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Abstract 
Introduction 
We investigated if large language models (LLMs) can be used for abstract screening in systematic- and 
scoping reviews. 
 
Methods 
Two broad reviews were designed: a systematic review structured according to the PRISMA guideline 
with abstract inclusion based on PICO criteria; and a scoping review, where we defined abstract 
characteristics and features of interest to look for. For both reviews 500 abstracts were sampled. Two 
readers independently screened abstracts with disagreements handled with arbitrations or consensus, 
which served as the reference standard. The abstracts were analysed by six LLMs (GPT-4o, GPT-4T, 
GPT-3.5, Claude3-Opus, Claude3-Sonnet, and Claude3-Haiku). Primary outcomes were diagnostic test 
accuracy measures for abstract inclusion, abstract characterisation and feature of interest detection. 
Secondary outcome was the degree of automation using LLMs as a function of the error rate.  
 
Results 
In the systematic review 12 studies were marked as include by the human consensus. GPT-4o, GPT-4T, 
and Claude3-Opus achieved the highest accuracies (97% to 98%) comparable to the human readers 
(96% and 98%), although sensitivity was low (33% to 50%). In the scoping review 130 features of 
interest were present and the LLMs achieved sensitivities between 74-84%, comparable to the human 
readers (73% and 86%). The specificity of GPT-4o (98%) and GPT-4T (>99%) greatly surpassed the 
other LLMs (between 33% and 93%). For abstract characterization all LLMs achieved above 95% 
accuracy for language, manuscript type and study participant characterisation. For characterisation of 
disease-specific features only GPT-4T and GPT-4o showed very high accuracy. For abstract inclusion 
the highest automation rate (91%) at the lowest error rate (8%) was achieved by use of two LLMs with 
disagreement solved by human arbitration. An LLM pre screening before human abstract screening 
achieved an automation rate of 55% with no missed abstracts. 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 2, 2024. ; https://doi.org/10.1101/2024.10.01.24314702doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2024.10.01.24314702
http://creativecommons.org/licenses/by/4.0/


 

 

 
Conclusion 
Abstract characterisation and specific feature of interest detection with LLMs is feasible and accurate 
with GPT-4o and GPT-4T. The majority of abstract screenings for systematic reviews can be 
automated with use of LLMs, at low error rates. 
 
 

Introduction 
Systematic reviews and scoping reviews are methods used for evidence synthesis. The Cochrane 
networks have defined systematic reviews as reviews “of a clearly formulated question that use 
systematic and explicit methods to identify, select, and critically appraise relevant research, and to 
collect and analyse data from the studies that are included in the review”1. In comparison, scoping 
reviews are “exploratory projects that systematically map the literature available on a topic, 
identifying key concepts, theories, sources of evidence and gaps in the research”, according to the 
definition by the Canadian Institute of Health Research2. 

Systematic and scoping reviews rely on a proper search strategy, title and abstract screening, full text 
assessment, and finally extraction of variables from the included papers. Human readers usually do this 
manually, often following guidelines, for example, the PRISMA guidelines for systematic reviews3.  

Abstract screening is necessary because full text assessment of all records for larger systematic reviews 
would be impractical and unnecessary. But, because abstracts excluded during screening do not 
undergo full text assessment, the step is critical. One of the issues with manual abstract screening and 
extraction is varying inter-reader reliability. Inter-reader reliability between human readers in 
systematic reviews is rarely very good, and can range between κ = 0.37-0.904,5. These inter-reader 
variabilities are primarily caused by human errors, where relevant information is missed from the title 
or abstract4. Conducting repetitious work for several hundreds of hours can leave humans prone to 
errors. It has previously been described that individual coder performance is affected by “learning 
effect” and “fatigue effect”6. To reduce the number of abstracts which have to be screened, narrower 
search strategies are sometimes conducted to limit the amount of work. This strategy is not without 
pitfalls, as narrower search strategies may overlook relevant papers. Finally, the fast-growing number 
of publications challenges the systematic review process. A large-scale systematic review can take 
more than a year to conduct and cost up to a quarter of a million USD7,8. Currently PubMed alone 
contains more than 37 million citations of biomedical literature from MEDLINE, life science journals, 
and online books9. 

How could we reduce the workload on reviewers for abstract screening, while maintaining the broadest 
possible search strategy? Large language models (LLMs) may be the answer to systematic and scoping 
review automation10. Researchers assisted by LLMs could conduct extensive reviews of hundreds of 
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thousands to millions of studies - ensuring that each abstract is evaluated. In the literature, there are 
already beginning to appear examples of how LLMs can be used for systematic reviews11–15. We 
wanted to explore this subject further with multiple different LLMs from different companies, 
expanding the concept to both systematic and scoping reviews and estimate the workload reduction.  

