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Abstract
Background Estimating the trend of new infections was crucial for monitoring
risk and for evaluating strategies and interventions during the COVID-19 pan-
demic. The pandemic revealed the utility of new data sources and highlighted
challenges in interpreting surveillance indicators when changes in disease sever-
ity, testing practices or reporting occur.

Aim To estimate the trend in new COVID-19 infections by combining estimates
of growth rates from all available surveillance indicators in Norway.

Methods We estimated growth rates from ten different surveillance indicators
in Norway by using a negative binomial regression method and aligned the
growth rates in time to hospital admissions by maximising correlations. Using
a meta-analysis framework, we calculated overall growth rates and reproduction
numbers including assessments of the heterogeneity between indicators.

Results The estimated growth rates reached a maximum of 25% per day in
March 2020, but afterwards they were between -10% and 10% per day. The
correlations between the growth rates estimated from different indicators were
between 0.5 and 1.0. Growth rates from indicators based on wastewater, panel
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and cohort data can give up to 14 days earlier signals of trends compared to
hospital admissions, while indicators based on positive lab tests can give signals
up to 7 days earlier.

Conclusions Combining estimates of growth rates from multiple surveillance
indicators provides a good description of the COVID-19 pandemic in Norway.
This is a powerful technique for a holistic understanding of the trends of new
COVID-19 infections and the technique can easily be adapted to new data
sources and situations.

Introduction
For risk assessment and management of the COVID-19 pandemic, one of the
main surveillance objectives was to produce incidence trends. Key indicators
used were incidence of COVID-19 cases and hospital admissions [1–3]. In Nor-
way, both formal estimates of growth rates and effective reproduction num-
bers[4,5] as well as qualitative assessments of surveillance data were used to
describe trends [3]. The quality of the data sources changed over time due to a
large range of factors, for example during early parts of 2022 in Norway there
were large changes in the testing regime and the risk of hospitalisation given in-
fection decreased during the unfolding Omicron wave [6]. Therefore, a new and
broader surveillance approach based on a larger range of surveillance indicators
was implemented.

During the COVID-19 pandemic, trends have been formally estimated using
both reproductive numbers [7,8], R, and exponential growth rates [9], r. Repro-
duction numbers are defined as the average number of secondary cases infected
by each infected, while by the exponential growth rate we refer to the fac-
tor, r, multiplying time, t in the exponent of the growth of cases over time
I(t) = I0exp(rt). While these quantities are related through the generation
time [10], there are benefits and drawbacks of focusing on one or the other [11].
Growth rates provide a better understanding of the short-term development
of an indicator, while reproduction numbers provide information about long-
term evolution and the effect of potential interventions. However, reproduction
numbers are model-dependent and influenced by several factors, with the most
important factor being the shape of the generation time distribution, but also
other factors like the number of cases infected abroad will impact estimates.
Overall, both measures of trend are useful and in Norway, we estimated both
quantities. In this paper we focus on growth rates as we want to compare the
short-term trend of multiple different indicators.

In order to track the trend of the pandemic many new data sources have been
used internationally. Wastewater surveillance [12] has been the most widely
used, along with data on self-reported symptoms and test results collected
though pre-existing cohorts or self-selected participation using smartphone apps
have provided valuable information [13–15]. Repeated point prevalence studies
have provided the gold standard estimates of prevalence and trends in new in-
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fections[16,17]. Syndromic surveillance systems, for example based on visits to
emergency rooms, and mortality have also been used to understand the spread
of COVID-19. When interpreting these new indicators, it is important to under-
stand how they relate to each other and to the underlying disease epidemiology
both in terms of correlation and delays [18]. Multiple factors of credibility,
timeliness, coverage and relation to new infections need to be evaluated.

In this paper, we present an analysis of combining estimates of growth rates
from multiple surveillance indicators during the COVID-19 pandemic in Nor-
way. This provides a new and comprehensive approach to monitoring trends
from multiple data sources without many modelling assumptions. The analysis
includes methods to align the estimated growth rates in time and to study the
correlation between them. The approach is an extended, retrospective version of
an analysis that has been performed in real-time as part of routine surveillance
of COVID-19 in Norway since February 2022 [3].

Methods
Data Sources

We included ten key surveillance indicators used for surveillance during the
COVID-19 pandemic as detailed in Table 1. These indicators can be classified
in two main categories, describing either an incidence or a prevalence. The
incidence data type refers to data sources that record new events related to a
SARS-CoV-2 infection, such as a positive test results or a hospital admissions.
Prevalence data types are data that measures the current number or proportion
of people who are infected or would test positive.

Table 1: Overview of the surveillance indicators used to estimate growth rates in Norway between
March 2020 and the end of 2023.

