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Abstract 
 
Physical activity is a crucial modifiable risk factor for preventing cognitive decline, stroke, and 
dementia. A new cardiovascular disease diagnosis offers an opportunity to improve health 
outcomes through lifestyle changes. However, sustaining behavior change, even with effective 
exercise interventions, remains challenging. Understanding the neurobehavioral mechanisms 
behind successful long-term behavior change can help tailor therapeutic strategies to enhance 
physical activity and reduce dementia and stroke risks in older adults. This study followed 295 
cognitively unimpaired older adults from the UK-Biobank cohort, all newly diagnosed with 
cardiovascular disease, over five years. We aimed to predict future changes in moderate-to-
vigorous physical activity (MVPA) engagement using baseline resting-state functional 
connectivity, along with sociodemographic factors (e.g., age, sex, socioeconomic status), 
behavioral characteristics (e.g., general health, pain, depression), cognitive function (e.g., 
attention, fluid intelligence), social factors (e.g., networks and support), and environmental context 
(e.g., access to green spaces). Our findings revealed that greenspace percentage, social support, 
and retirement status significantly predicted increased MVPA at follow-up. A support vector 
machine (SVM) model, utilizing baseline functional connectivity matrices, achieved 84% 
accuracy in predicting successful MVPA engagement at follow-up. Key features contributing to 
the model's accuracy included functional connectivity between brain regions located in distinct 
large-scale networks, particularly the heteromodal cortex. Notably, the default mode network, 
frontoparietal control network, and salience/ventral attention network were prominently involved. 
These results underscore the importance of social and structural determinants of health, such as 
greenspace and social support, in promoting physical activity behavior change. Furthermore, they 
provide preliminary evidence of neural mechanisms that may underlie successful lifestyle 
modifications, informing future interventions to prevent vascular contributions to late-life 
cognitive decline. 
 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 1, 2024. ; https://doi.org/10.1101/2024.09.30.24314678doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.30.24314678
http://creativecommons.org/licenses/by-nc-nd/4.0/


1. 1. Introduction  
1.1.Preventing Vascular Contributions to Dementia  

Cardiovascular diseases (CVD) substantially elevate the risk of both dementia and stroke due to 
shared pathophysiological mechanisms in the heart–brain axis (Saeed et al., 2023). Indeed, mixed 
dementia comprised of combined vascular and Alzheimer pathological changes is the most 
prevalent dementia etiology (Korczyn, 2002). With the global dementia burden projected to rise 
to 132 million by 2050 (World Health Organization, 2017), there is an urgent need for targeted 
strategies to mitigate the vascular contributions to late-life cognitive decline. Physical activity is 
highly effective in lowering dementia risk among individuals with cardiovascular risk factors (Dao 
et al., 2024; Gorelick et al., 2011), reducing cognitive impairment, vascular dementia, and all-
cause mortality. Thus, integrating physical activity into treatment and prevention strategies for 
vascular-related cognitive decline, especially following a CVD diagnosis, is essential (Guadagni 
et al., 2020; Aarsland et al., 2010; Grodstein, 2007; Verdelho et al., 2012; Landman et al., 2021). 

 
1.2.The Challenge of Successful Physical Activity Behaviour Change 

Despite the well-established benefits of physical activity, physical inactivity remains prevalent, 
with approximately 27.5% of the global population not meeting recommended activity levels 
(Guthold et al., 2018). In the United States, inactivity increases with age, affecting 59.8% of 
middle-aged adults (ages 45–64) and 65.7% of older adults (65 and older) (Xu et al., 2023). 
Alarmingly, physical inactivity has escalated since the COVID-19 pandemic, particularly among 
older adults with chronic conditions who face significant barriers, including mobility limitations 
and socioeconomic challenges (Peçanha et al., 2020; Ng et al., 2022). Moreover, maintaining long-
term behavior change is difficult. Observational studies report that only 25–40% of individuals 
sustain lifestyle modifications six months after a cardiovascular event, with adherence rates 
dropping to 3–11% after five years. Understanding why and when individuals engage in initiation 
or cessation of physical activity is crucial for designing effective interventions. 
 

