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Abstract 

Genome-wide association studies (GWAS) have discovered thousands of replicable genetic associations, guiding 
drug target discovery and powering genetic prediction of human phenotypes and diseases. However, genetic 
associations can be affected by gene-environment correlations and non-random mating, which can lead to biased 
inferences in downstream analyses. Family-based GWAS (FGWAS) uses the natural experiment of random 
assignment of genotype within families to separate out the contribution of direct genetic effects (DGEs) — causal 
effects of alleles in an individual on an individual — from other factors contributing to genetic associations. Here, 
we report results from an FGWAS meta-analysis of 34 phenotypes from 17 cohorts. We found evidence that factors 
uncorrelated with DGEs make substantial contributions to genetic associations for 27 phenotypes, with population 
stratification confounding — a form of gene-environment correlation — likely the major cause. By estimating SNP 
heritability and genetic correlations using DGEs, we found evidence that assortative mating has led to 
overestimation of SNP heritability for 5 phenotypes and overestimation of the degree of shared genetic effects 
(pleiotropy) between 22 pairs of phenotypes. Polygenic predictors constructed from DGEs are particularly useful for 
studying natural selection, assortative mating, and indirect genetic effects (effects of relatives’ genes mediated 
through the family environment). We validate our meta-analysis results by predicting phenotypes in hold-out 
samples using polygenic predictors constructed from DGEs, achieving statistically significant out-of-sample 
prediction for 24 phenotypes with little attenuation of predictive power within-families. We provide FGWAS 
summary statistics for 34 phenotypes that can be used for downstream analyses. Our study provides both a template 
for performing FGWAS and an argument for its value for debiasing inferences and understanding the impact of 
environment and mating patterns.  

Introduction 

Genome-wide association studies (GWASs) have generated biological insights, guided drug 
target discovery1, and enabled prediction of phenotypes and disease risks using polygenic 
predictors (called polygenic indices, PGIs, or polygenic scores), with potential clinical 
applications2. However, recent research3–10 has shown that GWASs are susceptible to 
confounding from indirect genetic effects (IGEs) from relatives — e.g. an effect of parents’ 
alleles on offspring education mediated through the alleles’ effects on parental education11 — 
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assortative mating (when there are correlations across parents’ phenotypes and genotypes), and 
population stratification. Analytical techniques including principal component analysis (PCA) 
and linear mixed models have been developed to reduce population stratification confounding12, 
but these techniques often leave residual confounding in GWAS results5,8,10. Confounding can 
cause biases in downstream applications, including: estimation of heritability and genetic 
correlation6,7, Mendelian Randomization analyses13, and inferences of natural selection4,5.  

Family-based GWAS (FGWAS) has been proposed as a solution to the problem of confounding 
in GWAS3,9,14–16 that also enables deeper investigation of the impact of gene-environment 
correlation — including from IGEs — and non-random mating, including population structure 
and assortative mating. FGWAS adds the parents’ genotypes to the regressions performed in 
GWAS (Methods), thereby using the natural experiment of random assignment of genotype 
within-family — due to Mendelian segregation during meiosis — to estimate ‘direct genetic 
effects’ (DGEs). Because the segregation of chromosomes during meiosis is independent of 
environment, estimates of DGEs are free from confounding due to gene-environment correlation, 
including from IGEs and population-stratification3,9,15,16. Because different chromosomes 
segregate independently during meiosis, DGEs are also free from the confounding that arises in 
GWAS due to correlations with genetic variants on other chromosomes,15,16 which are caused by 
non-random mating, including population structure and assortative mating (AM). As in GWAS, 
variants are analyzed one at a time, so DGEs include causal effects of the focal variant and 
correlated variants on the same chromosome14–16. 

The coefficients on the parental genotypes are referred to as ‘non-transmitted coefficients’ 
(NTCs), since they are the expected coefficients on the alleles not transmitted from parents in a 
regression of phenotype onto transmitted and non-transmitted alleles3,11,17. For each parent, 
whether one or the other allele (e.g. ‘A’ or ‘T’ at a SNP) is transmitted is the random outcome of 
meiosis. The association between the non-transmitted allele and offspring phenotype (controlling 
for the transmitted allele) reflects all the factors causing genotype-phenotype association other 
than the allele being transmitted to the offspring and its direct causal effect on the offspring’s 
phenotype.  These factors include gene-environment correlation due to IGEs and population 
stratification as well as confounding due to correlations with genetic variants across the genome 
due to non-random mating15,16. The non-transmitted parental alleles are perfect control alleles 
that differ from the transmitted allele only in the fact that one was randomly transmitted and the 
other was not. The use of non-transmitted alleles as control variables forms the basis of 
population-structure robust association tests such as the transmissions disequilibrium test 
(TDT)18,19.  

We can relate the parameters estimated in FGWAS to the parameter estimated in GWAS, which 
we call the ‘population effect’ as it reflects the genotype-phenotype association in the population. 
Let 𝛽! be the population effect of SNP 𝑙  — as estimated in GWAS — and let 𝛿!,	𝛼"! , 𝛼#! be, 
respectively, the DGE and paternal and maternal NTCs. Under random-mating, 𝛽! = 𝛿! + 𝛼!, 
where 𝛼! = (𝛼"! + 𝛼#!)/2 is the average NTC3 and deviations from this relationship are 
negligible for samples with low levels of structure3, such as those typically used in GWAS. 
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FGWAS thus removes confounding factors, reflected in the average NTC, that can lead to biased 
inferences in downstream applications of GWAS.  

While FGWAS has favorable theoretical properties, it requires parental genotypes, which are 
often not available in typical GWAS samples. Furthermore, even when parental genotypes are 
available, estimates of DGEs are less precise than estimates of population effects because they 
only use within-family genotype variation, which is half of the variation in a random-mating 
population3. The lack of precise FGWAS results has limited their application.  

An alternative study design, which we call sib-GWAS, uses genetic differences between siblings 
to estimate DGEs3,9. Because genotype data on sibling pairs is more commonly available than 
complete genotype data on parents, sib-GWAS has been a popular approach9,13, although it is 
biased by IGEs between siblings3,15,16. The sib-GWAS approach was used by Howe et al.9, which 
produced sib-GWAS estimates of DGEs on 24 phenotypes from a meta-analysis of European 
genetic ancestry cohorts.  

Young et al. presented an alternative approach that enables sibling pair data, parent-offspring pair 
data, and complete parental genotype data to be jointly analyzed in a unified analytical 
framework through imputation of missing parental genotypes3,20. When applied to sibling pair 
data, this approach increases the effective sample size of DGE estimates by up to one third and 
of average NTCs by up to one half compared to sib-GWAS3. It also enables use of samples with 
only one or both parents genotyped, without genotyped sibling(s), further increasing power3,20. 
The imputation approach has been proven to give consistent and unbiased estimates of DGEs 
provided that the imputed parental genotypes are unbiased3. Although population structure can 
introduce bias into imputed parental genotypes, the resulting bias in DGE estimates is negligible 
for the samples of relatively homogeneous genetic ancestry typically used in GWAS3,20.  

Here we report results from a meta-analysis of 16 cohorts of European genetic ancestries and one 
of East Asian genetic ancestry, analyzed using the imputation and FGWAS methodology 
implemented in the software package snipar3. We provide FGWAS summary statistics on 34 
phenotypes spanning biomedical, psychiatric, and socioeconomic phenotypes, including 18 
phenotypes not included in the Howe et al. sib-GWAS. We find evidence that there is substantial 
population stratification bias in population-effect estimates across a broad range of phenotypes 
and that assortative mating biases estimates of SNP heritability and genetic correlations. We 
validate our meta-analysis by performing family-based polygenic prediction analysis in holdout 
samples. Our results show the value of FGWAS for investigating the impact of gene-environment 
correlation and non-random mating, as well as debiasing inferences drawn from downstream 
applications of GWAS.  

Results 

FGWAS requires more stringent quality control than GWAS 

We performed FGWAS in each cohort using the subsample with at least one genotyped parent or 
sibling, imputing the missing parental genotype(s) using snipar3 (Methods and Supplementary 
Table 1). We developed a quality-control (QC) protocol for FGWAS summary statistics — 
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including novel QC procedures that take advantage of the unique properties of family data — 
that is described in Supplementary Note Section 1 and Supplementary Figures 1-2.  

While QC for FGWAS shares many steps with QC for GWAS, there are some important 
differences. Most GWAS use data derived from genotyping arrays, which measure genotypes at 
pre-specified variants. Missing variants are imputed by finding similar haplotypes in reference 
samples21,22, without use of known pedigree relations and Mendelian Laws. In contrast, the 
Mendelian Imputation performed by snipar imputes genotypes of missing parents from the 
observed genotypes in a nuclear family according to Mendelian Laws.  

We found that, except for the highest quality imputed variants, standard imputation from 
reference panels did not preserve the relationships between siblings’ genotypes implied by 
Mendelian Laws, implying that only the highest quality imputed variants are suitable for 
FGWAS or sib-GWAS (Supplementary Note Section 1 and Supplementary Figure 1). We 
therefore imposed a stringent imputation quality threshold (INFO score at least 0.99) for our 
analysis plan (Supplementary File 1). In this regard, our study differs from the sib-GWAS 
performed by Howe et al., which used variants with INFO score greater than 0.3, implying many 
low-quality imputed variants were analysed, which may have affected the results and conclusions 
drawn from their study.   

