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Abstract 

Occupational lung diseases, such as silicosis, are a significant global health concern, 

especially with increasing exposure to engineered stone dust. Early detection of silicosis is 

helpful for preventing disease progression, but existing diagnostic methods, including X-rays, 

CT scans, and spirometry, often detect the disease only at late stages. This study investigates a 

rapid, non-invasive diagnostic approach using atmospheric pressure chemical ionization-mass 

spectrometry (APCI-MS) to analyse volatile organic compounds (VOCs) in exhaled breath 

from 31 silicosis patients and 60 healthy controls. Six different interpretable machine learning 

(ML) models with Shapley additive explanations (SHAP) were applied to classify these 

samples and determine VOC features that contribute the most significantly to model accuracy. 

The extreme gradient boosting (XGB) classifier demonstrated the best performance, achieving 

an area under the receiver-operator characteristic curve of 0.933 with the top ten SHAP 

features. The m/z 442 feature, potentially corresponding to leukotriene-E3, emerged as a 

significant predictor for silicosis. The VOC sampling and measurement process takes less than 

five minutes per sample, highlighting its potential suitability for large-scale population 

screening. Moreover, the ML models are interpretable through SHAP, providing insights into 

the features contributing to the model's predictions. This study suggests that APCI-MS breath 

analysis could enable early and non-invasive diagnosis of silicosis, helping to improve disease 

outcomes.  
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Introduction 

Workplace dust exposures contribute substantially to the burden of occupational lung 

diseases (OLDs) with a resurgence of pneumoconiosis (or dust-induced lung fibrosis) over the 

last 10 years.1 In particular, silicosis is an emerging epidemic both in Australia and 

internationally, impacting broad cross-sections of the population.2–4 Globally there were over 

40,000 deaths attributable to silicosis in 2013, and a recent study found that more than one in 

four stonemasons in Victoria who had worked with artificial stone benchtops developed 

silicosis.5,6 In 2019, it is estimated that there were 350 cases of silicosis in Australia, largely 

due to the growth in the engineered stone industry.7 Without established treatments, silicosis 

and silica-related diseases will continue to strain the resources of the health and medical 

sectors. The development of approaches to identify such diseases early and prevent further 

exposure can slow the rate of disease progression and allow treatments (once established) to 

be implemented. While preventative measures exist to reduce exposure (e.g. exposure limits 

and personal protective equipment), they are often not adhered to; hence early detection has 

the greatest potential to improve survival rates.8  

OLDs, including silicosis, are currently detected and diagnosed using long established 

methods including questionnaires, spirometry and plain chest radiographs.9 However, these 

methods are limited in that they are insensitive for early disease and do not detect silicosis until 

it has significantly progressed. While chest X-rays are the traditional mainstay of diagnosis and 

enable classification of disease according to the International Labour Organisation (ILO) 

system, they are insensitive for detecting disease in early stages as there is a delay between 

histopathological onset and radiographically visible lesions.10 One recent study found that chest 

X-rays had sensitivities of only 48% when screening for disease presenting with only minimal 

opacities on the X-ray.11 Furthermore, X-ray images cannot definitively identify specific 

disease due to radiological similarities and clinical overlap with other lung diseases.12  Hence,  
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further confirmatory invasive testing such as biopsies may be required for diagnosis. Unlike 

plain chest radiography, CT scans offer a much higher level of detail and can be used to detect 

diseases in the early stage, but involve exposure to higher doses of radiation, and are more 

expensive.13 Similarly, spirometry has shown limited sensitivity when detecting abnormalities 

in lung function in early-stage disease and even in severe disease results may fall within 

reference ranges.14 Current silicosis surveillance methods rely on progression of lung disease 

to the stage that this is visible in imaging techniques or has significantly restrictive or 

obstructive lung function below the lower limit of normal. This reduces the likelihood of OLDs 

being detected in the very early stages where disease progression can more effectively be 

slowed. This highlights the need for new sensitive detection methods that do not rely on the 

visibility of the disease and can detect disease in its very early stages. These methods should 

also ideally be rapid, inexpensive and conducted at the point of care to allow for large scale 

screening and data gathering. 