Our primary research question was to determine the diagnostic test accuracy of six commercially 
available LLMs for abstract characterisation, screening abstracts for inclusion and detection of specific 
features using a zero-shot prompting approach. Our secondary and tertiary research questions were to 
determine the number of abstracts that could be automatically screened using LLMs and to determine 
the intra- and inter-reader agreement of different LLMs. Our hypothesis was that LLMs could perform 
these tasks with accuracies and agreements close to that of humans. 

Methods 
Study design 
The study design is a prospective, diagnostic test accuracy study of LLMs. We examined the diagnostic 
test accuracy of multiple LLMs extracting information from abstracts for two review studies (Table 1), 
a systematic review and a scoping review. Data collection for the two reviews was planned before the 
index test and reference standard were performed. We followed the STARD guidelines for writing the 
manuscript16. 
 

Participants 
For the systematic review (Review 1), we designed a review of the external performance of deep 
learning tools in neuroradiology following the PRISMA guidelines with a research question defined 
through PICOs criteria. For the scoping review (Review 2), we designed a review which would provide 
an overview of the literature, including abstract characteristics and imaging biomarkers used (specific 
features of interest), of diabetes-related kidney changes. 
 Review 1: Systematic review on deep 

learning tools in neuroradiology 
Review 2: Scoping review on kidney 
imaging 

Search String* ● “Central Nervous System” AND 
“Diagnostic Imaging” AND “Deep 
Learning” 

“Kidney” AND “Diabetes Mellitus” AND 
“Diagnostic Imaging” 

Classification 
Criteria 

PICOs inclusion criteria: 
● Patients: Adult patients with 

suspected neurological disease. 
● Intervention: Analysis of brain 

scan with a deep learning or neural 
network algorithm/tool. 

● Comparison: Manual analysis of 
brain scan (radiology report or 
expert reader). 

● Outcome: Diagnostic test accuracy 

7 abstract characteristics: 
● Language 
● Study type (Review/Clinical 

Study/Animal Study/Case 
Report/Other/Indeterminate) 

● Study participants 
(Humans/Animals/Other/Indeterminat
e) 

● Organ System Investigated 
(Kidney/Other/Both/Indeterminate) 
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Table 1: Classification criteria for the two reviews. *Shortened, full search strings in supplementary materials. 

 

PubMed search and extraction of abstracts 

We conducted broad PubMed searches for relevant studies, and extracted date, DOI, authors, title, and 
abstract from PubMed with a Python extension (Biopython version 1.83). We conducted the systematic 
review search on April 19th, 2024 and the scoping review search on May 14th, 2024. For both reviews, 
we took out a sample of 500 abstracts for manual review (Figure 1). 

Outcome measures 

For the systematic review each abstract screened could be categorised as included in full-text review, 
excluded, or indeterminate. Indeterminate results would, according to PRISMA, also undergo full-text 
review and were therefore categorised as included.  

For the scoping review, each abstract was assessed regarding 7 abstract characteristics (see Table 1). In 
addition, a list of 23 specific features of interest (see Table 1), was precompiled from a systematic 
review of MRI biomarkers17, and extended by further characteristics specific to CT. Each specific 
feature of interest could be coded as yes (present), no (absent), or indeterminate. An abstract could 
contain multiple specific features of interest.  

Index test 

of the intervention in an external 
cohort. 

● Study characteristics: Diagnostic 
test accuracy studies mentioning 
sensitivity, specificity, accuracy or 
AUC for diagnostic performance. 

 
PICO exclusion criteria: 

● Patients: Paediatric studies, animal 
studies. 

● Intervention: Other modalities 
such as EEG, MEG, and 
ultrasound. 

● Comparison: If no reference test or 
ground truth is mentioned. 

● Outcome:  If there is only internal 
testing performed (for example by 
random data splitting) or cross 
validation. 

● Study characteristics: Non-
diagnostic test accuracy studies. 
Only other outcomes, such as 
DICE score. 