1.3.Critical Windows for Behaviour Change 
The critical windows theory suggests successful behaviour change may be facilitated by an 
external threat from a major life event or circumstance (e.g., receiving a diagnosis of a new chronic 
illness such as a cardiovascular disease, retirement, pregnancy, or menopause), which might 
catalyze the reassessment of goals and increase motivation for change (Lane-Cordova et al., 2022). 
For example, individuals with chronic conditions—whether newly diagnosed, recovering, or 
managing ongoing illnesses—are often more likely to maintain or increase their leisure-time PA 
levels (Dai et al., 2014). Thus, life transitions can serve as critical moments for intervention, 
offering a window to promote long-term physical activity engagement. 
 

1.4.Potential Neurobehavioral Mechanisms of Physical Activity Engagement 
Factors such as self-efficacy (Jones et al., 2020), self-regulation (Williams et al., 2018), perceived 
benefits and biological sex—where males generally show higher adherence rates than females 
(Johnson and Lee, 2017)—play significant roles in regulating physical activity behaviors. 
Psychological factors, including depression, fatigue, and health perceptions, also influence 
adherence (Brown et al., 2016). Additionally, cognitive functions, particularly executive functions 
linked to cortical structural integrity, have been tied to exercise behaviors (Garcia et al., 2016; 
Patel et al., 2017). 
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Beyond individual-level factors, social and structural determinants of health significantly 
influence physical activity behavior (Carroll-Scott et al., 2013; Wen et al., 2007). Access to 
greenspace and neighborhood walkability (Richardson et al., 2013), social support(Ho et al., 
2018), socioeconomic status (Wen et al., 2007) is strongly associated with physical activity levels. 
The environmental conditions in which individuals are born, live, learn, work, play, and age—
referred to as structural and social determinants of health—have a cumulative impact on physical, 
mental, and brain health (Gómez et al., 2021a). These determinants not only shape physical activity 
behavior but also contribute to disparities in health outcomes, including Alzheimer’s disease and 
related dementias.  

Despite these insights, many open questions remain regarding the mechanisms driving 
successful physical activity engagement. As noted by Cohen and Sherman (2014), a unified 
pathway that explains successful behaviour change has yet to be clearly identified. Neuroimaging 
provides insights into individual differences in brain organization and highlights neurodiversity—
how brain functions vary across individuals based on age, sex, personality, culture, and genetics 
(Gabrieli et al., 2015). Baseline functional connectivity biomarkers have been found to predict 
successful engagement in healthy lifestyle habits (Ai et al., 2023), offering a promising avenue for 
personalized intervention strategies. 
 

1.5.The Present Study 
To better understand the drivers of sustained physical activity, this current study adopts a precision 
medicine framework combined with a whole-brain, data-driven machine learning approach. 
Specifically, we will examine the roles of sociodemographic factors (e.g., age, sex, socioeconomic 
status), behavioral characteristics (e.g., general health, pain, depression), cognitive function (e.g., 
attention, fluid intelligence), social factors (e.g., networks and support), environmental context 
(e.g., access to green spaces), and resting-state functional connectivity biomarkers. This 
comprehensive approach is designed to uncover tangible targets for future interventions tailored 
to individual needs, especially for those at heightened risk of cognitive decline. By employing a 
rigorous data-driven machine-learning (ML) approach, the current study aims to move beyond 
group-level differences to uncover the neurobehavioral mechanisms driving successful physical 
activity at the individual level (Gabrieli et al., 2015a). 
 