Analysis of exhaled breath offers an additional non-invasive diagnostic approach.15–17 

Human breath contains thousands of volatile organic compounds (VOCs), which have been 

shown to be sensitive biomarkers of many lung diseases.18–20 Breath is quick to collect, 

sensitive and specific for analysis, and highly acceptable to patients. This field has expanded 

rapidly over the last 20 years, with significant application in lung disease detection, monitoring 

and screening. To date, exhaled breath analysis has proven application in asthma, chronic 

obstructive pulmonary disease, lung cancer and occupational lung diseases,21 but has not been 

widely investigated in silicosis.22 The presence of diseases such as OLDs change metabolic 

processes which alter the chemical profiling found in the breath.18 These ‘breathprints’ have 

been found to be specific for different diseases,23 suggesting that specific breath tests can be 

developed. When crystalline silica is deposited in the lungs, macrophages ingesting the dust 

particles cause an inflammatory response which releases potential biomarkers, altering the 
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abundances and identities of aldehydes, alkanes, and other volatile organic compounds in 

breath.24–27 Similarly, pulmonary fibrosis has been shown to increase the concentrations of a 

range of chemicals (carbon monoxide, nitric oxide, protein, 3-nitrotyrosine and 8-isoprostane) 

in exhaled breath condensate28 and in exhaled breath.29 Such ‘breathprints’ may enable the 

detection of early disease in individual workers; however, the concentrations of such chemicals 

are low, which highlights the need for ultra-sensitive methods in chemical analysis.30  

Here, untargeted atmospheric pressure chemical ionisation-mass spectrometry (APCI-

MS) was used to obtain ‘breathprints’ and discover features that could represent breath 

biomarkers for the early diagnosis of silicosis. APCI-MS is a highly sensitive and rapid 

analytical technique that allows for the analysis of VOCs in low concentrations. APCI-MS has 

been commonly used for the analysis of food volatiles during digestion,31 but has yet to be 

widely explored for disease VOCs. Breath from silicosis patients and healthy controls was 

compared and analysed using multiple machine learning methods to determine diagnostic 

performance. Key features used by the algorithms in their predictions were also determined 

using explainable ML using Shapley Additive Explanation,32,33 which potentially represent 

breath biomarkers of silicosis.  

 
 
Materials and Methods 
 
 
Subjects 
 

A total of 91 patients were recruited for this study and consisted of adult males aged 36 

to 79. The study cohort comprised of two groups: 31 patients with clinically diagnosed silicosis, 

and 60 healthy controls without any documented lung disorders. Patients with a diagnosis of 

silicosis were recruited prospectively from specialist clinical practice at Holdsworth House 

Medical Practice (HHMP), Sydney, NSW. The diagnosis of silicosis was made according to 

acknowledged criteria (Australian National Dust Diseases Taskforce 20229,34). Control patients 
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were recruited prospectively from both HHMP and The University of New South Wales. 

Control patients had no respiratory conditions and had no previous crystalline silica exposure, 

and were chosen to ensure age and gender match with silicosis patients. The demographic 

characteristics, smoking status, medical history and silica exposure history was recorded for 

all participants. A summary of the participant demographics is shown in Table 1. The study 

was approved by the University of New South Wales Human Research Ethics Committee 

(HC2203367) in accordance with the National Statement on Ethical Conduct in Human 

Research (2007) requirements. Written informed consent was received from all participants.  

 

Pulmonary function testing 

Pulmonary function was assessed via spirometry for all (31) silicosis participants as 

part of their routine medical care around the time of the breath sampling. Lung function 

parameters including forced vital capacity (FVC), forced expiratory volume in one second 

(FEV1), diffusing capacity for carbon monoxide (DLCO) and total lung capacity (TLC) were 

measured using an EasyOne Pro (ndd Medical Technologies). All spirometric tests were 

performed by qualified practitioners following American Thoracic Society (ATS) guidelines. 

Fractional exhaled nitric oxide (FeNO) readings were obtained for 24 silicosis participants, 

following ATS guidelines, including the use of nose clips.35 The following was the reference 

range for normal lung function:36–38 FCV: greater than 80% predicted, FEV1: greater than 80% 

predicted, FEV1/FVC ratio: greater than 0.7, TLC: greater than 80% predicted, DLCO: greater 

than 60% predicted, FeNO: less than 25 ppb.  