 

● Study of Diabetes Mellitus 
(Yes/No/Indeterminate) 

● Radiological modality 
(CT/MRI/US/Other/Multiple/None/In
determinate) 

● Acute post-contrast kidney injury 
(Yes/No/Indeterminate) 

 
23 Specific features of interest 
(Yes/No/Indeterminate) 

● BOLD, T1, ADC 
● Kidney Volume, Size, Length 
● Parenchymal ICM Enhancement, 

Volume, Thickness, Heterogeneity 
● Renal Blood Flow, Systolic Velocity, 

Diastolic Velocity, Resistive Index 
● Renal, Parenchymal and Perirenal Fat 
● Global Perfusion and Global 

Attenuation 
● Focal Attenuation and Focal ICM 

Enhancement 
● Arterial ICM concentration, venous 

ICM concentration 
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Abstracts were analysed with six different commercially available LLMs with the same prompt and 
setup. The LLMs were prompted to return the output in a structured JSON format along the 
prespecified items which were then parsed into a table format. The LLMs used were three models with 
assumed lower parameter count: GPT-3.5 (gpt-3.5-turbo-0125), Claude3-Sonnet (claude-3-sonnet-
20240229), and Claude3-Haiku (claude-3-haiku-20240307) and three frontier models, assumed to have 
higher parameter count: GPT-4T (gpt-4-turbo-2024-04-09), GPT-4o (gpt-4o-2024-05-13) and Claude3-
Opus (claude-3-opus-20240229). Figure 1 illustrates the study design. 

 

 

Figure 1: Study design 
 
LLM prompt strategies 

For review 1, we designed the primary LLM-prompt to follow the PICOs inclusion and exclusion 
criteria. We also tested two other LLM-prompt designs: one that presented the LLMs with only the 
PICOs inclusion criteria, and another where the LLMs were asked to generate a confidence score of 0 
to 100 for how well the criteria were fulfilled. For review 2, the LLMs were prompted to mark 
predefined characteristics as present, absent, or indeterminate. The full LLM prompts are available in 
the supplementary materials. 
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Index results 

The coded output of each of the LLMs served as the index result. For Review 1 any other output than 
Exclude was considered as Include. For the abstract characterisation in Review 2 if the LLMs output 
any other organs these were classified as Other and if the LLMs output any other specific radiological 
modality these were either classified as Other or Multiple. For the specific feature of interest extraction, 
any results other than Yes or No were categorised as No, indicating that the LLM did not find the 
specific feature of interest.   

 

Reference standard 

Review 1 

Before LLM-analysis, two radiology residents (CHK, TB) coded abstract inclusion manually in the 
program Covidence, blinded to each other’s evaluation, with a third reader (FCM) deciding in case of 
conflicting readings. The final list of excluded and included abstracts was defined as the reference 
standard. We chose this method, as it is the golden standard in systematic reviews and in accordance 
with the PRISMA guidelines. Furthermore it allowed us to explore human inter-reader agreements.  

Review 2  

Two radiology residents (FJB, TB) coded abstracts independently and manually according to the 7 
abstract characteristics and 23 specific features of interest before LLM-analysis. Any disagreements 
were resolved by consensus reading.  

Primary outcome 

For Review 1 the primary outcome was the sensitivity, specificity, and accuracy of correctly including 
an abstract in a full text review. An abstract classified as Included by both index and reference was 
considered true positive.  

For Review 2 the primary outcome for abstract characterisation was the accuracy of the LLMs in 
correctly classifying each characteristic. For the specific features of interest, the primary outcome was 
the sensitivity and specificity of the LLMs in correctly identifying the presence of a specific feature of 
interest. A specific feature of interest classified as Yes by both index and reference was considered a 
true positive. All 23 features of interest were aggregated for the calculation of sensitivity and 
specificity. 

Secondary outcome 

We investigated the potential automation rate of LLMs for systematic reviews - which we defined as 
the reduction in the number of abstracts to be screened by human readers. Four different LLM-assisted 
scenarios were modelled and compared against the default scenarios of two human readers screening 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 2, 2024. ; https://doi.org/10.1101/2024.10.01.24314702doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.01.24314702
http://creativecommons.org/licenses/by/4.0/


 

 

all abstracts with a third reader to arbitrate in case of disagreement. In the Single LLM reader scenario, 
an LLM would be deployed as a second reader alongside a human reader, with arbitration conducted by 
another human reader. The LLM pre-screen scenario used an LLM as a prescreening tool before two 
human readers conducted the abstract screening with arbitration by a third human reader. The LLM pre-
screen + Single LLM reader scenario combined both an LLM to prescreen and a different LLM to act 
as a second reader during abstract screening. Arbitrations were conducted by a third reader. Finally, in 
the Double LLM reader scenario two different LLMs conducted abstract screening with a human third 
reader arbitrating. The different scenarios are visualised in Figure 2. We reported the percentage of 
abstract screening reductions for human readers (automation rate), the number of incorrectly excluded 
abstracts (error rate) using data from Review 1.  

 

 

Figure 2: Proposal of LLM-assisted abstract screenings. From the left the standard human screening 
is pictured, followed by four scenarios of LLM-assistance in the abstract screening process. 

