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ABSTRACT 
 
Background: Transthyretin amyloid cardiomyopathy (ATTR-CM) remains largely under-recognized, 

under-diagnosed, and under-treated. We hypothesized that the myocardial remodeling of ATTR-CM 

may be detectable through artificial intelligence (AI) applied to 12-lead electrocardiographic (ECG) 

images.  

Methods: Across 5 hospitals of a large U.S.-based hospital system, we identified patients with ATTR-

CM, defined by the presence of a positive nuclear scan with an approved bone radiotracer or 

pharmacotherapy with an approved transthyretin stabilizer between 2015 and the first half of 2023. The 

development cohort consisted of 1,011 ECGs from 234 patients (age 79 [IQR:70-85] years, n=176 

[17.4%] women), who were age- and sex-matched in a 10:1 ratio to 10,110 ECGs from 10,110 controls 

(age 79 [IQR:70-85] years, n=1,800 [17.7%] female). A convolutional neural network (CNN) pre-

trained using a bio-contrastive pretext on ECGs before 2015 was fine-tuned for ATTR-CM using 5-fold 

cross-validation and subsequently tested in an independent set of cases (139 ECGs in 47 patients; age 80 

[75-86] years, n=44 (31.7% women)) and matched controls (1390 ECGs and patients) from the second 

half of 2023.  

Results: The AUROC (area under the receiver operating characteristic curve) of the AI-ECG model for 

discriminating ATTR-CM in the leave-out, temporally distinct dataset was 0.906 [95%CI: 0.89-0.94] 

(A), with a sensitivity of 0.85 [95%CI: 0.79-0.91] and specificity 0.80 [95%CI 0.78-0.82].  

Conclusions: We demonstrate that AI applied directly to ECG images represents a promising and 

scalable approach for the screening of ATTR-CM.
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INTRODUCTION 

Transthyretin (TTR) amyloid cardiomyopathy (ATTR-CM) is a progressive and life-threatening 

disease, which remains largely under-recognized, under-diagnosed, and under-treated. It can be either 

inherited as an autosomal dominant trait secondary to mutations in the transthyretin (TTR) gene 

(ATTRm) or caused by abnormal deposition of wild-type transthyretin (ATTRwt).1,2 Prior studies have 

reported a prevalence of 13% among patients with heart failure with preserved ejection fraction,3 16% 

among patients with severe aortic stenosis,4 and 5% among patients with cardiac hypertrophy.5 These 

individuals often undergo current standard-of-care imaging by echocardiography and often cardiac 

magnetic resonance imaging (CMR) but do not routinely undergo dedicated nuclear imaging to screen 

for cardiac amyloidosis, which would be diagnostic. Therefore, they represent populations at elevated 

risk who go undiagnosed. This is important as cardiac amyloidosis is associated with significant 

morbidity and mortality, with the estimated median survival ranging from 2 to 4 years.6,7 In recent 

years, novel therapies (such as tafamidis) have emerged that can effectively modify clinical disease 

progression by pharmacologically inhibiting the dissociation of TTR tetramers into monomers, the 

crucial step that triggers the cascade of amyloid formation and deposition,7–12 or silence its 

production.13 These agents can effectively reduce the decline in functional status, quality of life, and 

prolong survival.7,12,13 Given the availability of these disease-modifying therapies and their 

contraindication among patients with advanced heart failure (New York Heart Association class IV 

symptoms), there is a growing need to develop scalable tools for the timely detection of patients at risk 

of ATTR-CM.  

It has long been known that ATTR-CM is associated with certain electrocardiographic (ECG),14 

echocardiographic, and MRI signatures,15 which may enable the timely identification of the condition 

and its precursors. However, these markers lack sensitivity and specificity, contributing to the large 

underdiagnosis of the condition, as definitive diagnosis requires dedicated nuclear amyloid imaging.16 

However, nuclear testing by bone scintigraphy or single-photon emission computed tomography 

(SPECT) is resource-intensive and cannot be performed in all individuals. It is notable that the lack of 
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traditional diagnostics to accurately identify ATTR-CM likely represents the key reason that, even 

among those who undergo many of the traditional diagnostic tests, accurate and timely diagnosis of 

ATTR-CM remains a challenge. An ECG-powered solution for the detection of likely ATTR-CM 

could provide a low-cost, readily available, and standardized method of detecting ATTR-CM in 

populations at risk of heart failure who may not be identified in current clinical workflows. 

