differences between these two racial 

groups. Overall, our study makes significant contributions to understanding health differences 

between racial groups. 

First, methodologically, our analysis highlights the enhanced sensitivity of PSM in 

detecting health differences between Black and White children compared to conventional 

regression-based methods. The underperformance of multiple regression analyses can be 

attributed to multicollinearity between races and their associated covariates, such as SES. This 

shared variance among variables often violates the independence assumption of multiple 

regression, thereby diminishing the manifestation of health differences between races on certain 

dependent variables. In contrast, PSM enables the pairing of Black and White children based on 

key covariates, ensuring their equitable distribution between groups and minimizing the shared 

variance between groups and these key covariates. As a result, this approach enhances the 

sensitivity in uncovering and elucidating health differences between races. 

Second, since the health differences between Black and White children are partially 

explained by pubertal status, controlling for this factor is helpful to obtain a more accurate 

understanding of health differences across races among U.S. adolescents. Puberty status is 

influenced by a combination of genetic, environmental, and socioeconomic factors. Earlier 

puberty is often linked to mental health issues, higher BMI, and experiences of discrimination 

(Argabright et al., 2022; Hoyt et al., 2020), particularly when children are unprepared for these 

changes due to a lack of timely puberty education (Hoyt et al., 2020). This educational gap is 
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especially problematic for Black children, who tend to mature earlier than their White peers. 

Educators, clinicians, and parents play a crucial role in providing early puberty education, 

recognizing individual differences, and addressing potential biases related to physical 

development. It is important to note that controlling for puberty status has not been a common 

practice in previous studies investigating racial disparities/differences using the ABCD dataset 

(Dumornay et al., 2023; Giddens et al., 2022; Isaiah et al., 2022; Ryan et al., 2023). Additionally, 

our findings indicate that the differences in puberty status between racial groups gradually 

decrease as children grow older. Therefore, longitudinal studies must consider the potential 

effects of puberty status at different ages. 

The current study has some limitations. First, as we only included self-reported Black 

and White children, our results may not be generalizable to other races/ethnicities. 

Nevertheless, the methods proposed in this study can be applied to address health inequalities 

among other racial or ethnic groups and assist in identifying key covariates that need to be 

considered. Second, as we used sex at birth as one of the basic covariates, we cannot compare 

sex differences in health-related outcomes. Consequently, the current study cannot detect 

whether there is an interaction effect between sex and race on pubertal status. Nonetheless, our 

current study unambiguously reveals systematic differences in health-related outcomes 

mediated by pubertal development between self-reported race groups. These effects could not 

be accounted for other covariates such as household income, parent education level, or other 

environmental factors, such as ADI.  

In conclusion, these findings underscore the importance of using robust statistical 

methods like PSM to accurately capture health differences between self-reported races. It also 

suggests that researchers and policymakers need to consider factors like pubertal status when 

understanding and addressing health inequalities in adolescents. 
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Key points 

1. Understanding health differences between races in adolescents is important for 

addressing health inequalities  

2. Conventional methods like multiple regression may not adequately control for covariates 

when health differences between races covary with common covariates 

3. Propensity Score Matching offers better covariate control compared to traditional 

regression-based approaches  

4. Puberty status emerged as a significant mediator of health differences between racial 

groups. This indicates that the timing of physical maturation plays a crucial role in health 

differences observed between self-reported Black and White children. 

5. Researchers and policymakers need to consider factors like pubertal status when 

understanding and addressing health inequalities in adolescents. 
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Data Availability 

This work was based on a published dataset (Casey et al., 2018). The data analysis scripts 

have been deposited in https://github.com/nilsyang/Codes. 
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Supplement 

Supplementary Figures 

 

Figure S1. Propensity score matching controls for covariates. (A) The standardized mean 

differences of covariates between Black and White were reduced below 0.05. (B) The 

distributions of propensity scores after matching were similar between Black and White. Note: 

ADI = Area Deprivation Index.  
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