Multivariate meta-analysis of FGWAS summary statistics facilitates downstream analyses 

We used fixed-effect, multivariate meta-analysis to aggregate the FGWAS summary statistics 
from 16 cohorts of predominantly European genetic ancestries (Methods, Supplementary Tables 
1-2, and Supplementary Figure 3). This enabled us to compute meta-analysis estimates of DGEs, 
NTCs, and population effects, along with their joint sampling variance-covariance matrix, 
facilitating downstream analyses. Due to cross-ancestry differences in linkage disequilibrium 
(LD) patterns, we analysed the summary statistics from the China Kadoorie Biobank separately. 

Although not necessary to remove confounding from estimates of DGEs, we included genetic 
principal components as covariates in cohort-level analyses to ensure that population effects 
derived from our analyses are comparable to those derived from standard GWAS3,20. To avoid 
under-powered analyses, we excluded from further analysis phenotypes where our meta-analysis 
effective sample size for DGEs was below 5000: ever-cannabis, chronic obstructive pulmonary 
disease (COPD), alcohol use disorder, and extraversion. This left 30 phenotypes for the 
subsequent analyses that we report on below (Table 1). 

Correlations between direct genetic effects and population effects 

An important question is the degree to which DGEs, as estimated by FGWAS, differ from 
population effects, as estimated by GWAS. Howe et al.9 argued that DGEs are systematically 
smaller in magnitude than population effects for several phenotypes. While inflation of 
population effects leads to inflated estimates of SNP heritability, for many purposes low genome-
wide correlation between DGEs and population effects is more problematic than 
inflation/deflation of effects; for example, under this scenario, polygenic predictors derived from 
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population effects will never achieve perfect correlation with the DGE component of the 
phenotype, implying they will never capture the full heritability8,15,23.   

The causes of low correlation between DGEs and population effects are likely distinct from the 
causes of inflation/deflation of population effects. For example, for confounding due to 
population stratification, the variant-level bias is likely unrelated to the variant’s DGE10,24. In that 
case, population effects differ from DGEs due to a random bias term with mean zero, which 
would produce a correlation below 1 but no systematic inflation/deflation. In contrast, classical 
AM would be expected to inflate population effects by a constant scale factor relative to DGEs 
— with the inflation reflecting the strength of correlation between parents’ DGE components23,25 
— which would not affect the genome-wide correlation between DGEs and population effects.   

 
Median effective 
N (HapMap3) SNP heritability DGE-population correlation 

Phenotype DGE Pop. DGE S.E. Pop. S.E. snipar S.E. LDSC S.E. 
Height 105993 182202 0.352 0.020 0.413 0.021 0.913 0.005 0.970 0.005 
BMI 81870 178153 0.212 0.013 0.216 0.012 0.919 0.013 1.006 0.008 

Educational attainment (EA) 47387 91221 0.072 0.008 0.143 0.007 0.689 0.023 0.859 0.028 
ADHD 44748 102327 0.005 0.014 0.003 0.007 0.372 0.016 NA  NA  

Non-HDL cholesterol 42160 90474 0.168 0.023 0.179 0.021 0.819 0.027 0.959 0.030 
Number of children 41589 102329 0.041 0.009 0.039 0.004 0.672 0.049 1.083 0.083 

HDL cholesterol 40029 79576 0.191 0.035 0.181 0.024 0.871 0.068 0.944 0.026 
Age at first birth (women) 35982 87944 0.044 0.012 0.097 0.008 0.495 0.019 0.881 0.067 

Self-rated health 35443 83433 0.043 0.013 0.062 0.008 0.614 0.048 0.812 0.078 
Blood pressure (systolic) 32532 72193 0.097 0.016 0.109 0.010 0.804 0.043 0.952 0.033 
Blood pressure (diastolic) 32530 71625 0.102 0.017 0.111 0.011 0.720 0.030 0.965 0.033 

Neuroticism 31649 75046 0.084 0.013 0.075 0.007 0.668 0.028 0.902 0.042 
Depressive symptoms 31132 75497 0.060 0.015 0.035 0.007 0.619 0.052 0.666 0.098 
Subjective well-being 28232 65930 0.026 0.016 0.048 0.009 0.454 0.053 0.819 0.148 

Migraine 25907 67816 0.055 0.021 0.069 0.009 0.920 0.043 0.928 0.077 
Drinks per week 22137 50345 0.027 0.022 0.029 0.012 0.561 0.053 0.595 0.217 
Allergic rhinitis 21247 50657 0.086 0.026 0.082 0.015 0.793 0.028 0.794 0.065 

Age-at-menarche 19678 45504 0.177 0.029 0.216 0.021 0.759 0.024 0.954 0.034 
FEV1 18645 45121 0.167 0.022 0.138 0.012 0.880 0.042 0.940 0.032 

Cigarettes per day 16121 37207 0.014 0.022 0.063 0.015 NA   NA 1.027 0.513 
Ever-smoker 14935 34550 0.356 0.029 0.463 0.022 0.801 0.014 0.974 0.019 

Morning person 13347 36632 0.081 0.042 0.109 0.018 0.843 0.077 0.904 0.146 
Household income 12884 31956 0.045 0.038 0.107 0.016 0.446 0.040 0.911 0.297 

Cognitive performance 12361 26345 0.188 0.027 0.186 0.016 0.543 0.036 0.975 0.045 
Depression 12216 31531 0.025 0.015 0.082 0.010 0.679 0.032  NA NA  

Hypertension 7506 18771 0.397 0.091 0.372 0.046  NA NA 0.837 0.067 
Asthma 6549 16229 0.360 0.077 0.378 0.048 0.865 0.035 0.963 0.035 
Eczema 6326 16139 0.134 0.072 0.169 0.036 0.781 0.040 1.019 0.123 
Myopia 5498 13859 0.526 0.110 0.517 0.050 0.870 0.028 0.828 0.043 

Individual income 5489 14742 0.024 0.032 0.041 0.013 NA NA  NA NA  
Table 1. Meta-analysis results. Results are based on multivariate meta-analysis of summary statistics from 16 cohorts of 
European genetic ancestries (Methods). Median effective sample sizes were calculated among HapMap3 SNPs for both direct 
genetic effects (DGEs) and population effects derived from the same data. Effective sample size is the sample size of a standard 
GWAS in unrelated individuals that would produce estimates of equivalent precision. Due to the stringent QC requirements of 
FGWAS, effective sample size varies considerably across the genome, with subsets of variants that passed QC in all or nearly all 
cohorts having greater effective sample size than given here (median in HapMap3). SNP heritability was estimated using LDSC 
(Methods). For binary outcomes, estimates were transformed to the logistic scale before calculation of effective sample sizes and 
SNP heritability (Supplementary Note Section 1). Genome-wide correlations between direct genetic effects (DGEs) and 
population effects are estimated using both LDSC and snipar (see Methods and Figure 1 note). See Supplementary Table 3 for an 
expanded set of meta-analysis statistics. Abbreviations: Pop., population effect; FEV1, forced expiratory volume in 1 second; 
ADHD, attention deficit and hyperactivity disorder; HDL, high density lipoprotein.  

Young et al.3 showed that the correlation between DGEs and population effects is below one for 
educational attainment (EA) and cognitive performance in UK Biobank data. Using an improved 
and expanded version of the method developed in Young et al. (implemented in snipar), we 
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estimated the genome-wide correlation between meta-analysis estimates of DGEs and 
populations effects (Methods and Supplementary Note Section 2). The genome-wide correlation 
between DGEs and population effects is below 1 (FDR<0.05, one-sided test after Benjamini-
Hochberg correction, which we use hereafter for multiple-testing correction) for 27/30 
phenotypes (Figure 1, Table 1, Supplementary Table 3). The correlation could not be estimated 
for the remaining 3 phenotypes (cigarettes-per-day, hypertension, and individual income) due to 
negative estimates of the variance in DGEs and/or population effects. 

 
Figure 1. Genome-wide correlations between direct genetic effects (DGEs) and population effects. Horizontal bars give 95% 
confidence intervals. The correlations as estimated by snipar measure the genome-wide correlation between marginal effects, 
whereas, by adjusting for local LD, the correlations estimated by LDSC aim to measure the genome-wide correlation between the 
joint-fit effects while adjusting for population stratification. The correlations estimated by snipar thus give a better measure of 
how different genome-wide summary statistics on DGEs and population effects would be in the absence of sampling error, 
whereas LDSC gives a better measure of how correlated DGEs and population effects would be after adjusting for sampling 
error, local LD, and some component of population stratification. Differences between the two estimates can therefore be 
informative about the contribution of population stratification to confounding in GWAS, with higher estimates from LDSC 
suggesting a contribution from population stratification. Abbreviations: HDL, high density lipoprotein cholesterol; FEV1, forced 
expiratory volume in 1 second adjusted for height; BMI, body mass index. See Table 1 for numerical values.  
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We investigated whether the correlation between DGEs and population effects differed between 
the cohort level and the meta-analysis level by performing a random-effects meta-analysis of 
cohort-level estimates of the correlation between DGEs and population effects (Supplementary 
Figure 4). For EA, the meta-analysis estimate of the cohort-level correlations was 0.547 
(S.E.=0.052), lower than from the meta-analysis summary statistics, 0.689 (S.E.=0.023). Similar 
patterns were observed for other phenotypes (Supplementary Table 3). A plausible explanation 
for this is that confounding at the variant level varies somewhat randomly across cohorts and is 
thus partially cancelled out in meta-analysis estimates of population effects, leading to increased 
correlation with DGEs.    