 

METHODS 

The Yale Institutional Review Board approved the study protocol and waived the need for informed 

consent as the study represents a secondary analysis of existing data. Patients who opted out of 

research studies at the Yale New Haven Hospital (YNHH) were excluded. An online version of the 

model is publicly available for research use at https://www.cards-lab.org/ecgvision-attrcm. This web 

application represents a prototype of the eventual application of the model, with instructions for 

required image standards and a version that demonstrates an automated image standardization pipeline. 

 

Data Source and Study Population 

We performed a restrospective study using 12-lead ECG signal waveform data collected during the 

clinical care of patients at the YNHH between 2015 and 2024. These ECGs were recorded as standard 

12-lead recordings sampled at 500 Hz for 10 seconds. They were recorded on multiple different 

machines, with Philips PageWriter and GE MAC the most frequently used.  

 We reviewed the electronic health records of the Yale-New Haven Health system for patients 

with a diagnosis of ATTR-CM, defined as: i) presence of a positive nuclear amyloid scan with an 

approve bone radiotracer (i.e., 99m Tc PYP scan), or ii) pharmacological therapy with an approved 

transthyretin stabilizer (tafamidis [Vyndamax]). The first date of appearance for any of these 

conditions was labeled as the date of diagnosis, and we identified all ECGs performed within the 

preceding 12 months, or any time after the time of diagnosis.  
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Controls were defined as ECGs from patients who did not meet the criteria above and also did not have 

a relevant ICD code for ATTR-CM ("E85.2", "E85.82"). Controls were age-sex matched at a 1:10 ratio 

to confirmed cases of ATTR-CM during training and validation. To avoid data leakage across training 

and validation sets, splits were performed at a patient level, and we performed 5-fold cross-validation 

to ensure the robustness of the results. To ensure the reliability of phenotypes, all controls also had an 

echocardiogram performed within 15 days of the ECG during training but without a clinical diagnosis 

of ATTR-CM. In the cross-validation testing population, the control population was expanded to 

include any ECG that did not meet the criteria for having ATTR-CM and did not come from a patient 

with an ICD code for ATTR-CM. 

 Furthermore, we created an independent temporally distinct held-out test population, defined as 

individuals who underwent testing with a PYP scan and were diagnosed with ATTR-CM in the latter 

half of 2023 in YNHH.  Controls were age-sex matched at a 1:10 ratio to ECGs that did not meet the 

criteria for having ATTR-CM and did not come from a patient with an ICD code for ATTR-CM. 

 
 
Image Generation 

We generated ECG images to recapitulate the variation in ECG layouts in a real-world setting. Our 

approach to image plotting has been previously described and represents the processing steps of ECG 

machines to convert acquired waveform data to printed outputs.17,18 All ECGs were analyzed to 

determine whether they had 10 seconds of continuous recordings across all 12 leads. The 10-second 

samples were preprocessed with a one-second median filter, subtracted from the original waveform to 

remove baseline drift in each lead. Converting ECG signals to images was independent of model 

development, ensuring that the model did not learn any aspects of the processing that generated images 

from the signals.  