2. Methods 
2.1 Participants 
295 (mean age = 63.13 years ± 7.5, 188 women) cognitively unimpaired and physically inactive 
older adults from the UK Biobank, a large-scale population-based longitudinal cohort were 
included in this study. Inclusion criteria were: 1) cognitively unimpaired at enrollment; 2) reported 
a new cardiovascular diagnosis (i.e., hypertension, type II diabetes, dyslipidemia, cardiac angina 
or myocardial infarction) between baseline (T1; 2014) and follow-up five years later (T2; 2019) 
(mean duration 5.2 years, SD 1.1); 3) did not meet the World Health Organization recommendation 
of 150 minutes/week of moderate-to-vigorous physical activity (MVPA) at baseline (Bull et al., 
2020); and 4) age >= 60. These criteria yielded a final sample size of 295 after removing four 
participants for having poor quality brain imaging data. Unimpaired cognition was defined as 
follows: performance scores on each of the cognitive test were converted into percentile rank, and 
the raw score corresponding to the 5th percentile (or 95th, on tests where higher scores represented 
worse performance) was identified as the cut-off for impairment (Lyall et al., 2016). An illustration 
of the study timeline can be seen in Fig. 1. The brain imaging visit (Instance 2 of the UK Biobank) 
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was considered baseline timepoint, and the first repeat imaging visit (Instance 3 of the UK 
Biobank) was considered the follow-up timepoint. Self-reported MVPA was recorded using the 
Lifetime Total Physical Activity Questionnaire (Friedenreich et al., 1998). Demographic variables 
including age, sex, years of education, and socioeconomic status (as measured through Townsend 
deprivation index)(Townsend et al., 2023) were included as covariates of non-interest. MRI data 
was obtained at baseline, before participants had received a new cardiovascular diagnosis, and 
MVPA data and cognitive function data were obtained for two time-points: at baseline and in 
follow up after 5 years (mean duration 4.2 years, SD 2.1; ranging from 8 months to 4.8 years). 
Below is the specific information about the physical activity, psychosocial, cognitive, and 
environmental measures that were used in the current study.  

 
Fig. 1. Study Timeline: Instance 1 (Imaging) of the UK Biobank represents the baseline timepoint, 
while Instance 3 (repeat imaging) marks the follow-up. Baseline assessments included self-
reported MVPA, cognitive function, psychosocial and behavioral factors (such as depression, 
anxiety, general pain, retirement), social support, and greenspace exposure, all of which were 
evaluated at both baseline and follow-up. rs-fMRI was assessed only at baseline. New 
cardiovascular diagnoses was reported between baseline and follow-up, with no cardiovascular 
diagnoses reported prior to baseline. MVPA: moderate-to-vigorous physical activity; rs-fMRI: 
resting-state functional Magnetic Resonance Imaging. 
 
2.2 Behavioral measures and data analysis 
Participants completed a comprehensive battery of psychosocial, behavioral, cognitive, and 
environmental assessments at both baseline and follow-up (Fig. 1). These assessments are briefly 
outlined below. To investigate the relationship between physical activity and cognition, we first 
examined whether baseline cognitive function predicted future physical activity behavior. We then 
assessed whether increases in physical activity at follow-up were linked to cognitive gains. We 
also evaluated whether social and structural health determinants at baseline predicted successful 
engagement in physical activity. Resting-state fMRI (rs-fMRI) was assessed at baseline only, prior 
to any cardiovascular diagnoses, reducing the likelihood of confounding effects related to blood 
flow alterations, given that BOLD signals are susceptible to cardiovascular disease (CVD)-related 
changes (Makedonov et al., 2013; Tsvetanov et al., 2021). Outliers were identified using Cook’s 
distance with a threshold of 0.5, resulting in the detection of 30 outliers. 
 
2.2.1 Townsend deprivation index 
The Townsend Deprivation Score is an area-based score of social deprivation that was determined 
immediately prior to the participant joining the Biobank, based on data from the preceding national 
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census (Woodward et al., 2021). Each participant was assigned a score corresponding to their 
postcode area.  
 
2.2.2 The lifetime total physical activity questionnaire 
The questionnaire developed and validated by Friedenreich et al. (1998) was utilized to record 
self-reported MVPA. Participants reported both the frequency and duration of each type of 
physical activity they engaged in per week. The total time spent on moderate and vigorous 
activities was then calculated to derive the overall MVPA in minutes per week. This total score 
served as an indicator of each individual's physical activity engagement. The scale was 
administered at both baseline and follow-up timepoints to assess changes over time. 
 
2.2.3 Cognitive assessments 
A computerized cognitive battery was administered using a touchscreen tablet. The tests were 
specifically developed for the UK Biobank and have been validated (Fawns-Ritchie & Deary, 
2020; Lyall et al., 2016), while sharing features with established cognitive assessments. The 
battery included the following tasks: Reaction time, Numeric memory, Fluid intelligence, Matrix 
pattern completion, Tower rearranging, and Trail making. A detailed description about these tasks 
can be found in Supplementary materials.  
 