The method we used — implemented in snipar — estimates the correlation between the DGEs 
and population effects (which are marginal effects) while accounting for sampling errors. This is 
different from estimating genetic correlation using LD score regression (LDSC) or related 
techniques that attempt to measure the correlation between underlying joint-fit effects, adjusting 
for population stratification and local LD5,26. Thus, LDSC-estimated genetic correlations 
between DGEs and population effects will underestimate the degree of confounding in 
population effects to the degree that LDSC successfully adjusts out population stratification 
confounding. LDSC-estimated correlations between DGEs and population effects below 1 could 
therefore indicate the influence of confounding factors other than population stratification in 
standard GWAS — such as IGEs — or imperfect control for population stratification by LDSC5.  

To gauge how much of the confounding in population effects can be attributed to population 
stratification as opposed to IGEs or non-random mating, we estimated the correlation between 
DGEs and population effects using LDSC (Figure 1 and Table 1) and compared these to the 
snipar estimates. We found that height, myopia, hypertension, allergic rhinitis, depressive 
symptoms, neuroticism, self-rated health, HDL cholesterol, and EA had correlations statistically 
significantly below 1 (FDR<0.05, one-sided test). However, most of the correlations estimated 
by LDSC were close to 1, indicating that much of the confounding in GWAS is likely due to 
uncorrected population stratification.  

Substantial contribution of confounding to GWAS population effects 

To further investigate confounding, we estimated the proportion of genome-wide variance in 
population effects (the non-sampling variance in genome-wide population effect estimates) that 
is uncorrelated with DGEs (Methods, Figure 2, and Supplementary Table 3), a likely 
characteristic of population-stratification confounding10,24, although other factors could 
contribute, including IGEs that are weakly correlated with DGEs and/or cross-trait AM7. 
Estimates of the contribution to population effects from factors uncorrelated with DGEs were 
10.7% (S.E.=0.6%) for height and 10.2% (S.E.=1.0%) for BMI but reached 48.3% (S.E.=3.2%) 
for EA and 58.7% (S.E.=7.0%) for depressive symptoms. These results indicate that confounding 
factors uncorrelated with DGEs make a relatively small but non-negligible contribution to 
GWAS of traits such as height and BMI but comprise the majority of population effects for some 
phenotypes. These results apply genome-wide, where most variants likely have very weak or 
zero DGEs. Thus, the relative contribution from confounding factors at strongly associated 
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variants — such as genome-wide-significant variants — is likely much smaller than genome-
wide.  

 

Figure 2. Proportion of non-sampling variance in population effects that is uncorrelated with direct genetic effects (DGEs). 
Horizontal bars give 95% confidence intervals. Only includes phenotypes with median effective sample size for DGEs > 5000 
and SE < 0.25. This statistic is computed by performing a type of genome-wide regression of population effects on DGEs 
accounting for sampling errors (Methods). This gives a measure of the contribution of factors that are uncorrelated with DGEs, 
a likely characteristic of population stratification confounding10,24. Abbreviations: HDL, high density lipoprotein cholesterol; 
FEV1, forced expiratory volume in 1 second adjusted for height; BMI, body mass index; EA, educational attainment; Ever-
smoker, whether an individual has ever smoked. See Supplementary Table 3 for numerical values.  

We also analyzed the LDSC intercept, which has been proposed as a measure of confounding in 
GWAS test statistics, for both DGE and population effect summary statistics, finding results 
consistent with the removal of confounding in FGWAS estimates of DGEs (Methods and 
Supplementary Table 3).  
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Inflation and deflation of direct genetic effects relative to population effects 

We estimated the degree to which population effects are systematically inflated/deflated relative 
to DGEs by performing a genome-wide regression of population effects onto DGEs that accounts 
for sampling errors (Methods and Supplementary Figure 5). Height and systolic blood pressure 
have inflated population effects, whereas 10 phenotypes (ADHD, eczema, depression, cognitive 
performance, household income, drinks-per-week, subjective wellbeing, neuroticism, age at first 
birth in women, and number of children) have deflated population effects (FDR<0.05, two-sided 
test).  

These results run counter to the intuition that FGWAS and sib-GWAS DGE estimates should be 
deflated relative to population effects because the influence of AM and IGEs, which are often 
assumed to be highly correlated with DGEs, is removed9,23,27. These results also differ from those 
derived from the sib-GWAS by Howe et al., which reported that DGEs were smaller than 
population effects for number of children, depressive symptoms, EA, cognitive ability, ever-
smoker, and height. However, their analysis only examined SNPs that were strongly associated 
(P<5x10-8 or P<1x10-5) based on standard GWAS in a UK Biobank subsample and weighted the 
analysis towards SNPs with stronger population effects, which may have contributed toward 
their analysis finding more deflation than there is genome-wide.  

Negative correlations between DGEs and NTCs due to ascertainment and selection 

A phenomenon related to deflation of population effects is negative genome-wide correlation 
between DGEs and average NTCs, first noted by Young et al. for cognitive performance and 
neuroticism in the UK Biobank3. This is because the population effect of a SNP, 𝛽!, is 
approximately the sum of the DGE and average NTC: 𝛽! ≈ 𝛿! + 𝛼!. So if DGEs and average 
NTCs are negatively correlated, they will tend to cancel each other out, resulting in deflated 
population effects.  

We found that the correlation between DGEs and average NTCs was different from zero 
(FDR<0.05, two-sided test) for 8 out of 24 phenotypes (Supplementary Table 3): below zero for 
ADHD, allergic rhinitis, eczema, cognitive performance, and household income; and above zero 
for systolic blood pressure, EA, and height (Supplementary Figure 6). This is consistent with 
deflation of population effects for eczema, cognitive performance and household income and 
inflation for height and systolic blood pressure. We also estimated that population effects on EA 
are inflated by a factor of 1.131 (S.E.=0.072), but this estimate is not statistically distinguishable 
from 1.  

Young et al. showed that negative correlations between DGEs and average NTCs — and 
concomitant deflation of population effects — could be due to collider bias induced by biased 
sampling with respect to phenotype values3. It is therefore plausible that the deflation of 
population effects we observed for 9 phenotypes is due in part to ascertainment bias, although 
natural selection (specifically, directional or stabilizing selection) may also contribute through 
negative LD induced between sign-concordant causal alleles, consistent with the Bulmer effect28. 
The influence of natural selection is likely strongest for age at first birth in women and number 
of children since these traits are directly related to evolutionary fitness29. Another phenomenon 
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that could contribute is within-family contrast effects, where family members (e.g. siblings) 
differentiate from each other, inducing IGEs in the opposite direction to DGEs30. 

We also estimated the correlations between DGEs and average NTCs using LDSC, which should 
adjust for some of the contribution of population stratification confounding to NTCs. We found 
statistically significant positive estimates for height and EA (Supplementary Table 3 and 6). The 
primary explanation is likely AM, which is strong for EA and height25,31, although IGEs that are 
positively correlated with DGEs could also contribute3. AM leads to inflated population effects 
relative to DGEs23,25 and average NTCs that are positively correlated with DGEs3,23. To see this, 
consider that under AM at equilibrium, 𝛽! =

$!
%&'"

, where 𝑟$ is the correlation between parents’ 

DGE components23. Thus, 𝛼! = 𝛽! − 𝛿! =
'"

%&'"
𝛿!.  

Smaller SNP heritability from direct genetic effects than population effects 

Genotype-phenotype data on unrelated individuals can be used to estimate ‘SNP heritability’: the 
proportion of phenotypic variance explained by a linear model of the genotyped SNPs32. This is 
usually achieved by application of Genomic-Relatedness-Matrix Restricted Maximum 
Likelihood (GREML) to individual level data32 or by application of LDSC to GWAS summary 
statistics33. Variants of these methods have been used to investigate the genetic architecture of 
phenotypes34,35.  

The definition of SNP heritability in terms of the variance explained by a linear model of 
genotyped SNPs differs from traditional definitions of heritability, which defined heritability as 
the proportion of phenotype variance explained by causal genetic effects. Thus, SNP heritability 
can include contributions from IGEs, population stratification (more relevant for GREML than 
LDSC, which attempts to adjust for population stratification), and can be inflated by AM6. 
Genome-wide summary statistics on DGEs from FGWAS can be used instead as inputs to 
LDSC9, thereby giving SNP heritability estimates that remove contributions from IGEs, 
population stratification, and inflation due to AM, bringing them closer to traditional definitions 
of heritability. However, DGE-based SNP heritability estimates do not account for the increase in 
genetic variance due to AM-induced correlations between causal alleles, leading to a downward 
bias similar to other family-based heritability estimates such as classical twin designs and 
relatedness disequilibrium regression23,36. In contrast, LDSC will overestimate SNP heritability 
when applied to population effects that are inflated due to AM6.  