 ECG signals were transformed into ECG images using custom plotting software. Images were 

generated with a calibration of 10 mm/mV, which is standard for printed ECGs in most real-world 

settings. Using the Python Image Library (PIL v9.2.0), we converted all images to greyscale, then 
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down-sampling to 300x300 pixels regardless of their original resolution. Given that real-world ECG 

images may vary in the layout of leads, we created a dataset with several different plotting schemes for 

each signal waveform recording (Figure 1). Variations included but were not limited to the format of 

the plotted ECG, colors the original ECG was plotted in before conversion to grayscale, lead label font, 

size and position, and grid and signal line width. Plotted formats included the four formats used in 

previous studies – standard (four columns printed sequentially with each containing 2.5-second 

intervals from three leads as well as a rhythm strip), two-rhythm (a second rhythm lead added), 

alternate (two columns with simultaneous 5-second recordings in each), and shuffled (precordial leads 

in the first two columns and limb leads in the third and fourth). Additionally, formats with zero and 

three rhythm leads were plotted. Leads I, II, V1, and V5 were randomly selected as rhythm leads for 

images where rhythm leads were present. For evaluation, ECG images were plotted in the four formats 

used in previous studies. All images were rotated a random amount between -10 and 10 degrees before 

input into the model. 

 

Initializing the Model 

To maximize the learning of the signature of ATTR-CM from the population of patients, we utilized a 

novel self-supervised biometric contrastive learning approach to pretrain our deep learning model. The 

approach ensures label efficiency, i.e., the model is able to learn signatures of a disorder from a smaller 

number of labeled examples than needed for traditional deep learning. The model architecture is based 

on a 2-D convolutional neural network for identifying complex features in images (computer vision). 

In our pretraining approach, the model was first trained to identify individual patient-specific patterns 

in ECGs regardless of their interpretation. We have previously shown that this method improves 

performance on downstream tasks, especially when the label used in fine-tuning is scarce.19 Briefly, we 

used 156,576 pairs of ECGs from 78,288 patients from YNHH collected between 2000 and 2015 and 

trained the model to identify homologies in ECG images consistent across the pairs of recordings 

belonging to each person. None of the ECGs on the self-supervised pre-training task represented 
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individuals in the eventual ATTR-CM development. Characteristics of the patients in this pre-training 

cohort are included in Table 1. 

 

Model Architecture and Training 

We built a convolutional neural network model based on the EfficientNet-B3 architecture.20 The 

EfficientNet-B3 model requires images to be sampled at 300 x 300 square pixels, includes 384 layers, 

and has over 10 million trainable parameters. To allow label-efficient model development, we initialized 

the model using weights from a pretrained EfficientNet-B3 model that leveraged a novel self-supervised 

biometric contrastive learning approach, wherein the model was trained to identify individual patient-

specific patterns in ECGs regardless of their interpretation.19 None of the ECGs on the self-supervised 

pretraining task represented individuals in the model development. For training, we first unfroze the last 

four layers and trained the model with a learning rate of 0.01 for 2 epochs. Then, we unfroze all layers 

and trained the model with a learning rate of 5 x 10-6 for 6 epochs. We used an Adam optimizer, 

gradient clipping, and a minibatch size of 64 throughout training. The optimizer and learning rates were 

chosen after hyperparameter optimization. For both stages of training the model, we stopped training 

when validation loss did not improve in 3 consecutive epochs. A custom class-balanced loss function 

(weighted binary cross-entropy) based on the effective number of samples was used given that the case 

and control labels were not equally balanced.  

 

Localization of Model Predictive Cues 

To obtain a heatmap highlighting the portions of an ECG image that were important for predicting 

ATTR-CM, we used Gradient-weighted Class Activation Mapping (Grad-CAM).21 We calculated the 

gradients on the final stack of filters in our EfficientNet-B3 model for each prediction. We performed a 

global average pooling of the gradients in each filter, emphasizing those that contributed to a prediction. 

We then multiplied these filters by their importance weights and combined them across filters to 

generate Grad-CAM heatmaps. Among the 35 positive cases with the most confident model predictions 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 1, 2024. ; https://doi.org/10.1101/2024.09.30.24314651doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.30.24314651
http://creativecommons.org/licenses/by-nc/4.0/


for ATTR-CM across ECG formats (the top 25%), we averaged class activation maps across the five 

models to determine the most important image areas for the prediction of ATTR-CM. We took an 

arithmetic mean across the heatmaps and models for a given image format and overlayed this average 

heatmap across a representative ECG before converting the image to grayscale. Additionally, we 

presented individual model heatmaps for a handful of examples. The Grad-CAM intensities were 

converted from their original scale (0 – 1) to a color range using the jet colormap array in the Python 

library matplotlib, which was then overlaid on the original ECG image with an alpha of 0.3. The 

activation map, a 10x10 array, was upsampled to the original image size using the bilinear interpolation 

built into TensorFlow v2.8.0.  