2.2.4 Social support 
The measures available in the UK-Biobank for social support come from the items “How often do 
you visit friends or family or have them visit you?” and “How often are you able to confide in 
someone close to you?”. Participants rated each item on a Likert scale from 0 (Never or almost 
never) to 6 (Almost daily). For the frequency of visits, the categories “never or almost never” and 
“no friends or family outside the household” were combined into a single category, “never.” This 
adjustment was made because these responses were similar, and there were only a few participants 
with no friends or family outside the household (n = 16). Scores ranged from 0 to 6 and were 
treated as a continuous measure.  
 
2.2.5 Greenspace and coastal proximity assessment 
environmental indicators included in this study were the proportion of green space and water 
within 300 m of residential addresses, using the 2005 Generalised Land Use Database for England 
and Centre for Ecology and Hydrology 2007 Land Cover Map data for Great Britain(Smucny et 
al., 2022). The buffer size of 300m was decided based on relevant health evidence and public 
policy on both density and accessibility. Coastal proximity was estimated using Euclidean distance 
raster (Wheeler et al., 2012). 

2.2.6 Psychosocial factors  
Psychosocial factors were assessed through self-reported experiences, including depression, 
anxiety, general pain, and lifestyle factors such as retirement status. Depression was evaluated 
using two items: “Feeling down, depressed, or hopeless” and “Little interest or pleasure in doing 
things.” Participants rated their experiences on a four-point scale, ranging from 0 (Not at all) to 4 
(Nearly every day). Anxiety was assessed similarly, with two items: “Feeling nervous, anxious, or 
on edge” and “Not being able to stop or control worrying.” General pain was measured using a 
single item: “Have you had pains all over your body for more than 3 months?” Responses were 
recorded as yes (1) or no (0). Participants also rated their overall health perception on a scale from 
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1 (Excellent) to 4 (Poor). Additionally, participants indicated their retirement status with a simple 
yes (1) or no (0) response. These assessments were conducted at both baseline and follow-up 
timepoints. 
 
2.2 MRI Data Acquisition 
Details of image acquisition and processing are available in the UK Biobank Protocol 
(http://biobank.ctsu.ox.ac.uk/crystal/refer.cgi?id=2367), and Brain Imaging Documentation 
(http://biobank.ctsu.ox.ac.uk/crystal/refer.cgi?id=1977). Briefly, all brain MRI data were acquired 
on a Siemens Skyra 3T scanner with a standard Siemens 32-channel RF receiver head coil, using 
the following parameters: TR = 2000 ms; TI = 800 ms; R = 2; FOV = 208 × 256 × 256 mm; voxel 
size = 1 × 1 × 1 mm. For resting-state fMRI scans, two consecutive functional T2*-weighted runs 
were collected with eyes closed using a blood oxygen level dependent (BOLD) sensitive, single-
shot echo planar imaging (EPI) sequence with the following parameters: TR = 735 ms; TE = 39 
ms; flip angle = 52°; FOV 88 x 88 x 64 matrix; resolution = 2.4 × 2.4 × 2.4 mm; 490 volumes; and 
acquisition time = 6 minutes per run. 
 
2.3 Resting-State Functional MRI Data Preprocessing 
Preprocessing of raw functional images from the UK Biobank was done using the fMRIprep 
pipeline (version 20.2.4) (Esteban et al., 2019). For each of the BOLD runs per participant, the 
following preprocessing was performed: First, the T1w reference was skull-stripped using a 
Nipype implementation of the antsBrainExtraction.sh (ANTs) tool. A B0-nonuniformity map (or 
fieldmap) was estimated based on a phase-difference map calculated with a dual-echo gradient-
recall echo (GRE) sequence, which was then co-registered to the target EPI reference run and 
converted to a displacements field map. A distortion-corrected BOLD EPI reference image was 
constructed and registered to the T1-weighted reference using a boundary-based approach (using 
bbregister, Freesurfer). Rigid-body head-motion parameters with respect to the BOLD EPI 
reference were estimated (using mcflirt, FSL 5.0.9) (Jenkinson et al., 2002) before spatiotemporal 
filtering was performed. BOLD runs belonging to the single band acquisition sessions were slice-
time corrected (using 3dTshift, AFNI 20160207). The BOLD time series were resampled into their 
original, native space by applying a single, composite transform to correct for scan-to-scan head 
motion and susceptibility distortions. Functional scans were spatially smoothed using a 6 mm full 
width at half maximum (FWHM) Gaussian smoothing kernel. 