Table 1 and Figure 3 show SNP heritability estimated from meta-analysis estimates of DGEs and 
population effects. SNP heritability estimates from DGEs are smaller than from population 
effects (FDR<0.05, two-sided test, Methods, Supplementary Table 5) for age at first birth in 
women, EA, depression, whether an individual has ever smoked, and height. Since AM is strong 
for all of these phenotypes31 (AM is likely for age at first birth in women indirectly due to the 
correlation of age at first birth with EA29,37), these results suggest that larger LDSC SNP 
heritability estimates from population effects are primarily due to AM6, with the influence of 
population stratification diminished to the degree that LDSC successfully adjusts for it.  
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Our SNP heritability estimates are generally similar to those from Howe et al.9 although with 
greatly increased precision for some phenotypes. However, we do not replicate the Howe et al. 
result for cognitive performance: we find similar SNP heritability from DGEs (0.188, S.E. 0.027) 
and population effects (0.186, S.E. 0.016), whereas Howe et al. found substantially smaller 
heritability from DGEs (0.14, S.E. 0.043) than from population effects (0.24, S.E. 0.031).  

 
Figure 3. Comparison of SNP heritability estimates from direct genetic effects and population effects. The x-axis is the SNP 
heritability estimate from applying LDSC33 to genome-wide summary statistics on population effects. The y-axis is the SNP 
heritability estimate from applying LDSC to direct genetic effects (DGEs) (Methods). Vertical and horizontal error bars give the 
95% confidence intervals. The diagonal line is the identity. We label the phenotypes with statistically detectable differences 
(FDR< 0.05, two-sided test): Age at first birth (women); EA, educational attainment; Ever-smoker, whether an individual has 
ever smoked; Depression; and Height.  

Between-cohort heterogeneity has been proposed as an explanation for lower SNP heritability 
estimates from meta-analysis than from individual cohorts38. For EA, we investigated this 
hypothesis. However, we found nearly identical results when using meta-analysis summary 
statistics as when meta-analyzing cohort-level SNP heritability estimates (Supplementary Figure 
7): both indicated that the SNP heritability estimated from DGEs is around 7% compared to 
around 14% estimated from population effects. Our estimate of the SNP heritability from DGEs 
for EA, 7.2% (S.E. 0.8%), was larger than estimated by Howe et al., 4% (S.E. 0.8%).   

Differing results from China Kadoorie Biobank and European meta-analysis 

We performed a similar set of analyses in the China Kadoorie Biobank (Methods). We observed 
results consistent with strong ascertainment bias and/or confounding due to negative gene-
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environment correlations (Supplementary Table 4), including higher SNP heritability from DGEs 
than from population effects for phenotypes including BMI, EA, and height — the opposite of 
the results from the European ancestry meta-analysis. Analyses of additional Chinese and East 
Asian genetic ancestry data will be needed to confirm whether these results are cohort specific or 
apply more widely to Chinese and other East Asian genetic ancestry cohorts.  

Functional enrichment analyses give similar results whether using direct genetic effects or 
population effects 

A possible consequence of confounding in standard GWAS population effect estimates is biased 
estimates of functional enrichment — the degree to which genes/variants having certain 
functional annotations contribute more to SNP heritability than others. To investigate this, we 
performed a functional enrichment analysis using the same stratified LDSC34 analysis as in Lee 
et al.27. We analyzed both DGE and population effect estimates on EA and height from our 
European genetic ancestry meta-analysis, finding no discernable differences between enrichment 
estimates from DGE and population effects for either phenotypes (Supplementary Figures 8-9), 
although power for this analysis was limited for EA DGEs. This suggests that functional 
enrichment estimates from stratified LDSC may not be particularly susceptible to bias from 
confounding in standard GWAS, potentially due to adjustments for stratification made by LDSC 
and/or because stratification may affect all loci similarly irrespective of functional annotation.  

Robust estimation of pleiotropy using direct genetic effects 

Genome-wide population effect summary statistics on two phenotypes can be input to LDSC to 
estimate the ‘genetic correlation’ between the phenotypes26, defined as the genome-wide 
correlation in population effects, adjusting for local LD and population stratification/sample 
overlap. This approach has been instrumental in the development of multi-phenotype methods 
such as GenomicSEM39, which use GWAS summary statistics to learn about the shared genetic 
architecture of phenotypes. However, population-effect estimates include contributions from 
IGEs, population stratification, and AM. This has led some to question whether genetic 
correlations estimated from population effects truly reflect underlying shared biology 
(pleiotropy) or shared IGEs/confounding in the population-effect estimates7,8.  

To test how analyses of pleiotropy based on genetic correlations have been influenced by 
confounding, we applied GenomicSEM to both DGEs and population effects (Methods, Figure 4, 
Supplementary Tables 6-7). (We used GenomicSEM to perform a statistical test for differences in 
genetic correlations estimated from DGEs and population effects, which would not be possible in 
LDSC.) We found a general inflation of test statistics comparing genetic correlations estimated 
using DGEs and population effects (Supplementary Figure 10). The genetic correlation estimates 
were statistically different for 22 trait pairs (FDR < 0.05, two-sided test).  

Some pairs of phenotypes appear to have strong genetic correlations when estimated using 
population effects but have genetic correlations close to zero when estimated using DGEs: for 
example, the genetic correlation between EA and BMI reduces in magnitude from -0.288 (S.E. 
0.026) to -0.068 (S.E. 0.045). A general attenuation of genetic correlations between EA and other 
traits is observed when DGEs are used in place of population effects (Supplementary Figure 11), 
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indicating that factors other than DGEs (including IGEs and AM) inflate population-effect-based 
estimates of genetic correlations. However, for many pairs of phenotypes, genetic correlations 
are similar whether estimated using DGEs or population effects. For example, there is little 
attenuation in genetic correlations with BMI, except for BMI-EA (Supplementary Figure 12).  

 

 

 
Figure 4. Comparison of genetic correlations estimated from population effects (x-axis) and direct genetic effects (y-axis). The 
shading gives the density of points from 435 pairs of phenotypes. We have marked and labeled the trait pairs where the genetic 
correlations are statistically distinguishable (FDR<0.01, two-sided test). The diagonal line is the identity. Errors bars indicate 
95% confidence intervals. Trait abbreviations: BMI, body mass index; EA, educational attainment (years); FEV1, forced 
expiratory volume in 1 second; Non-HDL, total cholesterol minus high density lipoprotein cholesterol; Ever-smoker, whether an 
individual has ever smoked. 

We investigated the hypothesis put forward by Border et al.7 that cross-trait AM (xAM) has 
inflated the magnitude of genetic correlation estimates from (standard GWAS) population effects 
(Methods). xAM is expected to have a negligible influence on genetic correlations estimated 
using DGEs because the vast majority of correlations between causal alleles induced by xAM are 
cross-chromosome and therefore do not contribute to DGE estimates14–16. Using a Bayesian 
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method that adjusts for sampling errors, we find that cross-mate phenotypic correlations (a 
measure of xAM) explain substantial variation in both population-effect genetic correlations 
estimates (R2 = 40.77%, 95% CI: 34.44% - 46.52%) and DGE correlation estimates (R2 = 
15.37%, 95% CI: 10.41% - 20.71%). There is expected to be a relationship between cross-mate 
phenotype correlations and DGE genetic correlations under univariate AM when there is true 
pleiotropy (Methods); the fact that the relationship is stronger for population-effect genetic 
correlations is evidence that xAM contributes to population-effect genetic correlation estimates. 
Moreover, cross-mate phenotypic correlation estimates predict differences between population 
and DGE genetic correlations (R2 = 6.53%, 95% CI: 3.50% - 10.07%; Supplementary Figure 13). 
These results support Border et al.’s hypothesis and indicate that pleiotropy should be 
investigated using DGE-based genetic correlation estimates.    

PGIs based on direct genetic effects exhibit less confounding 

Polygenic predictors (called polygenic indices, PGIs, or polygenic scores) based on DGE 
estimates from FGWAS – hereafter, DGE PGIs – have favorable properties due to the removal of 
confounding from PGI weights, making them suited to applications that are sensitive to 
confounding4,5,9,13,23. We examined out-of-sample prediction using PGIs derived from our meta-
analysis estimates of DGEs and population effects. We used the Millennium Cohort Study40 
(MCS) as our primary validation cohort and the UK Biobank41 (UKB) as a secondary validation 
cohort for phenotypes that are not available in MCS (Supplementary Table 8).  

We performed standard and family-based PGI (FPGI) analyses using snipar (Methods, Figure 5, 
and Supplementary Table 9). In the standard analysis, we perform a regression controlling for 
standard covariates (age, sex, principal components), and we report the standardized coefficient 
on the PGI, called the ‘population effect’. Even DGE PGIs may be correlated with genetic 
factors not directly captured by the PGI or environmental factors, leading to confounding in 
standard PGI analysis23. In the FPGI analysis, we add parental PGIs as covariates, enabling 
estimation of the ‘direct effect’ of the PGI, which reflects only DGEs15,16.   