 

Breath sampling 

Breath samples were collected from participants using a 1 L Tedlar bag (Merck Life 

Science, Australia) fitted with a 0.25” outer diameter tube and threaded valve for sampling. 
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Participants were instructed to rinse their mouths with water prior to sample collection and 

provide late expiratory breath by discarding the initial fraction of breath and collecting only 

the final portion of exhaled breath into the bag. Unlike in FeNO sampling, nose clips were not 

used, consistent with many breath VOC sampling protocols in the literature.39 Samples were 

stored at room temperature in a dark environment until analysis. All samples were analysed on 

the same day as collection with a maximum time between collection and analysis of six hours.  

 

Mass spectrometry 

Breath samples were analysed by APCI-MS using a custom-made APCI source 

consisting of a Teflon tube with a high-voltage needle that was equipped to the inlet of a linear 

trap quadrupole MS (LTQ-XL, Thermo Fisher Scientific). Samples were infused into the APCI-

MS at a flow rate of 420 mL/min. Mass spectra were obtained in positive ionization mode by 

applying potentials of +3.6 kV, 0 V, and +26 V to the corona discharge needle, capillary inlet 

and tube lens respectively. The capillary inlet temperature was set to 400 ºC. Spectra were 

acquired using a mass range of 50 to 600 m/z for 90 s per sample. For each sample, the spectra 

were averaged over 60 s, exported as nominal mass, and normalised to the base peak to obtain 

relative peak abundances as input for machine learning (ML) algorithms to assess diagnostic 

performance. 

 

Machine learning 

The APCI-MS data was used as input for analysis by six supervised ML algorithms 

(neural network (NN), extreme gradient boosting (XGB), logistic regression (LR), random 

forest (RF), linear discriminant analysis (LDA), and support vector machine (SVM)) to classify 

persons with silicosis from healthy controls. This was implemented using CRANK-MS32 in 

Python (v. 3.8) to determine the diagnostic performance of machine learning algorithms for 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 1, 2024. ; https://doi.org/10.1101/2024.09.30.24314664doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.30.24314664
http://creativecommons.org/licenses/by-nc-nd/4.0/


 8 

binary classification. The hyperparameters for each algorithm were optimised using the grid 

search script in CRANK-MS32 (Table S1). The results from the ML algorithms were 

interpreted using SHAP analysis to determine the contribution of each feature to the model 

prediction.32,33 

 

Performance metrics 

For each algorithm, a bootstrap model was used in which the data set was split randomly 

100 times into 60% training data and 40% validation data (i.e., 100 “bootstraps”). Each 

diagnostic performance metric was calculated based on the mean of the 100 bootstrap 

measurements, and error was calculated as one standard deviation of the mean. For each ML 

algorithm, accuracy (ACC), precision/positive predictive value (PPV), sensitivity/recall (SN), 

specificity (SP), F1 score, MCC score, and negative predictive value (NPV) were calculated 

using Equations 1 to 7:  

𝑆𝑁 = 	 !"
!"#$%

                                                                           (1) 

𝑆𝑃 = 	 !%
!%#$"

                                                                           (2) 

𝐴𝐶𝐶 = 	 !"#!%
!"#!%#$"#$%

                                                             (3) 

𝑃𝑃𝑉 = 	 !"
!"#$"

                                                                         (4) 

𝑁𝑃𝑉 = 	 !%
!%#$%

                                                                        (5) 

𝐹1 = 	 &("×)%)
"#)%

=	 !"
!"#	!"($"#$%)

                                                (6) 

𝑀𝐶𝐶 = 	 (!"×!%),($"×$%)
-(!"#$")(!"#$%)(!%#$")(!%#$%)

                                (7) 

where TP, TN, FP and FN correspond to true positive, true negative, false positive and false 

negative respectively. Receiver operating characteristic (ROC) and precision-recall (PR) 

curves were generated and used to calculate area-under-curve (AUC). Briefly, an ROC curve 
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is a plot of the sensitivity against the specificity, and a PR curve is a plot of the precision rate 

against the sensitivity. These curves are beneficial as they allow for a visual representation of 

the trade off that often exists between performance metrics, and the area under these curves 

represent a summary of the model skill. ROC curves are generally more informative when the 

two classes are balanced in number, and PR curves are preferred when there is an imbalance.  