Additional preprocessing steps were undertaken to remove physiological, subject motion, 
and outlier-related artifacts, which were implemented using the nilearn package. Non-neuronal 
sources of noise from white matter and CSF were estimated and removed using the anatomical 
CompCor method (aCompCor) (Behzadi et al., 2007) to allow for valid identification of correlated 
and anticorrelated networks (Chai et al., 2012; Murphy et al., 2009). Temporal band-pass filtering 
(0.008–0.09 Hz) was then applied. Additionally, scan-to-scan mean head motion (framewise 
displacement) was used as a covariate of non-interest in all second-level analyses (mean head 
motion = 0.2 mm, SD = 0.1 mm). Head motion is a known important potential confound as it 
produces systematic and spurious patterns in connectivity and is accentuated in Alzheimer’s 
disease (AD) and cognitively typical aging populations (Power et al., 2012). Critically, we did not 
identify a relationship between the mean head motion parameter and the primary behavioral 
variable of interest, physical activity change (all p > 0.05). The framewise displacement timeseries 
was determined by calculating the maximum shift in the position of six control points situated at 
the center of a bounding box around the brain, computed independently for each scan. Four 
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participants were removed from the UK-Biobank sample final analysis for having >30 scan 
volumes flagged, leading to the final sample size of 295 participants. This cut off was determined 
based on preserving at least 5 minutes of scanning time (Van Dijk et al., 2010). 
 
2.4 Machine Learning Modelling 
To predict future successful physical activity behavior change following a new cardiovascular 
diagnosis with baseline RSFC, we used the support vector machine (SVM) algorithm from the 
scikit-learn (v0.21.3) library, utilizing the pydra-ml (v0.3.1) toolbox. This algorithm aims to find 
the optimal hyperplane that maximizes the margin between classes. It can handle non-linear 
relationships by using kernel functions. We used the default parameters, which include the Radial 
Basis Function kernel to capture non-linearities in the data. 

Amid ongoing debates about the most accurate machine learning algorithms for prediction, 
recent comparisons suggest that a suite of approaches may be clinically beneficial. To assess the 
robustness of our findings, we repeated our analysis using additional machine learning algorithms 
of increasing complexity, defined by the computational resources required for model simulation. 
Specifically, we examined linear regression, random forest, and multi-layer perceptron algorithms, 
using default parameters unless otherwise specified. Further details on these algorithms are 
available in the supplementary material. 

To generate independent test and train data splits, we used a bootstrapped group shuffle 
split sampling scheme. For each iteration of bootstrapping, a random selection of 20% of the 
participants, balanced between the two groups, was designated as the held-out test set. The 
remaining 80% of participants were used for training. This process was repeated 50 times, fitting 
and testing the four classifiers for each test/train split. To reduce computational time, we used the 
default of 50 bootstrapping splits from pydra-ml toolbox. The Area Under the Receiver Operating 
Characteristic Curve (ROC AUC; perfect classification = 1; chance = 0.5) was calculated to 
evaluate model performance on each bootstrapping iteration, resulting in a distribution of 50 ROC 
AUC scores for each classifier. The model’s performance was statistically compared to its null 
model’s distribution using an empirical p-value, which is a common and effective measure for 
evaluating classifier performance. The significance level was set to alpha = 0.05. We employed 
Kernel SHAP (SHapley Additive exPlanations) (Goodwin et al., 2022) to assess the significance 
of baseline RSFC features in predicting successful engagement in physical activity We computed 
the average absolute SHAP values across all predictions, weighted by the model's median 
performance, and calculated mean SHAP values across splits for each model. This entire pipeline, 
encompassing machine learning models, bootstrapping, and SHAP analysis, was implemented 
using pydra-ml toolbox. 
 