 

Statistical Analysis 

Categorical variables were reported as number (percentage, %), and continuous variables as mean 

(standard deviation [SD]) or median (interquartile range [IQR]), as appropriate. The model’s 

performance was presented as area under the receiver operating characteristic curve (AUROC) and 

area under the precision-recall curve (AUPRC). The 95% confidence intervals (CI) for AUROC and 

AUPRC were calculated using DeLong’s algorithm and bootstrapping with 1000 iterations, 

respectively.22,23 Furthermore, we reported sensitivity, specificity, positive predictive value (PPV), 

negative predictive value (NPV), and F1 score of the model at the model threshold for 90% sensitivity 

in the validation set. All statistical tests were 2-sided, and the significance level was 0.05. Analytic 

packages used in model development and statistical analysis are reported in Table S1. 

 

RESULTS 

Study Population 

There were 11,781 patients with 12,650 12-lead ECGs at YNHH. The data from these patients were 

split into cross-validation datasets, and a temporally distinct held-out test set at a patient level, as 

described in the methods. Individuals in the cross-validation development population had a median age 
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of 79 years (IQR 70-85) at the time of ECG recording, and 1,976 (19.1%) were women. Overall, 8,674 

(83.9%) were non-Hispanic White, 941 (9.1%) were non-Hispanic Black, 840 (8.1%) were Hispanic, 

307 (3.0%) were from other races, and information was missing for 359 (3.5%) (Table 1).  

 

Detection of ATTR-CM 

In the age- and sex-matched held-out test set comprising standard format images, the model for 

detecting ATTR-CM achieved an AUROC of 0.91 (Figure 2). A probability threshold for predicting 

ATTR-CM was chosen based on a sensitivity of 0.85 or higher in the validation subset. With this 

threshold, the model had sensitivity and specificity of 0.85 and 0.81 in the held-out test set. Overall, an 

ECG suggestive of ATTR-CM indicated 24-fold higher odds (OR 23.9, 95% CI, 14.7 – 38.7) of 

ATTR-CM (Figure 2). The model’s performance was comparable across subgroups of age, sex, and 

race (Table 2 and Figure 2). The model performance was also comparable across the four original 

layouts of ECG images in the held-out set with an AUROC of 0.91 – 0.92 for detecting ATTR-CM. 

Sensitivity analyses demonstrated consistent model performance on ECGs without paced rhythms, 

atrial fibrillation and flutter, conduction disorders, in the presence of LVH, and with and without low 

voltage (Table 2).  

 

Localization of Predictive Cues for ATTR-CM 

Class activation heatmaps of the 35 positive cases with the most confident model predictions for 

ATTR-CM prediction across four ECG layouts are presented in Figure 3. For all four formats of 

images, the region corresponding to leads V2 and V3 was the most important areas for the prediction 

of ATTR-CM. Representative images of Grad-CAM analysis in a sampled individual with positive 

screens showed similar patterns, with consistency across the five models developed during cross-

validation (Figure 4).  
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DISCUSSION 

We developed and validated an automated deep-learning model for identifying ATTR-CM from ECG 

images. The model was developed and tested in a diverse population and demonstrated consistent 

performance across patient characteristics as well as variations in ECG waveform layouts, making it 

ideal for screening and implementation in various settings, expanding accessibility and improving the 

unbiased detection of ATTR-CM. Racial and gender biases influence the detection and management of 

cardiovascular disease in both minority populations (black and Hispanic) and women,24,25 contributing 

to disparities in the diagnosis and management of cardiac amyloidosis.24–32 A scalable screening tool 

deployable to accessible images of ECGs at the point of care represents a powerful way to expand 

access to such populations where lack of clinical suspicion or access to advanced testing may 

perpetuate diagnostic disparities.  