DGE PGIs had out-of-sample predictive power statistically distinguishable from zero for 24 
phenotypes (FDR < 0.05, one-sided test). The height DGE PGI achieved the highest partial 𝑅( 
(17.9%, 95% C.I. 15.8%-20.1%), with DGE PGIs for diastolic and systolic blood pressure, HDL 
and non-HDL cholesterol, and EA all achieving partial 𝑅( above 1% (Supplementary Table 9). 
The direct and population effects of the DGE PGIs are generally similar (Figure 5), indicating 
little attenuation of PGI predictive power within-family. However, for population-effect-based 
PGIs, PGI population effects were substantially larger than PGI direct effects for EA, age at first 
birth in women, and household income (Supplementary Figure 14).  

If, in FPGI analysis, the average coefficient on the parental PGIs (average NTC of the PGI) 
differs from zero, this shows that the PGI’s predictive power derives from factors other than 
DGEs of the variants used in the PGI and those in local LD with them15. These include 
environmental factors and DGEs of other variants with which the PGI is correlated due to non-
random mating15,23. Cognitive performance, educational attainment, allergic rhinitis, height, and 
household income DGE PGIs had average NTCs that show evidence of being non-zero (two-
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sided P-value < 0.05), although they were not statistically distinguishable from zero after 
Benjamini-Hochberg correction. We therefore found only limited evidence of confounding when 
using DGE PGIs, although such confounding is expected under AM and thus likely affects height 
and education-related DGE PGIs (when analyzing relevant outcomes)16,23.  

 
Figure 5. Out-of-sample polygenic prediction analyses using direct genetic effect (DGE) summary statistics. We give 
standardized effect estimates (for phenotype and DGE PGI normalized to 1), corresponding to partial correlation coefficients. 
The ‘direct effect’ of the DGE PGI is the partial correlation with the phenotype conditional on parental PGIs (using the same 
PGI weights) and standard covariates, thus reflecting only direct genetic effects15,16. The population effect of the PGI is the 
partial correlation conditional on standard covariates (without parental PGIs) and thus reflects DGEs, IGEs, and confounding 
factors. Error bars give 95% confidence intervals. For EA and cognitive performance PGIs, here we show the results on average 
English and Math GCSE grades and the age 17 cognitive assessment from MCS, respectively — see Figure 6 for an expanded set 
of outcomes for these PGIs. An expanded set of numerical results is available in Supplementary Table 9. Abbreviations: EA, 
educational attainment (years); BMI, body mass index; HDL, high density lipoprotein; FEV1, forced expiratory volume in 1 
second; Ever-smoker, whether an individual has ever smoked; Non-HDL, total cholesterol minus HDL cholesterol. 
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We analysed an expanded set of 
educational and cognitive phenotypes 
using EA PGIs constructed from both 
DGEs and population effects (Figure 
6, Supplementary Figure 14, and 
Supplementary Table 9). The 
population-effect-based EA PGI 
exhibited much greater attenuation of 
the PGI’s prediction power within-
family (i.e. much smaller direct effect 
than population effect) than the DGE 
EA PGI. This finding is consistent 
with a greater contribution from 
confounding factors to the predictive 
power of (standard-GWAS derived) 
population-effect-based EA PGIs17,23. 
It is not consistent with the within-
family attenuation of EA PGI 
prediction being due solely to AM: 
under that explanation, we would 
expect to see greater shrinkage from 
the DGE PGI than from the 
population-effect-based PGI (𝑅( =
5.3%) because the DGE PGI (𝑅( =
1.8%) has a smaller 𝑅( (ref23).  

Discussion 

We presented results from a meta-
analysis of FGWAS results on 34 
phenotypes from 16 cohorts of 
European genetic ancestries and one 
cohort of East Asian genetic ancestry. 
Our study provides a template for 
performing FGWAS meta-analysis. 
By imputing missing parental 
genotypes3, we were able to maximize 
power while using the same analytical 

framework for different data types (e.g. sibling pairs, parent-offspring pairs, etc.). Meta-analysis 
can be performed using multivariate fixed-effects meta-analysis (Methods), resulting in meta-
analysis estimates of all the parameters of interest (DGEs, NTCs, and population effects) along 
with their joint sampling variance-covariance matrix, facilitating downstream analyses. Our 
analyses showed the value of FGWAS in debiasing inferences drawn from GWAS and in 
investigating the impact of gene-environment correlation and non-random mating.  

UKB Fluid 
intelligence

UKB Educational 
Attainment (EA)

MCS Word Activity 
(Age 14)

MCS Cognitive 
Assessment (Age 17)

MCS Avg. English and 
Math GCSE grades 

(Age 16)

-0.
05 0.0

0
0.0

5
0.1

0
0.1

5

standardised PGI coefficient

maternal NTC

paternal NTC
average NTC

direct

population

Figure 6. Out-of-sample polygenic prediction analysis using the 
educational attainment (EA) direct genetic effect (DGE) PGI. Family-
based PGI analysis was performed on education and cognitive-
performance-related outcomes. Error bars give 95% confidence intervals. 
Outcome phenotypes: Avg. Eng. & Math GCSE Score (Supplementary 
Note Section 4); educational attainment outcome as defined in Okbay et 
al.18; word Activity score from MCS Sweep 6 (age 14); cognitive 
assessment outcome from MCS Sweep 7 (age 17); fluid intelligence score 
from UK Biobank. Full descriptions of outcome phenotypes can be found 
in Supplementary Table 8. An expanded set of numerical results is 
available in Supplementary Table 9. 
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By estimating the genome-wide correlation between direct and population effects3 (Table 1 and 
Figure 1), we found that DGEs and population effects have correlations below one for 26 
phenotypes, with quite low correlations (<0.75) estimated for 13 phenotypes including diastolic 
blood pressure, neuroticism, and depression — phenotypes not closely related to education or 
cognitive ability, the only previous phenotypes shown to have correlations below one.  

Using novel methodologies for comparing DGEs, NTCs, and population effects, we show that 
the low correlation between DGEs and population effects is due to confounding factors in 
population effects (as estimated from standard GWAS) that are uncorrelated with DGEs, likely 
uncorrected population stratification (Methods and Figure 2). Our population effect estimates 
were adjusted for genetic principal components, implying that substantial residual confounding 
can persist after principal-component adjustment. This may be because the principal components 
derived from common variants do not effectively capture recent structure in the population10.  

While the contribution from population stratification can be quite large relative to DGEs 
genome-wide — where most variants do not have true DGEs — the relative contribution is likely 
smaller for strongly associated variants, such as those that reach genome-wide significance in 
standard GWAS. Standard GWAS remains the most powerful study design for discovering 
variants robustly associated with human traits and diseases, and our results do not imply that 
strongly associated loci discovered and replicated by GWAS are false positives. Moreover, our 
analyses were restricted to common variants (minor allele frequency >1%), so our conclusions 
may not apply to GWAS of rare variants.  

Confounding may be more likely to affect methods that use genome-wide summary statistics 
than only strongly associated loci. Some, but not all, of these methods have been shown to be 
particularly vulnerable to biased inferences due to uncorrected population stratification 
confounding: for example, measuring the strength of AM23, assessing evidence for IGEs11,42,43, 
assessing evidence for polygenic selection using ancient and modern DNA4,5,9, and Mendelian 
Randomisation13. For these applications, DGE estimates from sib-GWAS and FGWAS should be 
preferred over population effect estimates.  

Inferences drawn from the application of LD score regression (LDSC) to GWAS results appear 
to be fairly robust to confounding due to population stratification, at least some of which is 
adjusted out by LDSC5,33. This includes functional enrichment analyses using stratified LDSC, 
which did not display obvious differences when applied to DGEs and population effects 
(Supplementary Figures 8-9). However, we found that LDSC SNP heritability estimates from 
DGEs were lower than from population effects for five phenotypes, including depression, for 
which SNP heritability was estimated at 2.5% (S.E. 1.5%) when using DGEs and at 8.2% (S.E. 
1.0%) when using population effects. Since all the phenotypes displaying statistically detectable 
differences in SNP heritability are known to be affected by AM31, AM (rather than population 
stratification) is likely to be the primary explanation6, although IGEs could also contribute44.  

Genetic correlation estimates from LDSC have been used to investigate pleiotropy and are used 
as inputs to multi-phenotype methods such as GenomicSEM. We demonstrated that genetic 
correlation estimates from population effects are different from those from DGEs for 22 pairs of 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 4, 2024. ; https://doi.org/10.1101/2024.10.01.24314703doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.01.24314703
http://creativecommons.org/licenses/by/4.0/


phenotypes, with some pairs displaying qualitatively different estimates. We found evidence 
supporting the hypothesis put forward by Border et al.7 that genetic correlation estimates have 
been inflated by cross-trait AM, but other factors may also contribute, such as IGEs. Our results 
argue for the use of DGE estimates when investigating pleiotropy. 

When we performed family-based analysis of PGIs constructed from meta-analysis estimates of 
both DGEs and population effects, we found less attenuation of the predictive power of DGE-
based PGIs within-family than for population-effect-based PGIs. Our summary statistics enabled 
construction of DGE PGIs whose out-of-sample predictive power is statistically distinguishable 
from zero for 24 phenotypes. These summary statistics will enable downstream analyses that are 
sensitive to confounding.  