 
Results  

The characteristics of the silicosis and control groups are outlined in Table 1. There 

were no statistically significant differences between the groups for age and gender. However, 

the silicosis group exhibited a higher prevalence of comorbidities, including hypertension, 

heart disease, and diabetes (42% of the silicosis group compared to 12% of the control group), 

as well as other lung diseases (48% of the silicosis group and 0% of controls, by definition). 

Additionally, the silicosis group had a higher proportion of both current smokers (23% of the 

silicosis group compared to 8% of the control group) and ex-smokers (52% of the silicosis 

group compared to 12% of the control group). Among the silicosis group, 24 participants had 

simple silicosis, while 7 had the more severe, complicated form. Seventy-seven percent of the 

silicosis group had been exposed to silica through their occupations as stonemasons or 

tunnelers, while the remaining participants had been exposed through other professions, such 

as mining, welding, laboring, and plant operations (Figure 1d). Spirometry, diffusion, and 

FeNO measurements for the silicosis group showed normal readings for most participants (55% 

to 79%, Figure 1a-c), suggesting that most cases were not yet severe enough to cause 

significant functional impairment. 

 

Table 1: Summary of patient demographics. 
Characteristic Silicosis Healthy control  
Number 31 60 
Silicosis category 
    Simple 

 
24 

 
N/A 
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    Complicated 7 
Average agea 51 ± 12 51 ± 11 
Gender (% male) 100 100 
Smoking status 
    Non-smokers 
    Ex-smokers 
    Current smokers 
    Vape users 

 
7 
16 
7 
3b 

 
48 
7 
5 
8c 

Comorbiditiesd 
    Hypertension 
    Heart disease 
    Diabetes 
    Liver disease 
    None of the above 

 
7 
5 
2 
0 
18 

 
7 
2 
3 
0 
53 

Other lung diseasese 
    Asthma 
    COPD 
    Emphysema 
    Latent tuberculosis 
    Sleep apnoea 
    Hypersensitivity pneumonitis 
    Chronic pneumothorax 
    Chronic bronchitis 
    None 

 
5 
8 
3 
2 
2 
1 
1 
1 
16 

 
0 
0 
0 
0 
0 
0 
0 
0 
60 

a ±1 standard deviation 
b All three vape users are also in the ex-smoker category 
c Three vape users also currently smoke, and the other five vape users have never smoked 
d Three people in the silicosis group and five in the control group had multiple comorbidities 
e Seven people in the silicosis group had multiple other lung diseases  
COPD = chronic obstructive pulmonary disease 
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Figure 1: Silicosis group spirometry, diffusion and occupation data. Total lung capacity (TLC), 
forced vital capacity (FVC), forced expiratory volume in one second (FEV1) and diffusing 
capacity for carbon monoxide (DLCO) are represented as a percentage of predicted (a), and 
the FEV1/FVC ratio and fractional exhaled nitric oxide (FeNO) are represented in panels b) 
and c). For panels a) to c), data points in black indicate a normal reading and points in red 
indicate an abnormal reading.36–38 Panel d) represents an occupation breakdown for the silicosis 
patients, noting that three participants worked in multiple industries.  
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The APCI-MS data from 50 to 600 m/z was analysed using six machine learning (ML) 

algorithms to assess their diagnostic performance in classifying silicosis and healthy control 

samples. Among the evaluated algorithms, the XGB classifier exhibited the highest overall 

performance, achieving an AUC (ROC) of 0.858 ± 0.055 and an AUC (PR) of 0.760 ± 0.090 

(Figure 2, Table S2). The LDA and SVM classifiers also showed strong diagnostic capabilities, 

with AUC (ROC) values of 0.843 ± 0.078 and 0.845 ± 0.061, and AUC (PR) values of 0.756 ± 

0.081 and 0.733 ± 0.110, respectively. The performance of the remaining algorithms was 

similarly robust, with five out of the six classifiers obtaining an AUC (ROC) above 0.8 (Figure 

2, Table S2). 