Tertiary outcomes 

For both Review 1 and Review 2 we calculated inter-reader agreements between both human readers 
and LLMs and intra-reader agreements for the LLMs. Both analyses were conducted within a few 
weeks. For review 1, we also examined the effect of model temperature on the accuracy of the LLMs in 
review 1, two different prompt strategies and performed an in-depth qualitative analysis of all included 
abstracts. 
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Statistical analysis 

We conducted statistical analysis in R version 4.2.0 with the packages “tidyverse”, “caret”, “lme4”, 
“binom”, and “irr”. Sensitivity, Specificity, and Accuracy were calculated with 95% confidence 
interval using the Clopper and Pearson Binomial Exact Interval. Intra-reader and inter-reader 
agreements were calculated using Cohen’s Kappa. We analysed the differences between models and 
temperature settings across multiple runs with LLM-temperature setting at 0.2 and 0.8 using a 
generalised linear mixed model. The outcome variable was binary, defined as accurate diagnosis 
(yes/no), with the explanatory variables being the LLM model and LLM temperature. 
 

Results 
Review 1 
The initial PubMed search returned 8859 unique abstracts, of which we took a random sample of 500 
abstracts (5.6 %). Four abstracts and four DOIs were missing from the sample. Of the remaining 492 
abstracts 12 were included for full-text review by the expert reader consensus. Input tokens averaged 
768 per abstract (of which 325 comprised the prompt), output tokens averaged 107.6 per abstract per 
LLM. In total 17712 decisions on abstract inclusion were analysed with three different prompting 
strategies (prompt 1: 2952, prompt 2: 11808, prompt 3: 2952).  
 
Review 2 
The initial PubMed search resulted in 2304 unique abstracts, and from them we took a consecutive 
sample of 500 (21.7%). Four abstracts were missing from the sample, and two abstracts did not have 
results from all LLMs resulting in a total of 494 included abstracts in the final cohort. Mean input 
tokens were 1218.5 for the content, prompt, and abstract and 294.6 for the output. Since LLMs were 
prompted twice, this resulted in 988 abstract summaries for each LLM containing 7 abstract 
characteristics (6916 per LLM; 41496 in total) and 23 specific feature of interest categorisations (22724 
per LLM; 136344 in total). Incorrectly formatted output was returned for 28 of 494 (2.8%) abstracts by 
GPT-3.5, 7 of 494 (0.7%) abstracts by Claude3-Sonnet and 3 of 494 (0.3%) abstracts by GPT-4T, 
Claude3-Opus and Claude3-Haiku. GPT-4o returned all outputs in the correct format.  
 
Primary Outcome 
Review 1 
The three higher parameter models (GPT-4o, GPT-4T, Claude3-Opus) all showed specificities and 
accuracies above 97%, but low sensitivity for correct abstract inclusion in a systematic review. Their 
accuracy was on level with the accuracy of reader 1 and 2. The other three LLMs had moderate to high 
sensitivity but with low to moderate accuracy (table 2). 
 
Reader Sensitivity (95% CI) Specificity (95% CI) Accuracy (95% CI) 
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GPT-3.5 42% (15%-72%) [5/12] 91% (88%-93%) [437/480] 90% (87%-92%) [442/492] 

Claude3-Haiku 100% (74%-100%) [12/12] 58% (53%-62%) [278/480] 59% (54%-63%) [290/492] 

Claude3-Sonnet 83% (52%-98%) [10/12] 70% (65%-74%) [334/480] 70% (66%-74%) [344/492] 

GPT-4T 42% (15%-72%) [5/12] 99% (98%-100%) [477/480] 98% (96%-99%) [482/492] 

GPT-4o 33% (10%-65%) [4/12] 98% (97%-99%) [472/480] 97% (95%-98%) [476/492] 

Claude3-Opus 50% (21%-79%) [6/12] 98% (97%-99%) [472/480] 97% (95%-98%) [478/492] 

Reader 1 83% (52%-98%) [10/12] 98% (96%-99%) [470/480] 98% (96%-99%) [480/492] 

Reader 2 67% (35%-90%) [8/12] 97% (95%-98%) [465/480] 96% (94%-98%) [473/492] 

Table 2: Diagnostic test accuracy of six LLMs for correct abstract inclusion for systematic review 
(review 1) 
 
 
Review 2: Abstract Characterisation 

All algorithms achieved accuracy above 95% for the classification of language, study type, and 
characterisation of human/animal study. For diabetes classification all higher parameter count LLMs
achieved very high accuracy. For post contrast-acute kidney injury (PC-AKI) classification only GPT
4T and GPT-4o showed very high accuracy. For the classification of organ and modality, all LLMs 
demonstrated only moderate accuracy. Interestingly reader 2 also had low accuracy in the classificati
of the modality and reader 1 for the classification of the organ (Figure 3). 

s 
PT-

ation 
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Figure 3: Accuracy of Large Language Models for Abstract Characterisation in Review 2, error bars 
show 95% confidence intervals using the binomial exact method. Human reader performance is shown 
for context.  
 