Although our meta-analysis provides DGE summary statistics that are powerful enough for many 
analyses, the effective sample size for DGEs (on the order of 104 to 105) remains an order of 
magnitude lower than for the most powerful GWAS meta-analyses, which have sample sizes in 
the millions17,45. Therefore, GWAS-derived population-effect PGIs will likely provide greater 
out-of-sample prediction ability than DGE PGIs in the near-term. However, the confounding 
present in GWAS population effects means that population-effect estimates will not converge to 
DGEs, implying that FGWAS will produce estimates of DGEs with a smaller total error (bias 
plus sampling error) than standard-GWAS-derived population-effects once FGWAS effective 
sample sizes pass some threshold. While some of the confounding in GWAS may contribute to 
out-of-sample prediction ability in contexts similar to the original GWAS, such confounding may 
reduce prediction ability in other contexts, such as predicting across ancestries and within 
families8,20. Thus, DGE PGIs, or hybrid PGIs combining GWAS and FGWAS results, may 
provide improved out-of-sample prediction over population-effect PGIs in certain contexts long 
before FGWAS effective sample sizes approach current large-scale GWAS sample sizes.  

The predominance of GWAS in human genetics has led to study designs that prioritize sampling 
the maximum number of unrelated individuals. This sampling strategy maximizes power to 
discover genotype-phenotype associations but often results in datasets without many first-degree 
relative pairs. While more powerful analytical approaches are being developed20, building 
family-based sampling into the design of future biobanks is crucial for realizing the potential of 
FGWAS and related methods. Furthermore, FGWAS and related methods present an opportunity 
to analyze genetically diverse samples in a way that is not susceptible to population stratification 
confounding20, but, to realize this potential, family-based sampling should be built into future 
efforts to diversify human genetics data. 
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Data availability 

Meta-analysis summary statistics are available for download from the SSGAC data portal: 
https://thessgac.com/. Summary statistics from HUNT were excluded from the public release for 
blood pressure (diastolic), EA, neuroticism, height, BMI, HDL cholesterol, blood pressure 
(systolic), depressive symptoms, and non-HDL cholesterol. We will update the publicly available 
summary statistics with the HUNT summary statistics following publication of relevant HUNT 
studies. 
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Code availability 

Cohort-level imputation of missing parental genotypes and family-based GWAS analyses were 
performed using snipar, which is freely available here (https://github.com/AlexTISYoung/snipar) 
with documentation here (https://snipar.readthedocs.io/en/latest/guide.html). Relationships 
between effects were estimated using the correlate.py script in snipar, and family-based PGI 
computation and analyses were performed using the pgs.py script in snipar. The code for 
performing the quality control and meta-analysis and other ancillary analyses is available as a git 
repository here: https://github.com/JonJala/within_family_project. SNP heritability and genetic 
correlation analyses were performed using LDSC v1.0.0 and GenomicSEM v0.0.5. Code for 
performing cross-trait assortative mating analyses is available here: 
https://github.com/rborder/FGWAS_meta_xAM.  
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Methods 
Cohort level analyses 

Genome-wide associations studies (GWASs) have discovered thousands of associations between 
genetic variants and human traits46. GWAS proceeds by performing a regression of the form: 

𝑌i = 𝛽!𝑔)! + 𝜸′𝒛𝒊 + 𝜖i,					(1) 

where 𝑌i and 𝑔il are, respectively, the phenotype and genotype of individual 𝑖	at SNP 𝑙, and 𝒛𝒊 is 
a vector of covariates. The GWAS parameter 𝛽! is called the ‘population effect’ — as it reflects 
the genotype-phenotype association in the population, conditional on covariates — estimates of 
which are used as input to downstream analyses. Family-based GWAS (FGWAS) is defined by 
the regression: 

𝑌i = 𝛿!𝑔)! + 𝛼"!𝑔p(i)l + 𝛼#!𝑔m(i)l + 𝜸′𝒛𝒊 + 𝜖i,					(2) 

where 𝑔p(i)l and  𝑔m(i)l are the genotypes of individual 𝑖’s father and mother.  

We distributed an analysis plan to each cohort (Supplementary File 1). In addition to the 30 
phenotypes specified in the analysis plan, we analyzed chronic obstructive pulmonary disease 
(COPD), hypertension, and alcohol use disorder in Finngen. The analysis plan gave the cohort-
level genotype and phenotype quality control steps. Missing parental genotypes were imputed in 
each cohort using snipar, with some cohorts using phased data to perform the imputation 
(Supplementary Table 1). Samples were restricted to homogeneous European ancestry 
subsamples for the 16 cohorts of predominantly European ancestries with the exact procedure 
varying depending upon cohort. Phenotypes were adjusted for standard covariates: age, sex, and 
genetic principal components. Following imputation of missing parental genotypes, FGWAS was 
performed using snipar. For samples without genotyped parents (Finnish Twin Cohort, Swedish 
Twin Register, Minnesota Twins, iPSYCH), FGWAS was performed using the imputed sum of 
parental genotypes3; the remaining cohorts used model (2) with parental genotypes replaced with 
their imputed values when missing. Summary statistics provided by each cohort were passed 
through a quality control pipeline, described in Supplementary Note Section 1, before meta-
analysis was performed.  

Meta-analysis 

For each variant 𝑙, we produced meta-analysis estimates of the parameter vector 𝜃! ≔
@𝛿! , 𝛼"! , 𝛼#!A

+,  where 𝛿! is the direct effect of SNP 𝑙, and 𝛼"! and 𝛼#! are the paternal and 
maternal non-transmitted coefficients (NTCs) (see model (2)). However, the parameter vector is 
not identifiable in cohorts without genotyped parents, where the imputed sum of parental 
genotypes is used rather than separate genotypes for each parent, as in model (2). For these 
cohorts,  we obtained an estimate of the collapsed parameter vector, @𝛿! , (𝛼"! +	𝛼#!)/2A

+, 
which is a linear transformation of 𝜃!. 

To combine the estimates from different samples, we used a generalization of multivariate 
(fixed-effects) meta-analysis that allows the observation from each cohort to be a linear 
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transformation of the underlying parameter vector. Consider 𝑧,! ∼ 	𝑁E𝐴,𝜃! , Σ,!H, where 𝑧,! is the 
estimated parameter vector for variant 𝑙 from cohort 𝑗 = 1, 2, … , 𝐽, and 𝐴, is the matrix that gives 
the linear transformation that relates the underlying parameter vector to the parameter vector 
estimated in cohort 𝑗. Provided that the combination of estimates enables identifiability of 𝜃!, the 
maximum likelihood estimate (MLE) of 𝜃! is given by: 

𝜃L! 	= E∑ 𝐴,+Σ,!&%𝐴,
-
,.% H

&%
E∑ 𝐴,+Σ,!&%𝑧,!

-
,.% H; 

and the variance of the MLE is given by 𝑉𝑎𝑟E𝜃L!H = 	 E∑ 𝐴,+Σ,!&%𝐴,
-
,.% H

&%
. From the meta-analysis 

estimate of 𝜃!, we can derive meta-analysis estimates of the population effect and average NTC 
through linear transformation. Let 𝛼! = (𝛼"! + 𝛼#!)/2	 be the average NTC. Under random-
mating, the population effect, 𝛽!, is 𝛽! = 𝛿! + 𝛼!. For samples with minimal structure  — such as 
used in our meta-analysis — deviations from this relationship will be negligible3,20. We therefore 
obtained meta-analysis estimates of the expanded parameter vector through linear 
transformation: 

𝜃"!∗ =

⎣
⎢
⎢
⎢
⎢
⎡ 𝛿
(!
𝛼*#!
𝛼*$!
𝛼*!
𝛽(! ⎦
⎥
⎥
⎥
⎥
⎤

= 𝐵𝜃"! ,	where	𝐵 =

⎣
⎢
⎢
⎢
⎡
1	0	0	
0	1	0	
0	0	1

0	0.5	0. 5
1	0.5	0.5	⎦

⎥
⎥
⎥
⎤
. 

Thus, the meta-analysis estimate of the expanded parameter vector 𝜃!∗	is 𝐵𝜃L! 	and its sampling 
variance-covariance matrix is 𝐵	𝑉𝑎𝑟E𝜃L!H𝐵+.  

Whenever a phenotype was available in Finngen (height, number of children, age at first birth in 
women, BMI, depression, ever-smoker, ADHD), we removed the Finnish cohorts that are part of 
FinnGen (Finnish Twin Cohort and the Botnia Family Study) from the meta-analysis and used 
FinnGen alone instead. We excluded educational attainment (EA) summary statistics from the 
Botnia Family Study due to low genetic correlation with the reference GWAS17.  

In addition to the multivariate meta-analysis, we performed univariate meta-analysis of DGEs. 
We did this because multivariate meta-analysis may introduce some bias into DGE estimates due 
to heterogeneity in the parameter vector across cohorts. However, we found that univariate and 
multivariate meta-analysis estimates of DGEs were highly correlated (r=0.999) for EA 
(Supplementary Figure 3), suggesting that results obtained from both univariate and multivariate 
meta-analysis will be highly concordant. For all the results in this manuscript, we use the 
estimates from the multivariate meta-analysis because the joint sampling variance-covariance 
matrix obtained from multivariate meta-analysis facilitates downstream analyses. However, DGE 
summary statistics from both univariate and multivariate meta-analysis are available publicly 
(Data Availability).  