 
Figure 2: The use of extreme gradient boosting (XGB) outperforms other machine learning 
algorithms for the classification of Silicosis using APCI-MS data without any feature selection. 
Receiver-operating characteristic (ROC) curve (a) and precision recall curve (c) for XGB are 
shown with a 95% CI in blue, and a dotted red line representative of an algorithm with no 
predictive power. The performance of the six machine learning algorithms is compared through 
swarm plots of the area under the curve (AUC) for ROC curves (b) and PR curves (d), with 
points representing each of 100 bootstraps performed for each of the algorithms: neural 
networks (NN), extreme gradient boost (XGB), logistic regression (LR), random forest (RF), 
linear discriminant analysis (LDA) and support vector machine (SVM).  
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The MCC score was highest for the XGB classifier with a normalized score of 0.764 ± 

0.178 (Table S2). MCC is recognized as a more informative metric for binary classification, 

particularly in datasets with an imbalance in the size of the cohorts40. Other classifiers, 

including LR, LDA, and SVM, demonstrated slightly lower MCC scores of 0.760 ± 0.189, 

0.749 ± 0.224, and 0.742 ± 0.204, respectively (Table S2). In terms of the negative predictive 

value (NPV), the LR classifier performed the best with an NPV of 0.823 ± 0.071, closely 

followed by the XGB and SVM classifiers with NPVs of 0.814 ± 0.079 and 0.810 ± 0.080, 

respectively (Table S2). NPV is clinically important because it assesses the likelihood that 

subjects who receive a negative test result are truly healthy, thereby helping to minimize 

unnecessary follow-up tests. For all six algorithms, randomly permuting the silicosis and 

healthy data labels resulted in average accuracies that are statistically the same as 50% within 

one standard deviation (Figure S1), consistent with a “random guess” for binary classification 

as expected for this control test.  
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Figure 3: Key nominal m/z values from APCI-MS analysis of breath used in algorithm 
predictions. Panel a) shows Shapley additive explanations (SHAP) values for the top 15 ions 
(nominal m/z) that had the highest contribution to a correct silicosis prediction using the XGB 
classifier. The average correlation corresponds to whether the feature is greater in intensity 
(red) or lower in intensity (blue) in silicosis samples. Panel b) shows comparative SHAP 
rankings for the top 10 metabolites for all six algorithms with the first column summarising 
statistical analysis of the features including P-value (P < 0.0001 = ***, P < 0.001 = **, P < 0.05 
= * and P > 0.05 = not significant (ns)) and fold change relative to healthy (yellow = higher 
intensity in silicosis, pink = higher intensity in healthy).  
 

To further investigate the contribution of specific features to the classification 

performance, SHAP analysis was conducted, revealing that the feature at m/z 442 was the most 

significant predictor across all six algorithms (Figure 3). The m/z 442 feature intensity was 

statistically significant between the silicosis and control groups with a p-value of 2 x 10-4 

(Figure S2, Table S3). Additional SHAP features, including ions at m/z 272, 171, and 277, also 
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contributed to the model predictions, though to a lesser extent (Figure 3). When the ML 

algorithms were applied to a reduced dataset containing only the top 26 SHAP features, an 

improvement in diagnostic performance was observed across all algorithms (Figure 4a-c, 

Table S2), with the XGB classifier achieving an AUC (ROC) of 0.917 ± 0.042 and an AUC 

(PR) of 0.850 ± 0.080. Further reduction of the feature set to the top ten SHAP features resulted 

in the highest performance metrics, with the XGB classifier achieving an AUC (ROC) of 0.933 

± 0.038, an AUC (PR) of 0.882 ± 0.073, a normalised MCC score of 0.852 ± 0.126 and a NPV 

of 0.879 ± 0.069 (Figure 4d-f, Table S4). Feature reduction to the top five features and top one 

feature did not further improve the predictive performance, with AUC (ROC) values of 0.901 

± 0.039 and 0.798 ± 0.060, and AUC (PR) values of 0.859 ± 0.064 and 0.634 ± 0.107, for five 

and one feature/s, respectively (Figure 4d-f, Table S4).  