 

 

Review 2: Special Feature of Interest Detection 

For specific features of interest detection, all algorithms achieved a moderate to high sensitivity of 
between 74% and 84%, right between the sensitivity of the two reference readers (73% and 86%). 
GPT-4o and GPT-4T also had a very high specificity 98% and >99%, unlike the other LLMs which 
had a more modest specificity between 33% and 93% resulting in at least 794 false positive 
classifications, much greater than the 103 true positive detections (see Table 3).  
 

Reader Sensitivity (95% CI) Specificity (95% CI) Accuracy (95% CI) 

GPT-3.5 80% (72.1%-86.5%) 
[104/130] 

86.6% (85.9%-87.2%) 
[9723/11232] 

86.5% (85.8%-87.1%) 
[9827/11362] 

Claude3-Haiku 79.2% (71.2%-85.8%) 
[103/130] 

92.8% (92.3%-93.3%) 
[10380/11186] 

92.6% (92.1%-93.1%) 
[10483/11316] 

Claude3-Sonnet 83.8% (76.4%-89.7%) 
[109/130] 

33.1% (32.2%-34%) 
[3716/11232] 

33.7% (32.8%-34.5%) 
[3825/11362] 

GPT-4T 73.8% (65.4%-81.2%) 
[96/130] 

99.7% (99.6%-99.8%) 
[11199/11232] 

99.4% (99.3%-99.5%) 
[11295/11362] 

GPT-4o 77.7% (69.6%-84.5%) 
[101/130] 

98.2% (98%-98.5%) 
[11035/11232] 

98% (97.7%-98.3%) 
[11136/11362] 

Claude3-Opus 76.9% (68.7%-83.9%) 
[100/130] 

62.2% (61.3%-63.1%) 
[6969/11209] 

62.3% (61.4%-63.2%) 
[7069/11339] 

Reader 1 73.1% (64.6%-80.5%) 
[95/130] 

99.9% (99.8%-99.9%) 
[11218/11232] 

99.6% (99.4%-99.7%) 
[11313/11362] 

Reader 2 86.2% (79%-91.6%) 
[112/130] 

99.8% (99.7%-99.9%) 
[11212/11232] 

99.7% (99.5%-99.8%) 
[11324/11362] 

Table 3: Diagnostic test accuracy of LLMs for specific features of interest detection in Review 2. 
Human reader performance is shown for context.  
 
 
Secondary Outcome 
Automation rate and error rate (Review 1) 
The four different scenarios of LLM assistance for abstract screening yielded different automation rates 
and error rates, depending on the scenario and LLM used (Figure 4). In general, the highest automation 
rate could be achieved using two high parameter LLMs, however this method would also lead to a high 
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error rate. The highest automation rate, while maintaining a low error rate could be achieved with a 
single or a combination of two low-parameter models. 

 
Figure 4: The percentage of overlooked relevant studies (error rate) (y-axis) by the automation rate (x-axis) in four 
different LLM-assisted abstract screening scenarios. Automation rate refers to the reduction in human abstract screening 
and arbitration. Multiple data points are overlapping. The # denotes theoretical perfect performance with 100% automation 
and 0% error rate.  
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In the single LLM reader scenario (panel 1, Figure 4) we found that using the LLM Claude3-Haiku 
would reduce the amount of human reads by 32% without errors. The other LLMs would cause 
abstracts to be overlooked in this scenario, and the highest automation rate would be 50% with GPT-
4T, with 16.7% error rate.  
In the LLM pre-screen scenario (panel 2, Figure 4) we found the lowest error rate with Claude3-Haiku, 
which would yield 0% errors, and 55% automation. Highest automation in this scenario would be with 
GPT-4T, which would lead to 98% automation at a 58% error rate.  
In the single LLM reader + LLM pre-screen scenario (panel 3, Figure 4) the lowest error rate was 8% 
with Claude3-Haiku as pre-screener, and Claude3-Sonnet as reader, which yielded an automation rate 
of 67%. A similar error rate, but automation rate of 74% was observed with Claude3-Haiku as pre-
screener, and GPT-3.5 as reader. The highest automation rate observed was 99% with GPT-4T as pre-
screener, and Claude3-Opus as reader, however in this case there was a 58% error rate.  
In the double LLM reader scenario (panel 4, Figure 4) the lowest error rate was 8% with Claude3-
Haiku and Claude3-Sonnet with an automation rate of 91%. The highest automation rate of 99% was 
observed with GPT-4T and GPT-4T-o, at 50% error rate. 
 