Given that racial minorities bear a higher burden of cardiovascular disease and are less likely to 

be diagnosed or treated, there is a unique opportunity to leverage AI and digital tools to alter the 

current landscape of cardiovascular care in these at-risk groups, beginning with screening for risk 

factors. An AI tool such as the one presented here has the potential to narrow the disparity gap in both 

racial minorities, as it was (1) developed in a large, racially/ethnically diverse cohort of individuals, (2) 

provides an unbiased detection of a highly under-diagnosed condition that seems to disproportionately 

affect Black participants, and (3) facilitates widespread adoption in low resource settings, which are 

less likely to have the infrastructure to allow for use of models applied to raw signal data. 

An important observation that supports the role of this model in the early identification of 

disease is the excellent performance (AUROC 0.93) in younger individuals, under 65 years old. A risk-

based referral that uses an AI-ECG platform combined with early intervention may decrease the risk of 

disease progression and subsequent adverse outcomes. Instead, early detection can add a number of 

quality-adjusted life years due to early detection in younger populations and the timely initiation of 

disease-modifying therapies.7,12,13  
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CONCLUSIONS 

We developed and validated a high-performing deep learning-based model that detects ATTR-CM 

from images of clinical 12-lead ECGs. This approach represents an accessible strategy for the timely 

screening of ATTR-CM, especially in low-resource settings, with the potential to enhance care for 

patients. 
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Figure 1. Examples of 9 variations in the electrocardiographic images used for convolutional 
neural network training.  
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Figure 2. Model performance measures (A) Receiver operating characteristic curves across ima
formats in the held-out test set. B) Diagnostic odds ratios across gender, and race subgroups on
standard format images in the held-out test set. Abbreviations: AUROC, area under receiver-
operating characteristic curve 
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Figure 3. Gradient-weighted Class Activation Mapping (Grad-CAMs) across Electrocardiogram
formats. A) Standard format B) Two rhythm leads C) Standard shuffled format D) Alternate 
format. The heatmaps represent averages of the 35 positive cases with the most confident model 
predictions for ATTR-CM. 
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Figure 4. Gradient-weighted Class Activation Mapping (Grad-CAMs) for an example ECG with
ATTR-CM. A) Average across the 5 cross validation models B) Cross Validation Model 1 C) Cr
Validaiton Model 2 D) Cross Validation Model 3 E) Cross Validation Model 4 F) Cross Validati
Model 5. 
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Table 1. Characteristics of Development Population. Data presented as median [IQR] for age and number (percent) for other 
variables. Abbreviations: ECGs, electrocardiograms; ATTR-CM, transthyretin cardiac amyloidosis. 
 

  
Pretraining 

Cross Validation Development Cohort Held-Out Test Cohort 

  ATTR-CM Cases ATTR-CM Controls ATTR-CM Cases ATTR-CM Controls 

Number of ECGs 156,576 1,011 10,110 139 1,390 

Patients 78,288 234 10,110 47 1,390 

Sex           

Female 78,784 (50.3%) 176 (17.4%) 1,800 (17.7%) 44 (31.7%) 441 (31.7%) 

Male 74,146 (47.4%) 835 (82.6%) 8,310 (82.3%) 95 (68.3%) 949 (68.3%) 

Missing 3,646 (2.3%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 

Age (years) 60 [44 - 74] 79 [70 - 85] 79 [70 - 85] 80 [75 - 86] 80 [75 - 86] 

Race           

Black 19,918 (12.7%) 176 (17.4%) 765 (7.6%) 33 (23.7%) 92 (6.6%) 

Hispanic 11,464 (7.3%) 58 (5.7%) 782 (7.7%) 4 (2.9%) 72 (5.2%) 

White 75,914 (48.5%) 736 (72.8%) 7,938 (78.5%) 101 (72.7%) 1140 (82.0%) 