 
Figure 4: Using a feature-selected model based on SHAP rank increased the performance of 
all algorithms with XGB remaining the best performing classifier. Panels a) to c) represent 
algorithm performance using the combined top 10 SHAP features from all algorithms (26 
features total), with a) showing the ROC curve for XGB classifier, and b) and c) showing 
comparative swarm plots of the AUC for ROC curves and PR curves, respectively. Panels d) 
to f) represent a comparison of the performance of XGB with differing number of features. The 
ROC curve for the XGB classifier using the top 10 SHAP features is shown in a), and 
comparative swarm plots of AUC for ROC and PR curves for differing numbers of input 
features are shown in e) and f), respectively.  
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Discussion 

This study aimed to evaluate the diagnostic performance of various machine learning 

(ML) algorithms in classifying silicosis and healthy control samples using non-invasive breath 

sampling coupled with a rapid VOC fingerprinting test through APCI-MS, rather than targeting 

specific VOCs. The results demonstrated that the XGB classifier consistently outperformed 

other algorithms across most performance metrics, particularly in terms of ROC and PR AUC 

values, and normalised MCC score (0.933 ± 0.038, 0.882 ± 0.073 and 0.852 ± 0.126, 

respectively using the top ten SHAP features). These findings suggest that the overall approach, 

particularly when using the XGB classifier, can be highly effective in facilitating the rapid and 

accurate diagnosis of silicosis, owing to its ability to account for complex patterns in the VOC 

data that may not be readily apparent with alternative methods. 

Breath tests have emerged as a promising non-invasive tool for diagnosing various 

respiratory conditions, including chronic obstructive pulmonary disease (COPD)41 and 

pneumoconiosis.23 Most of the current research in this area has relied on gas chromatography-

mass spectrometry (GC-MS) to identify volatile organic compounds (VOCs) in exhaled breath 

that can serve as biomarkers for these diseases. While GC-MS is highly sensitive and capable 

of detailed chemical analysis, it typically involves long analysis times, making it less practical 

for large-scale screening efforts. For COPD, studies using GC-MS have shown that specific 

VOC profiles can differentiate between disease stages42 and even predict exacerbations43. 

Similarly, breath analysis in asbestosis has identified compounds linked to lung inflammation 

and fibrosis,44 though the specificity of these biomarkers remains a challenge. Despite these 

advances, only two studies to date have examined the potential of breath analysis for silicosis 

diagnosis.22,45 Both studies used solid phase microextraction (SPME) GC-MS for analysis. One 

study from 2016 only included four silicosis participants, and hence could not make 

conclusions on the diagnostic performance of the identified potential biomarkers.45 A study 
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from 2023 with greater patient numbers also identified potential biomarkers using orthogonal 

partial least squares discriminant analysis, obtaining a sensitivity and specificity of 60.3% and 

89.2%.22 While the use of SPME-GC-MS is beneficial in allowing for more detailed compound 

identification, the total extraction and run time for each sample is 95 minutes, which presents 

a challenge for using it widely as a screening tool. For example, Coal Services Australia 

conducted nearly 9792 screening tests in the 2022-23 reporting year,46 which would require 

over 15,500 hours of sampling processing and instrument time if exhaled breath analysis was 

included in the screening process.  

The approach used in this study, utilizing APCI-MS, offers a significant advantage with 

an analysis time of less than two minutes and no preconcentration is required. This rapid 

analysis opens the possibility of its application in larger-scale screening including routine 

respiratory surveillance, which is particularly relevant for silicosis given its irreversible nature 

and lack of effective treatments. Early and accurate diagnosis through such a test could be 

crucial in early diagnosis and prevention of disease progression by removal from further 

exposure, also potentially reducing the reliance on invasive procedures. However, further 

confirmation of specificity and sensitivity is required in a prospective double-blind study using 

larger numbers of participants. 