2.6 Reducing collinearity using Independence Factor to enhance model interpretability  
Collinearity among features can significantly affect model generation and interpretation, 
particularly in RSFC analyses. To address this, we employed the Independence Factor method 
(Low et al., 2024), which iteratively removes features with strong dependence above a set 
threshold, ensuring a consistent set of features across models. Using distance correlation, which 
accommodates non-monotonic relationships, we systematically increased the threshold to 
eliminate redundant features while preserving model performance within a narrow margin. We 
applied thresholds ranging from 1.0 (keeping all features) to 0.2 (removing features with distance 
correlation above 0.2). Our goal was to identify a feature set that maintained model performance 
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within three percentage points of using all features, resulting in a more parsimonious and 
interpretable model without compromising accuracy, essential for clinical applicability. 
 
2.7 Performance using most important and least important features  
To address the question of why certain features are important, we evaluated model performance 
under two scenarios: one using only the top 20 features and another excluding these features. This 
method mitigates the common pitfall in brain-behavior prediction analyses, where the significance 
of the top features may not reflect their true impact on model performance. By comparing 
performance metrics in both scenarios, we can gain a more nuanced understanding of the 
highlighted features’ contributions and derive mechanistic insights into the neural correlates of 
successful behavior change. 

 
3. Results 
3.1 Behavioral Results 
There was a positive behavior change observed, with the sample maintaining increased physical 
activity in long-term follow-up after a new cardiovascular diagnosis (mean change in MVPA = 
4.02 min/week ± 1.23). Notably, 160 individuals exceeded the threshold of 150 min/week of 
MVPA, indicating successful behavior change at follow-up (mean change in MVPA among those 
who exceeded the threshold = 7.10 min/week ± 2.1). However, no significant association was 
found between baseline cognition in any domain (i.e., reaction time, numeric memory, fluid 
intelligence, trail making, symbol digit substitution, tower rearranging, prospective memory, pairs 
matching) and change in MVPA. Similarly, change in cognition (i.e., the difference between 
cognitive function scores at follow-up and baseline) was not associated with physical activity 
gains.  
 
 Mean±SD 
Sample Size 295 
Age at baseline (years) 63.13 years ± 7.5 
Female sex (count and %) 188 women (63.72%) 
Right-handed (count and %) 264 right-handed (89.95%) 
Education (years) 15.4±3.2 
Townsend deprivation index  -1.3±3.2 
MVPA at baseline (min/week) 101.62±4.5 
MVPA at follow-up (min/week) 109.10±6.8 
Change in MVPA (min/week) 4.02 ± 1.23 

Table 1: Participant baseline demographic information for the UK Biobank sample. SD = 
Standard Deviation. 
 

Next, we investigated the relationship between behavioral factors and their predictive value 
for future engagement in physical activity, specifically changes in moderate-to-vigorous physical 
activity (MVPA). Spearman correlation analyses were conducted to assess associations between 
each behavioral variable and change in MVPA. Our analysis revealed a significant positive 
correlation between the percentage of greenspace in participants' environments and increased 
MVPA at follow-up relative to baseline (r = 0.4, p = 0.01, FDR-corrected). In contrast, coastal 
proximity did not demonstrate a significant relationship with MVPA. Social support, 
operationalized as the frequency of visits with friends or family, was also significantly positively 
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correlated with increased MVPA (r = 0.3, p = 0.01, FDR-corrected). However, no significant 
association was observed between MVPA and the ability to confide in others, another measure of 
social support. Retirement status was significantly negatively associated with MVPA, indicating 
that retired individuals exhibited a decrease in MVPA at follow-up compared to baseline (r = -
0.32, p = 0.01, FDR-corrected). No significant correlations were observed between changes in 
MVPA and other variables, including depression, anxiety, general pain, or overall health ratings. 

Importantly, separate analyses for males and females revealed no significant sex 
differences in the relationship with MVPA. Likewise, the Townsend Deprivation Index was not 
significantly associated with changes in MVPA.  