Tertiary Outcome 
Inter- and intra-reader variability 
For abstract inclusion in review 1, the inter-reader agreement between human reader 1 and reader 2 was 
fair (κ=0.25). Moderate inter-reader agreement was observed between the three high parameter models 
(κ=0.44-0.61), while inter-reader agreement between some of the lower parameter models was poor (κ 
between 0.03 - 0.19). Agreement between reader 1 and GPT-4o (κ=0.32) and with GPT-4T (κ=0.30) 
was higher than with reader 2. Reader 2 had higher agreement with Claude3-Sonnet (κ=0.28) and 
Claude3-Opus (κ=0.27) than with Reader 1. 
 
In review 2 for abstract characterisation, the inter-reader agreement was good in between all LLMs (κ 
between 0.75 - 0.93). Agreement between readers and models ranged from κ=0.75 (GPT-3.5 vs reader 
2) to κ=0.88 (GPT-4T vs reader 1), compared to κ=0.87 between the two readers. For specific features 
of interest extractions, the agreement between all LLMs was generally low (κ=0.02 and 0.31) with the 
exception of GPT-4T vs GPT-4o, which had a moderate (κ=0.5) agreement. Agreement between GPT-
4T and human readers was moderate to high (κ=0.66 and κ=0.72) while it was poor to moderate 
(κ=0.01 to 0.44) for the other models. This should be compared to the human inter-reader agreement 
which was κ=0.64. 
 
Intra-reader agreement was generally high (κ=0.63 to κ>0.99) across models and tasks, except for 
GPT-3.5 in review 1 (κ=0.51 at temp = 0.8) and GPT-3.5 and Claude3 models in Review 2 (κ=0.50-
0.57; table 4). GPT-4o had perfect intra-reader agreement in Review 2, with all outputs identical. In 
review 1, all models showed lower intra-reader agreement for abstract inclusion at higher temperatures. 
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Intra-reader agreement of the LLMs 

 Inclusion in 
Systematic Review, 
temperature = 0.2 

Inclusion in 
Systematic Review, 
temperature = 0.8 

Abstract 
Characterisation in 
Scoping Review, 
temperature = 1.0 

Specific Feature of Interest 
in Scoping Review, 
temperature = 1.0 

GPT-3.5 0.73 0.51 0.89 0.50 

Claude3-Haiku 0.95 0.81 0.92 0.57 

Claude3-Sonnet 0.95 0.76 0.94 0.55 

GPT-4T 0.81 0.63 0.98 0.85 

GPT-4o 0.96 0.76 1.0 1.0 

Claude3-Opus 0.91 0.87 0.93 0.56 

Table 4: Intra-reader agreement of the LLMs. Numbers display Cohens Kappa value calculated by comparing two runs 
with the LLMs. 

 
Other prompt strategies 
To test the prompt dependency of our results in review 1, we tried two different prompt strategies. 
First, we tried to screen the abstracts with only inclusion criteria, and no exclusion criteria. This 
strategy increased the accuracy of Claude3-Sonnet, but interestingly it led to a decrease in the accuracy 
of GPT-3.5 and Claude3-Haiku. It had minimal effect on the high parameter models. Afterwards we 
prompted the LLMs to output a confidence score from 0-100 of how well the inclusion and exclusion 
criteria were met, to calculate ROC-AUC, and specificities fixed at human reader 1 and 2’s sensitivities 
(Figure 5). Here we found that no LLM was on level with the human specificity, however GPT-4T 
achieved a 90% specificity at reader 1 equivalent sensitivity and 94% specificity at reader 2 equivalent 
sensitivity. All numbers are available in the supplementary materials. 
 

Figure 5: Accuracy and receiver operating curves for each LLM in correct abstract inclusion in the systematic 
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review (review 1). In the confidence score prompt, ROC-AUCs were the following: 0.867 (GPT-3.5), 0.822 
(Claude3-Haiku), 0.864 (Claude3-Sonnet), 0.916 (GPT-4T), 0.889 (GPT-4o), 0.909 (Claude3-Opus). 

Association between accuracy, LLM, and temperature 
With a generalised linear mixed model (GLMM) of 11808 abstract inclusion decisions in review 1, we 
found no differences between the accuracy of GPT-4T and GPT-4o, and Claude3-Opus and GPT-4o, 
when we adjusted for different temperature levels. We also found that model temperature was not 
independently associated with the accuracy of the LLMs (table 4). 
 