Other 2,642 (1.7%) 12 (1.2%) 295 (1.9%) 0 (0.0%) 29 (2.1%) 

Unknown 46,638 (29.8%) 29 (2.9%) 330 (2.9%) 1 (0.7%) 57 (4.1%) 
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Table 2. Performance of model on test images across demographic subgroups in the age sex matched held-out test set. 
Abbreviations: PPV, positive predictive value; NPV, negative predictive value; AUROC, area under receiver operating characteristic 
curve; AUPRC, area under precision recall curve; A-Fib, atrial fibrillation; ECG, electrocardiogram; LBBB, left bundle branch block; 
RBBB, right bundle branch block; LVH, left ventricular hypertrophy. 

 

 
 

Labels Number PPV NPV Specificity Sensitivity AUROC AUPRC F1 Score 

All 1529 0.308 0.982 0.809 0.849 0.906 (0.881-0.931) 0.562 (0.477-0.648) 0.452 
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Male 1044 (68.3%) 0.275 0.978 0.783 0.821 0.881 (0.845-0.917) 0.511 (0.418-0.619) 0.412 

Female 485 (31.7%) 0.404 0.99 0.866 0.909 0.957 (0.937-0.978) 0.706 (0.578-0.828) 0.559 

>=65 1507 (98.6%) 0.306 0.981 0.808 0.847 0.907 (0.882-0.932) 0.566 (0.477-0.65) 0.45 

<65 22 (1.4%) 0.5 1 0.9 1 0.925 (0.807-1) 0.5 (0-0) 0.667 

Hispanic 76 (5%) 0.25 1 0.833 1 0.951 (0.876-1) 0.546 (0-0) 0.4 

White 1241 (81.2%) 0.292 0.99 0.804 0.911 0.927 (0.907-0.947) 0.534 (0.436-0.638) 0.442 

Black 125 (8.2%) 0.568 0.864 0.826 0.636 0.846 (0.762-0.929) 0.751 (0.609-0.866) 0.6 

Paced ECGs 109 (7.1%) 0.268 1 0.31 1 0.875 (0.807-0.943) 0.602 (0.413-0.812) 0.423 

Not Paced ECGs 1420 (92.9%) 0.319 0.981 0.843 0.821 0.909 (0.882-0.937) 0.567 (0.473-0.649) 0.459 

A-Fib or Flutter 280 (18.3%) 0.288 0.993 0.561 0.977 0.883 (0.832-0.934) 0.571 (0.413-0.725) 0.444 

No A-Fib or Flutter 1249 (81.7%) 0.321 0.98 0.86 0.792 0.912 (0.884-0.941) 0.577 (0.467-0.676) 0.456 

LBBB 79 (5.2%) 0.382 0.956 0.672 0.867 0.822 (0.701-0.943) 0.5 (0.299-0.791) 0.531 

No LBBB 1413 (92.4%) 0.293 0.982 0.815 0.839 0.909 (0.882-0.936) 0.572 (0.474-0.663) 0.434 

RBBB 191 (12.5%) 0.426 0.954 0.78 0.812 0.886 (0.832-0.94) 0.642 (0.478-0.784) 0.559 

No RBBB 1301 (85.1%) 0.277 0.985 0.812 0.851 0.907 (0.876-0.937) 0.558 (0.465-0.656) 0.417 

LVH 176 (11.5%) 0.361 0.986 0.857 0.867 0.957 (0.91-1) 0.82 (0.627-0.962) 0.51 

No LVH 1353 (88.5%) 0.303 0.981 0.803 0.847 0.899 (0.872-0.927) 0.53 (0.439-0.623) 0.446 

Low Voltage 108 (7.1%) 0.333 1 0.796 1 0.947 (0.904-0.99) 0.59 (0.317-0.869) 0.5 

No Low Voltage 1421 (92.9%) 0.306 0.98 0.81 0.837 0.903 (0.877-0.93) 0.565 (0.48-0.649) 0.448 
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