 
3.2 Neuroimaging machine learning results 
In Table 2, we present the performance results of various feature selection scenarios for the SVM 
model: using all features, removing redundant features, selecting only the top 20 features to assess 
their unique contributions, and excluding the top 20 features to evaluate their necessity for high 
performance. The SVM model consistently demonstrated strong performance across all scenarios. 
To mitigate the influence of dependent features that can provide similar information and distort 
feature importance analyses, we employed the Independence Factor method to eliminate redundant 
features. We determined that a feature set size of 250 yielded the best performance with the fewest 
features for subsequent analyses. We assessed model performance after removing highly collinear 
features from the original 400. The bootstrapped ROC AUC distributions and permutation tests 
for the model using the non-redundant 250 feature set are presented in Supplemental Figure 2. 
After applying the Benjamini-Hochberg procedure to correct for multiple comparisons, we found 
that the distributions of the SVM model was significantly different from its respective null 
distributions. We conducted similar analyses with other machine learning algorithms, and their 
performance results are displayed in the supplemental figure 1.  
 
Features SVM model performance  

400 0.70 (0.75–0.88) 
250 0.84 (0.77-0.89) 
Top 20 0.80 (0.70–0.86) 
400 – Top 20 0.82 (0.64-0.88) 

 
Table 2: Performance of the SVM model using all 400 features, non-redundant features 
(250), top 20 most important features, all 400 features minus top 20 most important features. 
Median ROC AUC score (90% confidence interval). SVM: Support Vector Machine. 

3.3 Top functional connections predicting behavioral change 
Figure 2 shows the most informative functional connections in the prediction model (see also Table 
3 in supplementary table 2). These are predominantly between large scale networks and within the 
left hemisphere. Notably, nodes with higher importance are primarily located within the default 
mode network, the frontoparietal control network, and the salience ventral attention network, as 
shown in Figure 2b. 

Enhanced positive RSFC within the DMN was linked to increased physical activity 
engagement at follow-up compared to baseline. Moreover, successful behavior change at follow-
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up was associated with increased positive RSFC between the DMN and the frontoparietal control 
network. Additionally, increased antagonistic RSFC between frontoparietal control network and 
limbic network was also correlated with successful behavior change. 

 

Figure 2. Baseline RSFC contributions to predict future successful physical activity long-
term behavior change after a new cardiovascular diagnosis. (a) Anatomical depiction of 
significant features and their corresponding importance values. Nodes are defined as functionally 
distinct brain regions, while edges are the functional connections between the nodes. Node size 
depicts the frequency of that brain region on the list of predictive features, while edge thickness 
represents connection importance. Purple signifies positive RSFC connectivity whereas grey 
signifies negative RSFC connectivity associated with enhance physical activity gains at follow up 
compared to baseline. (b) Distribution of nodes from each intrinsic resting-state network (i.e., Yeo 
7 networks) in the roster of important features. 

4. Discussion 
In this study, we systematically evaluated whether RSFC, psychosocial factors, and social 

and structural determinants of health could predict successful long-term engagement in physical 
activity among older adults newly diagnosed with cardiovascular disease. Our behavioral analysis 
underscored the importance of structural and social determinants, particularly the percentage of 
greenspace in one's environment and levels of social support, as key predictors of positive changes 
in physical activity. Additionally, lifestyle factors such as retirement status were also found to 
significantly influence physical activity outcomes. Moreover, we identified functional 
connectivity features that were strongly predictive of sustained increases in MVPA activity 
following a cardiovascular diagnosis. These predictive features primarily reflected between-
network functional connectivity, specifically involving the heteromodal cortex, highlighting the 
role of higher-order brain networks in driving behavior change. 

Our study builds on the evidence underlying the impact social determinants of health might 
have on age-related brain health outcomes; for example, the influence of upstream factors on 
downstream protective behaviours such as physical activity engagement. A growing body of work 
suggests that greenspace and social support are promising avenues to enhance physical activity. 
Proximity to greenspace was associated with higher levels of walking and lower rates of 
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circulatory and all-cause mortality rates (Giles-Corti et al., 2005; Mitchell and Popham, 2008). 
Similarly, high social support from friends and family was significantly associated with increased 
and sustained MVPA (Kouvonen et al, 2005; Eyler et al., 2002). Our findings corroborate these 
studies, linking greenspace percentage and social support to increased MVPA. However, our 
results suggest that not all components of social support have the same influence; specifically, the 
frequency of visits from family and friends was a strong predictor of behavior change, while the 
ability to confide in others was not. This suggests a complex relationship between social support 
and physical activity that requires further exploration. Contrary to previous studies suggesting that 
retirement leads to increased leisure-time physical activity (Evenson et al., 2002), our results 
indicated that retirement was associated with decreased MVPA over the five-year follow-up. This 
discrepancy highlights the importance of assessing physical activity across various domains 
beyond leisure time and suggests that retirement may not uniformly lead to increased physical 
activity. 