 
GLMM of model accuracy for correct abstract inclusion in review 1 

LLM OR (95%CI) p-value 
GPT-3.5* 0.041 (0.029-0.058) <0.001 

Claude3-Haiku* 0.001 (0.000-0.001) <0.001 

Claude3-Sonnet* 0.109 (0.077-0.155) <0.001 

GPT-4T* 1.066 (0.711-1.598) 0.8 

Claude3-Opus* 1.043 (0.697-1.562) 0.8 

Temperature (0.8 vs. 0.2) 1.104 (0.939-1.299) 0.2 

Table 5: GLMM of model accuracy for correct abstract inclusion in review 1.*OR of accurate abstract inclusion 
compared to GPT-4o. The 11808 abstract decisions stem from two runs at temp 0.2 and two runs at temp 0.8 with 492 
abstracts and six LLMs using the inclusion criteria prompt strategy. 

 
 
False negative analysis of LLMs for review 1 
We conducted a qualitative analysis of the 12 abstracts included in review 1 by the human reference, to 
understand the disagreement by the different readers and LLMs with the primary prompt. Overall GPT-
4T, GPT-4o, and Claude3-Opus were very strict in the evaluation of the abstracts, but committed few 
errors in the text understanding. Meanwhile, the human readers were a bit inaccurate with regards to 
the comparator criteria, especially. This may explain the low sensitivity observed in those LLMs. 
Meanwhile it seems that GPT-3.5 commits more errors related to understanding the text. The full 
qualitative analysis is available in the supplementary materials. If we excluded the seven studies where 
human inclusion could be considered wrong, the sensitivities of correct abstract inclusion were the 
following: reader 1 (100%), reader 2 (80%), GPT-3.5 (40%), GPT-4T (80%), GPT-4o (80%), Claude3-
Opus (80%), Claude3-Sonnet (100%), Claude3-Haiku (100%). The combination of GPT-4T and GPT-
4o as reader 1 and 2, with a human reader for disagreements, would include all relevant abstracts, and 
reduce the number of manual reads by 99%. The same could be achieved with GPT-4T and Claude3-
Opus, but at a higher cost. 
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Post-hoc extrapolation to full systematic review 
Extrapolating to the full systematic review, with 6.3% human disagreements the combination of GPT-
4T and GPT-4o would mean a reduction in the number of human abstract reads from 8859*2+558 = 
18276 abstract reads to 183 arbitration reads. Abstract screening has been reported to average 1.7 
minutes per abstract in systematic reviews18. In time, this would equal to a reduction from 18276*1.7 
min/abstract = 518 hours of work to 5.2 hours of work. In cost, the full abstract screening with two 
human readers and a third for arbitrations would cost 518 hours*40.9 USD/hour = 21,186 USD. 
Meanwhile, the LLM-assisted abstract screening with GPT-4T and GPT-4o would cost 8859*0.01011 
USD = 89.5 USD, and 8859*0.00508 USD = 45 USD in API fees and 5.2*40.9 USD = 213 USD in 
human arbitration hour salary for a total of 347.5 USD, which is 60 times cheaper than the 
conventional two human readers method. 
 

Discussion 
We conducted a diagnostic test accuracy study of six commercially available LLMs for abstract 
characterisation, screening abstracts for inclusion and detection of specific features in systematic and 
scoping reviews.  

For abstract characterisation all LLM’s could determine study type, language and study participants 
with near perfect accuracy. Only higher parameter models (GPT-4o, GPT-4T and Claude3-Opus) were 
able to reliably determine if participants had a specific disease. For features of interest detection only 
GPT-4T and GPT-4o achieved very high and close to human accuracy, while the other LLMs suffered 
from a large number of false positive findings.  

For abstract screening for inclusion according to predefined PICO criteria GPT-4o, GPT-4T and 
Claude3-Opus achieved accuracy, which was on level with the human readers but at only a moderate 
sensitivity while lower parameter models Claude3-Haiku and Claude3-Sonnet achieved a high 
sensitivity but at only moderate specificity.  

Comparing to existing literature, a recent study on title and abstract screening using LLMs adopted a 
scale from 1 to 5 on how relevant a study was for the systematic review11. The study used previously 
published systematic review datasets, which were analysed with the LLMs FlanT5, OpenHermes 2.5, 
Mixtral and Platypus 2. In their study, they found high sensitivities (82-100%), and low specificities 
(13%-75%), similar to the performance of the lower parameter models in our study. 