 

 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 4, 2024. ; https://doi.org/10.1101/2024.10.01.24314703doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.01.24314703
http://creativecommons.org/licenses/by/4.0/


Estimating genome-wide relationships between effects 

To estimate relationships between different types of effect, such as DGEs and population effects, 
we derived a moment-based estimator that accounts for the sampling errors in the estimates. For 
example, let �̂�! be the estimated DGE for variant 𝑙, and let �̂�! be the estimated population effect. 
Then we have that 

�̂�! = 𝛿! + 𝜖$!; �̂�! = 𝛽! + 𝜖0! 

where 𝛿! is the DGE, and 𝜖$! is the sampling error; and 𝛽! is the population effect, and 𝜖0! is the 
sampling error. The variance-covariance matrix of the sampling errors at each SNP is known 
from the multivariate meta-analysis (above): 

Var	 VW
𝜖$!
𝜖0!XY = Z

𝜎$!( 𝑟!𝜎$!𝜎0!
𝑟!𝜎$!𝜎0! 𝜎0!(

\ 

where 𝜎$!(  and 𝜎0!(  are the sampling variances of the DGE and population effect estimates, and 𝑟! 
is their sampling correlation. 

The genome-wide correlations between effects and other quantities can estimated by computing 
the variances and covariances of the true effects. For example, we may wish to estimate the 
genome-wide correlation between DGEs and population effects: 

𝑟(𝛿, 𝛽) =
Cov(𝛿! , 𝛽!)

`Var(𝛿!) Var(𝛽!)
=

𝑐$0
`𝑣$ 𝑣0

. 

Following an approach similar to Okbay et al.47 (2016) (Supplement section 3.2.1.2), we assume 
the effects have expectation zero across the SNPs and apply the Law of Total Variance, obtaining 

c$0 = CovE�̂�! , �̂�!H − 𝔼@CovE𝜖$! , 𝜖0!HA; 

𝑣$ = Var	E�̂�!H − 𝔼[Var	(𝜖$!)]; 

𝑣0 = Var	E�̂�!H − 𝔼@Var	E𝜖0!HA. 

We now derive estimators for regressions of population effects on DGEs, which enable us to 
make inferences about inflation/deflation of population effects relative to DGEs as well as to 
infer the proportion of population effect variance that is due to factors uncorrelated with DGEs. 
Let 𝛽! = 𝑠! + 𝑎𝛿!, where 𝑠! represents variation in population effects uncorrelated with DGEs, 
which could be from factors including population stratification and/or IGEs uncorrelated with 
DGEs. We assume that 𝔼![𝑠!] = 0 and Var!(𝑠!) = 𝜎1(. In effect, we are modeling population 
effects as scaled DGEs plus a random bias term with mean zero. Inflation of effects due to 
assortative mating would be expected to increase 𝑎 above 1 (ref23). Now we consider estimating 
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𝑎 and 𝜎1( from genome-wide estimates of 𝛿! and 𝛽!. We estimate 𝑎 by a noise-adjusted 
regression. By applying the Law of Total Variance, one can show that 

𝑎 =
Cov!E�̂�! , �̂�!H − 𝔼!@𝑟!𝜎$!𝜎0!A

Var! 	E�̂�!H − 𝔼!@𝜎$!( A
=
𝑐$0
𝑣$

 

To estimate 𝜎1(, we attempt to subtract out the DGE component from 𝛽!. Let 𝑢! = �̂�! − �̂��̂�!, then 

𝑢! = 𝑠! + (𝑎 − �̂�)𝛿! + 𝜖0! − �̂�𝜖$! 

Consider the variance of 𝑢!: 

Var!(𝑢!) = 𝜎1( + (𝑎 − �̂�)(𝑣$ + 𝔼!@𝜎0!( − 2�̂�𝑟!𝜎$!𝜎0! + �̂�(𝜎$!( A 

The issue here is that, since we do not know the true value of 𝑎, we cannot apply this formula 
exactly to estimate 𝜎1(. However, we can approximate (𝑎 − �̂�)( with its expectation: 
𝔼[(𝑎 − �̂�)(] = Var	(�̂�). Therefore, 

𝜎1( ≈ Var!(𝑢!) − Var	(�̂�)𝑣$ − 𝔼!@𝜎0!( − 2�̂�𝑟!𝜎$!𝜎0! + �̂�(𝜎$!( A 

We derive weighted sample estimators for these moments in Supplementary Note Section 2.  

LDSC Intercept Analyses 

The LDSC intercept has been proposed as a measure of confounding, with deviations above one 
argued to represent the extent of spurious inflation in GWAS test statistics33. We found that 29 
phenotypes had intercepts detectably above one (FDR<0.05, one-sided test) when using 
population-effect summary statistics (Supplementary Table 3). Using DGE summary statistics, 
we found 15 phenotypes with intercepts detectably above one (FDR<0.05, one-sided test). 
Beyond uncorrected-for population stratification, other phenomena may lead to LDSC intercepts 
above one, including: violation of LDSC assumptions about genetic architecture48, differences in 
LD between the reference and meta-analysis samples, and cryptic relatedness9. In cases of a large 
product of sample size and SNP heritability, a normalization of the LDSC intercept called the 
‘ratio’ has been proposed as a more appropriate measure of confounding49. Of the 15 phenotypes 
with DGE-based intercepts significantly greater than one, height, BMI, and ever-smoker showed 
small DGE-based ratios (<0.15). Nine of the other phenotypes either failed our sample-size filter 
for the DGE meta-analysis or showed post hoc a product of DGE sample size and heritability in 
below those excluded a priori for sample size only. The remaining phenotypes (age at menarche, 
myopia, allergic rhinitis) showed large ratios (>0.25), potentially indicating unusual genetic 
architectures. Overall, the 18 phenotypes with an acceptable product of DGE sample size and 
SNP heritability showed an average DGE-based LDSC ratio of 0.104, smaller than their average 
population-based ratio of 0.306—consistent with a successful removal of confounding bias.  
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SNP heritability estimation 

Using LDSC, we estimated ‘SNP heritability’ using meta-analysis estimates of DGEs, average 
NTCs, and population effects for each phenotype. To reduce the impact of variants with low 
precision estimates, we filtered  out variants with effective sample size less than 0.8 of the 
median effective sample size for DGEs. Since LDSC was designed for GWAS summary statistics 
on population effects derived from samples of unrelated individuals, we use the effective sample 
size for the required sample size input3,9.  

For an element 𝛾! of the parameter vector, the effective sample size is the sample size that would 
give a regression coefficient with sampling variance equal to Var(𝛾k!) from a regression of 
phenotype onto genotype in unrelated individuals. We calculate 𝑁eff(𝛾!) ≡

2#$

(3!(%&3!)Var(67!)
 as the 

effective sample size for 𝛾!, where 𝑓! is the meta-analysis allele frequency for variant 𝑙, and 𝜎8( is 
the phenotypic variance. 

For the European genetic ancestry meta-analysis, we used GenomicSEM39 to calculate P-values 
for the difference between SNP heritability estimated using DGEs and population effects. 
GenomicSEM allows users to fit structural equation models based on GWAS summary statistics. 
We used GenomicSEM software to run multivariable LD-score regression on the DGE and 
population effect summary statistics for each phenotype. For the LD reference panel, we used the 
EUR LD scores provided with LDSC33.  

The GenomicSEM output includes the sampling variance-covariance matrix of the SNP 
heritability estimates from DGEs and population effects. This allowed us to calculate the P-value 
for the difference between SNP heritability estimated from DGEs and population effects 
(Supplementary Table 5).  

China Kadoorie Biobank analysis 

In addition to the meta-analysis of 16 European ancestry cohorts, we conducted analyses on 
summary statistics from the China Kadoorie Biobank (CKB) for 15 phenotypes (Supplementary 
Table 4). To perform quality control on these summary statistics, we used EAS allele frequencies 
from 1000 Genomes50. For the analyses involving LDSC and snipar, we used an LD reference 
panel generated using snipar from the CKB data. To compare our results to a reference GWAS, 
we used summary statistics from Sakaue et al.51 (Supplementary Table 10). However, these were 
only available for four of the phenotypes in our analysis: BMI, height, blood pressure (systolic), 
and blood pressure (diastolic). 

Estimating cross-trait genetic correlations 

For the European genetic ancestry meta-analysis, we used the multivariable LDSC function 
within GenomicSEM software to estimate the genetic covariance matrix for each pair of 
phenotypes and the associated sampling covariance matrix — which indexes the estimation 
errors in the genetic variances and covariances, along with their interdependencies.   We note that 
while the multivariable LDSC function within GenomicSEM is capable of producing a 
standardized genetic covariance matrix (S_Stand) that is equivalent to a genetic correlation 
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matrix, the associated standard errors (contained within the diagonal of V_stand) do not 
correspond to the standard errors of the genetic correlations, but instead correspond to standard 
errors of the genetic covariances that have been rescaled to the standardized metric — i.e. 
ignoring uncertainty in genetic variance estimates.  We specified a model within GenomicSEM 
software to directly estimate the genetic correlation matrices with their appropriate standard 
errors from the unstandardized genetic covariance matrix (S) and its associated sampling 
covariance matrix (V).  We calculated the genetic correlations between phenotypes using both 
DGE and population effect estimates (Supplementary Table 6), where we used the EUR LD 
scores provided by LDSC and the effective sample sizes (referred to in the GenomicSEM 
documentation as N_hat) as inputs.  