We identified neural markers that predict successful engagement in physical activity 
among older adults after being diagnosed with a cardiovascular risk factor. Notably, the most 
frequent features involved heteromodal cortex. Nodes in the temporal and prefrontal regions of the 
DMN and FPN were most important in predicting successful long-term physical activity 
engagement. Our findings support the default-executive coupling hypothesis of aging, which 
suggests that as goal-directed cognition relies less on declining control resources and more on 
accumulated knowledge (semanticization of cognition), the DMN becomes more closely coupled 
with the FPN (Spreng & Turner, 2019). This coupling increases as prior knowledge becomes more 
relevant to goals, providing an advantage to older adults. The shift from exploration to exploitation 
in cognitive strategies with age is associated with enhanced functional connectivity between the 
FPN and the DMN. A possible reason why a new CVD diagnosis could serve as a critical moment 
for behavior change is that it may prompt older adults to rely more on semantic knowledge, shifting 
their goal structures toward emotionally meaningful objectives that offer immediate personal 
satisfaction. 

The present findings replicate and substantially extend previous findings linking prefrontal 
cortex and behaviour change. Prefrontal cortex, including ventromedial and dorsomedial 
prefrontal cortex, play crucial roles in self-referential processing and perceived social support, 
respectively (Jenkinson et al., 2002; Macrae, 2004; D’Argembeau et al., 2010; Bechara & 
Damasio, 2002; Eslinger & Damasio, 1985; Amodio & Frith, 2006; Waytz et al., 2012; Bzdok et 
al., 2012; Schuwerk et al., 2014)  Our findings underscore the importance of the prefrontal cortex, 
showing its engagement across multiple networks, including the default mode network (DMN), 
salience network, and control networks. 

We observed that baseline RSFC features predictive of successful long-term physical 
activity behavior change are primarily left-lateralized. One potential explanation could be that 
hemispheric specialization of the left lateralization contribution to resistance to interference, a core 
aspect of cognitive control. Past studies have found that ability to resolve Stroop interference 
localized to the left prefrontal cortex (Geddes et al., 2014; Gläscher et al., 2012; Tsuchida and 
Fellows, 2013). 

There are several limitations to this study. First, we relied on self-reported measures of 
MVPA. These self-reports should be interpreted with caution due to potential reverse causation 
effects. Second, objective measures such as accelerometers can differentiate between sedentary 
behavior, light activity, and moderate/vigorous activity, and can also provide physiological metrics 
for estimating cardiorespiratory fitness. Differentiating between physical activity and 
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cardiorespiratory fitness could be important for understanding their distinct impacts on cognitive 
and brain health. Finally, the correlational nature of functional connectivity analyses prevents us 
from determining causality in the brain behavior relationship identified (Siddiqi et al., 2021; 
Silvanto & Pascual-Leone, 2012; Vaidya et al., 2019). 

Despite these limitations, our study has several notable strengths. It represents the most 
comprehensive assessment of neurobehavioral factors predicting successful longer-term physical 
behavior change following a new cardiovascular diagnosis in aging. This study highlights the 
importance of going beyond individual-level factors and including structural factors such as 
greenspace and social support to promote physical activity behaviour change. Future research 
could also investigate differences related to aging and apply similar analyses to younger adults to 
enhance understanding of how these factors vary across age groups.  
 
4. Conclusion 

This study demonstrated that individual differences in the baseline RSFC, social and 
structural determinants of health successfully predict future engagement in physical activity among 
older adults that are newly diagnosed with cardiovascular diagnosis. Leveraging mechanistic 
predictors of future physical activity and adopting a precision medicine framework will potentially 
lead to targeted interventions that result in sustained behavioural change.  
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