Another study tested GPT-3.5 and GPT-4T LLMs on previously published review datasets from the 
literature12. Similarly to our study, they informed the LLMs of the title, abstract, inclusion and 
exclusion criteria, and then gave instructions to include or exclude. They found an overall accuracy of 
91%, sensitivity of 76%, and specificity of 91% for the GPT-models, but did not report diagnostic 
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performance individually for the two LLMs. This makes it difficult to compare to our results, as we 
observed that the sensitivity-specificity cutoff was very different for the different LLMs. Interestingly 
they found that the sensitivities and specificities displayed large heterogeneity between the 6 different 
datasets they tested on. This may be attributable to the prompting strategies, inclusion/exclusion 
criteria, but also to the ground truth of the human screening. They found a higher agreement in the 6 
studies between human readers than we did in ours (κ=0.46 vs. κ=0.25), suggesting that our systematic 
review criteria may be difficult for human readers to agree on. 

A third recent study evaluated GPT-4 (unknown version) on screening abstracts and full text studies13. 
They found lower accuracy than us for title and abstract screening (67%-88%), but close to human 
performance for full text screening (54%-96%). We were unable to find studies on abstract 
characterisation, feature of interest detection with LLMs, model temperature or different 
implementation scenarios, highlighting our study's contribution to the field.  

Overall results from this study corroborate the existing evidence that LLMs can be used with high 
accuracy for select PICOs based abstract screening, with frontier models performing at higher 
specificity and lower sensitivity. It therefore seems prudent, to manually read a subset of abstracts to 
establish the sensitivity of an LLM for a given PICOs, if LLMs are to be used in systematic reviews. 

Our study found, that a double LLM abstract screening with human arbitration in case of disagreement 
achieved the highest automation rate of up to 91%, with a low error rate of 8%. When no abstracts are 
to be overlooked during screening, we found that an abstract pre-screening with a high sensitivity LLM 
(Claude3-Haiku) was able to reduce the human workload by more than 50%. 

Using 1.7 minutes per title and abstract screening, we can estimate our full systematic review abstract 
screening to take 518 hours to complete (65 8-hour workdays), which would be reduced to 49.2 hours 
of work with the double LLM-reader scenario with Claude 3.5 Sonnet and Haiku. The potential for 
time-saving with LLM assistance is in other words very great. 

Future studies should explore if LLMs can assist in other parts of the review process, such as full-text 
screening, risk of bias assessment and extraction of outcome variables. In addition, future studies may 
experiment in greater depth with newer generations of LLMs, different prompt constructions or explore 
chain-of-thought prompting19–21. Chain-of-thought prompting has been associated with better 
performance in tasks where LLMs otherwise did not outperform the average human rater19.  

Potential problems with using LLMs for reviews are that some LLMs can confabulate and 
hallucinate22,23. Another potential problem is the risk of bias in LLMs24,25, where for example a bias 
against studies from certain countries or patients would be unwanted. Finally LLM guardrails, a 
common public safety feature which prevent return of answers addressing sensitive topics, could 
negatively impact some research subjects (e.g. suicide prevention studies in psychiatry). 
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There are limitations to our study. Firstly, we only included commercially available LLMs from two 
different companies. Secondly, LLMs are prone to confabulations and hallucinations. Since we limited 
the results of the LLM to a structured output, we were not able to determine if incorrect results were 
due to hallucinations. Thirdly, the estimated human reader performance might be overestimated, due to 
confounding bias, where the reader and reference are not independent. In two of the abstract 
characterisation prompts we found a low agreement between two of the readers regarding organ and the 
modality used and low accuracy of the LLMs used. This may have been a result of too vaguely defined 
abstract characteristics. Fourthly, in the primary outcome we forced a strict classification (include or 
exclude) unto the LLMs, but during exploratory investigation found that adding confidence estimates to 
the LLM-output actually resulted in a more favourable performance. Finally, the number of abstracts 
included in the systematic review was large (500), but only a small portion (12 abstracts) were actually 
included by the reference standard, meaning that the dataset was imbalanced and confidence intervals 
of sensitivity are wide.  

Our study adds to existing literature by demonstrating that LLMs can be used for scoping reviews and 
by developing different LLM-assisted screening scenarios. A strength of our study approach was that 
we tested the LLMs on new, unpublished, systematic and scoping reviews. The LLMs could therefore 
not draw on previously published reviews, which could have been part of the training data for the 
LLMs. 

In conclusion, we demonstrated that abstract characterisation and specific feature of interest detection 
with LLMs is feasible and accurate with GPT-4o and GPT-4T. The majority of abstract screenings for 
systematic review could be automated with a double LLM-reader scenario at a low error rate.  
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