This study represents a potential advance in respiratory disease diagnostics, as it the 

first example in the literature of a rapid, non-invasive breath test for silicosis that is feasible for 

large-scale screening. Traditionally, silicosis has been diagnosed through a combination of 

clinical assessment, imaging studies such as chest X-rays or CT scans, and pulmonary function 

tests, all of which present challenges in terms of accuracy and specificity. For instance, 

radiography modalities have sensitivity ranges between 48% and 68%,11,47 with potential 

overlap in findings with other lung conditions, while pulmonary function tests may only detect 

changes in advanced stages of the disease, with reported positive predictive values of 41% to 
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58%.48 This trend is similarly observed in this study, where 55% to 79% of spirometry and 

diffusion measures were in the normal range for silicosis participants. In some cases, invasive 

procedures like bronchoscopy or lung biopsy are required. By leveraging advanced machine 

learning algorithms to analyse breath VOC profiles obtained through APCI-MS and using them 

in addition to conventional testing, this research suggests that exhaled breath profiling could 

represent promising rapid and non-invasive biomarker analysis to facilitate the diagnosis of 

silicosis.  

The APCI process used for sample analysis results in the formation of protonated 

monomers [M+H]+, with a nominal neutral mass of 441 Da corresponding to the 442 m/z 

feature, tentatively assigned to leukotriene-E3 (LTE3), a molecule with an exact mass of 441.25 

Da. While leukotrienes, including LTE4, LTD4, and LTB4, are well-established markers in 

obstructive lung diseases such as asthma49 and chronic obstructive pulmonary disease 

(COPD)50 their presence in restrictive lung diseases like silicosis has been less explored. Recent 

evidence suggests that leukotrienes could play a role in fibrotic lung diseases through their 

involvement in inflammatory signalling pathways. Elevated levels of LTE4 and LTD4 have 

been observed in pneumoconiosis linked to asbestos and silica exposure.51 Given the 

inflammatory nature of silicosis, driven largely by the NLRP3 inflammasome, it is plausible 

that leukotrienes, which are potent mediators of inflammation, could also be involved in the 

disease process.52 Leukotriene antagonists, commonly used in asthma, are not typically applied 

in silicosis, as this disease involves different inflammatory pathways, particularly those 

regulated by the NLRP3 inflammasome rather than leukotriene-mediated mechanisms.53,54 

Thus, its potential as a biomarker for silicosis and an understanding of its interaction with 

NLRP3-mediated inflammation should be further explored. 

Limitations 
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While the results are promising, several limitations are acknowledged. First, the study's 

sample size is relatively small, and expanding the population to include a broader range of lung 

conditions and stages of silicosis is necessary. This is particularly important for differentiating 

silicosis from other similar respiratory conditions such as interstitial pulmonary fibrosis55 and 

sarcoidosis,56 which often present overlapping symptoms. Differentiating these diseases is 

crucial because they may require distinct treatment approaches, and misdiagnosis can lead to 

inappropriate therapies, particularly for future therapies that are currently in the development 

pipeline.55 Second, unambiguous identification of the detected biomarkers requires further 

validation. Higher-resolution mass spectrometry and ion fragmentation data, supported by 

authentic standards, are essential to accurately pinpoint the biomarkers specific to silicosis. 

This step is critical to confirm the findings and enhance the reliability of these potential 

diagnostic markers. Future studies should aim to address these gaps to refine the diagnostic 

utility of the identified biomarkers for silicosis. 

 

Conclusions  

This study provides early evidence for the potential of exhaled breath analysis using 

APCI-MS as a rapid, non-invasive diagnostic tool for silicosis. The VOC measurement takes 

less than two minutes per sample and does not require a preconcentration sample processing 

step, making it a promising candidate for large population screening, offering a significant 

advantage over methods that are invasive and time-consuming particularly in at-risk 

occupational groups. The interpretability of the machine learning models, made possible 

through SHAP provides a transparent way to understand how each feature contributes to the 

model’s predictions, ensuring that the diagnostic results can be interpreted. For example, the 

analysis identified the m/z 442 feature as a significant predictor across multiple machine 

learning models, which potentially corresponds to leukotriene-E3, a molecule from a class that 
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has been previously linked to lung inflammation. This finding suggests that the m/z 442 feature 

could serve as a biomarker for silicosis, although further validation is required to confirm its 

role. This research highlights the potential of breath-based diagnostics, particularly when 

combined with interpretable machine learning, to advance early silicosis detection and 

potentially improve patient outcomes. 
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