We passed the output from the multivariable LD-score regression through a user-specified model 
within Genomic SEM in which the DGE and population effect summary statistics for each of the 
two phenotypes is affected exclusively by separate latent variables with fixed variances of 1.0. 
The freely estimated loading on the latent variable is equal to the square root of its SNP 
heritability. (As square roots have both positive and negative solutions, we restrict the model to 
positive solutions for interpretability.) By allowing the latent variables for each phenotype to 
covary, we obtain estimates of the genetic correlation based on both DGE and population effect 
estimates, and directly obtain their standard errors.  

To compute the statistical significance of differences between genetic correlations estimated 
using DGEs and population effects, we fit a follow-up model within the GenomicSEM software 
in which we constrain the values of the genetic correlations based on DGEs and population 
effects to be equal. The estimation of a single joint parameter, rather than two separate 
parameters, to represent the genetic correlation for both DGE and population effects, reduces the 
degrees of freedom by 1, and the chi-square statistic for this model and associated P-value index 
the extent of violation of this equality assumption. In some cases, this procedure yielded 
correlations outside of [-1, 1], leading to convergence errors. When this occurred, we reran the 
model, constraining the relevant estimates to fall within [-0.9999, 0.9999]. 

Investigation of the relationship between cross-trait assortative mating and genetic correlations 

Following the procedure of Border et al.7, we performed mate identification in the “white 
British” subsample [field 22006] of the UK Biobank41. Among those in the analysis sample, we 
first selected sex-discordant pairs of unrelated individuals who reported living with their spouse 
[field 709], had the same values for distance to coast [field 24508], inverse distance to nearest 
road [field 24010], nearest distance to nearest major road [field 24012], and household size (field 
790), and were concordant on whether their property was rented versus owned [field 780].  
Ambiguous cases (i.e., when three or more participants matched on all criteria) were discarded. 
This resulted in 39,710 putative mate pairs that were used to measure cross-mate cross-
phenotype correlations. 

To compute cross-mate cross-phenotype correlations, we first Winsorized all continuous 
phenotypes at the .005 and .995 empirical quantiles separately within sex. As mates are typically 
similar in age, we sought to mitigate any potential inflation of cross-mate correlations due to 
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cohort effects. To achieve this, we estimated residual Pearson, polychoric, or polyserial 
correlations across mates after regressing out age from the phenotype (or the latent continuous 
phenotype in the case of binary phenotypes). For simplicity of presentation, we constrained 
cross-mate cross-trait correlations to be equal across sexes—e.g., for height and BMI, we 
constrained the cross-mate correlations for female height x male BMI and female BMI x male 
height to be equal. No such constraints were needed for age at first birth and age at menarche, 
which were only measured in females. Cross-mate correlations were estimated using lavaan 
v0.6-15 (ref52). 

To perform a Bayesian analysis of the relationship between cross-mate cross-phenotype 
correlations and genetic correlations, we estimated the correlation between latent variables 𝑥),, 
which denotes the cross-mate cross-phenotype correlations for phenotypes 𝑖 and 𝑗, and 𝑦),, 
which denotes the population genetic correlation, the DGE genetic correlation, or the difference 
between them. Each of these correlations are estimated with error, so we model the estimated 
quantities as 

𝑥k),~𝑁E𝑥), , 	𝑠𝑒r9,),H										𝑦k),~𝑁E𝑦), , 	𝑠𝑒r8,),H. 

Here, 𝑥k), and 𝑦k), denote the corresponding estimated correlations associated with traits 𝑖 and 𝑗 
with known standard errors, 𝑠𝑒r9,), and 𝑠𝑒r8,),. All models were fit via Hamiltonian Monte Carlo 
using stan v2.21.0 via the brms v2.17.0 R library53. For code used to fit these models, see Code 
Availability. 

Here, we outline the rough expected relationships between cross-mate phenotype correlations 
and DGE and population effect based genetic correlations. If mates assort on one phenotype X 
that’s pleiotropic with Y (e.g. BMI and adiposity), then X and Y will be phenotypically and 
genetically correlated across mates, but the genetic correlation would be fully mediated through 
the cross-mate correlation on X. Letting Y*, X* denote the phenotypes of one’s mate, Y is 
correlated with X due to pleiotropy, and X is correlated with X* due to AM, which is in turn 
correlated with Y* due to pleiotropy. This implies that a relationship between cross-mate 
phenotype correlations and genetic correlations due to pleiotropy is expected even under 
univariate AM. Since DGE based genetic correlations should be almost entirely free from the 
influence of xAM, a relationship between cross-mate phenotype correlations and DGE genetic 
correlations can be explained by pleitropy and univariate AM, which would not be expected to 
generate spurious genetic correlations between phenotypes without any pleiotropy.  

However, under xAM, a relationship between cross-mate phenotype correlation and population 
effect genetic correlations will occur even in the absence of pleiotropy, and when there is some 
pleiotropy, it will be overestimated7. This is because of bias in the population effect estimates 
due to xAM. To summarise, a stronger relationship between cross-mate cross-phenotype 
correlations and population effect genetic correlations than with DGE genetic correlations is 
consistent with some (but not all) of the pleiotropy signal being artifactual as we should expect in 
a world where lots of phenotypes are correlated across mates. 
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Validation Phenotypes 

We chose MCS as the primary validation cohort as it is a nationally representative sample of 
people born around the year 2000 in the UK. For around half of the sample, it has both parents 
genotyped; the other half has one parent genotyped. Validation phenotypes were chosen by 
finding the phenotype in MCS most similar to the phenotype on which summary statistics were 
collected. If such a phenotype was not available in MCS, we found the closest phenotype in 
UKB, and we used summary statistics from a meta-analysis excluding UKB to compute the 
PGIs. See Supplementary Note Section 4 and Supplementary Table 8 for further details on the 
validation phenotypes.  

PGI Analyses 

We compute PGIs separately from DGE and population effect estimates for each phenotype. The 
PGI weights were computed using PRS-CS54. We use the EUR LD reference panel provided in 
PRS-CS, which was constructed using UK Biobank data and comprises 1,117,425 SNPs from 
HapMap3.  

For the UK Biobank prediction sample, we used the subsample identified as white British by UK 
Biobank41, and for the MCS prediction sample, we used the subsample identified as closest to the 
EUR superpopulation cluster from 1000 Genomes, as described in Guan et al.20. Using snipar, 
we imputed missing parental genotypes for the samples with at least one sibling and/or parent 
genotyped (but without both parents genotyped), as described in Guan et al.20 and Supplementary 
Table 1.   

We performed standard and family-based PGI (FPGI) analyses using snipar3 (Supplementary 
Table 9). For PGIs derived from both DGE estimates (DGE PGIs) and population effect 
estimates, we performed regressions of the form: 

𝑌) = 	𝑋𝑏 + 𝛿PGI) + 𝛼"PGI"()) + 𝛼#PGI#()) + 𝜇;()) + 𝜖), (3) 

where 𝑋 is the design matrix of the covariates (sex, a third degree polynomial in age, their 
interactions, and the first 20 genetic PCs); 𝑏 is the vector of regression coefficients for the 
covariates; PGI) is the PGI of individual 𝑖; PGI"()) is the paternal PGI; PGI#()) is the maternal 
PGI; 𝛿 is called the “direct effect” of the PGI15; 𝛼" and 𝛼# are the paternal and maternal non-
transmitted PGI coefficients; 𝜇;()) is the phenotypic mean in the family which individual 𝑖 is in, 
which we modelled with a random effect3; and 𝜖) is the residual error. Both offspring and 
parental PGIs were computed using the same set of SNPs and the same weights: i.e. both used 
weights derived from DGE summary statistics or population effect summary statistics. When a 
parent was not genotyped, we used their genotypes as imputed by snipar to compute the PGI for 
that parent3. We estimated the ratio between the average NTC and direct effect of the PGI ( <

$
 ) 

and the difference between the maternal and paternal NTCs (𝛼# − 𝛼"). We used the Delta 
Method to estimate the standard error for <

$
 . 
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To estimate the ‘population effect’ of the PGI, we performed a regression without controlling for 
parental PGIs, but using the same sample: 

𝑌) = 𝑋𝑏 + 𝛽𝑃𝐺𝐼) + 𝜇;()) + 𝜖) ,										(3) 

where 𝛽	is the population effect of the PGI. Unlike in the single variant case, the population 
effect estimated from 𝛽 can differ substantially from 𝛿 + 𝛼 — where 𝛼 is the average NTC for 
the PGI — when there is AM3,7. At equilibrium, 𝛽 = 𝛿 + E1 + 𝑟parH𝛼, where 𝑟par is the 
correlation between parents’ PGIs23. 

For binary phenotypes, we ran a similar set of regressions, but instead fit a generalized linear 
mixed model using the glmer() function in the R package lme455.We control for sex, age, the 
interaction of age and sex, and the first 10 PCs, setting nAGQ = 1 and using the bobyqa 
optimizer. For the migraine and eczema phenotypes, we use only the first 5 PCs and set nAGQ = 
0 to achieve model convergence. For depression, we fit a generalized linear model controlling for 
age, sex, the interaction of age and sex, and the first 20 PCs, due to convergence issues with the 
generalized linear mixed model. 
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