Short Name Indicator Available

Reporting
Fre-
quency Date Type Source

Wastewater Relative concentration
of SARS-CoV-2 RNA in
the wastewater

May 2022 -
Oct 2023

Weekly Sampling
week

Prevalence Wastewater
Surveillance
Project at
Norwegian
Institute of Public
Health (NIPH)

Proportion
Positive -
Survey

Proportion of
symptomatic
participants reporting
positive tests for
SARS-CoV-2

Nov 2020 -
Dec 2023

Weekly Sampling
week

Prevalence Participatory
surveillance
system named
“Symptometer”

Proportion
Positive -
Cohort

Proportion of
respondents reporting
positive SARS-CoV-2
tests

Jan 2022 -
June 2022

Daily Estimated
symp-
tom
onset
date

Incidence Norwegian
Mother, Father
and Child Cohort
Study(MoBa)

GP Consul-
tations

Proportion of general
practitioner (GP)
consultations due to
confirmed or suspected
COVID-19

Feb 2020 -
Dec 2023

Weekly Week of
Consul-
tation

Prevalence Norwegian
Syndromic
Surveillance
System(NorSySS)

Positive
RAT-tests

Number of self-reported
SARS-CoV-2 positive
rapid antigen
tests(RAT)

Jan 2022 -
Mar 2022

Daily Test
Date

Incidence Norwegian
Directorate of
Health
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Short Name Indicator Available

Reporting
Fre-
quency Date Type Source

Hospital
Prevalence

Proportion of all acute
hospitalisations with,
but not due to
COVID-19

March 2020
- Sep 2023

Daily Admission
Date

Prevalence Norwegian
Intensive and
Pandemic
Registry(NoPaR)
and Norwegian
Patient
Registry(NPR)

Cases Number of laboratory
confirmed COVID-19
cases

Feb 2020 -
Dec 2023

Daily Test
date

Incidence Norwegian
Surveillance
System for
Communicable
Diseases (MSIS)

Proportion
Positive

Laboratory confirmed
COVID-19 cases
divided by the number
of test events

Feb 2020 -
Dec 2023

Daily Test
date

Incidence Norwegian
Surveillance
System for
Communicable
Diseases (MSIS
and the MSIS
laboratory
database)

Hospital
Admissions

Number of admissions
to hospital with
COVID-19 as the main
cause

March 2020
- Sep 2023

Daily Admission
date

Incidence Norwegian
Intensive and
Pandemic
Registry(NoPaR)

Deaths Number of COVID-19
associated deaths

Feb
2020-Dec
2023

Weekly Week of
death

Incidence Norwegian Cause
of Death Registry

Registry data We used data from several national health registries in Nor-
way, many of which were available through the Emergency preparedness registry
for COVID-19 (Beredt C19) [19]. Reports of laboratory confirmed COVID-19
cases were retrieved from the Norwegian Surveillance System of Communicable
Diseases (MSIS and the MSIS laboratory database) [20,21]. For the Proportion
of positive tests we use the number of positive cases as the numerator and the
number of test-events, defined as one or more tests for SARS-CoV-2 PCR test or
antigen test within 7 days as the denominator. Hospitalisations with COVID-19
as the main cause were retrieved from the Norwegian Intensive Care and Pan-
demic Registry [22] where the main cause of admission was determined by the
clinician. The number of COVID-19 associated deaths were extracted from the
Cause of Death Registry [23] with COVID-19 as the underlying or contributing
cause of death (International Classification of Diseases, 10th edition (ICD-10)
codes: U01.1, U07.2, U09.9 and U10.9). The hospital prevalence indicator is
based on the proportion of acute admissions registered in the Norwegian Patient
Register [24] who had a COVID-19 diagnosis code, but who were not admitted
with COVID-19 as the main cause of the admission. During the pandemic most
acutely admitted patients were tested for COVID-19, so this indicator gives an
estimate of the COVID-19 prevalence among the population who are admitted
to hospital for non-COVID-19 causes.

The Norwegian syndromic surveillance system (NorSySS) [25] is based on consul-
tations in primary health care from the Norwegian Registry for Primary Health
Care [24]. Every consultation is coded using an International Classification of
Primary Care, 2nd edition (ICPC-2) code. We use the number of consultations
with codes R991 (“Suspected COVID-19”), R992 (“Confirmed COVID-19”) and
R33 (“COVID-19 Test”) compared to the total number of consultations as a
prevalence measure of COVID-19.
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Self-reported SARS-CoV-2 positive rapid antigen tests From late Jan-
uary 2022 to March 2022, the Norwegian population was asked to register posi-
tive self-administered rapid antigen tests(RAT) to their municipality of residence
digitally. This data was then reported to the Norwegian Directorate of Health.
We used the number of positive tests by testing date as an incidence measure.

Wastewater From June 2022 to November 2023 semiweekly wastewater sam-
ples were tested for SARS-CoV-2 [26]. Samples were taken from municipal
wastewater treatment plants in the largest cities in Norway, initially with 12
different sites(covering 30% of the population) and then with 5 sites from De-
cember 2022(coverage 25%). From April 2023 the number of sites were further
downscaled to include 3 sites (coverage 22%). We used the fraction of detected
SARS-CoV-2 RNA to the amount of the faecal indicator Pepper Mild Mottle
Virus RNA (PMMoV) as a crude measure of COVID-19 prevalence.

Participatory Surveillance “Symptometer” was a participatory surveil-
lance system established in November 2020 with weekly questionnaires to
monitor symptoms and testing behaviour during the pandemic[27]. Starting
up, the panel included a representative sample of the Norwegian population
consisting of roughly 36 000 individuals, of which approximately 19 000
responded weekly (50%). The number of participants and response rates grad-
ually decreased, and at the end of the study period there were approximately
22 000 participants with an average response rate of 19% (4200). In addition
to symptom reporting for the preceding seven days, information about testing
for SARS-CoV-2 was also reported, including test result and whether tested
with self test/RAT or through health care services.

Norwegian Mother, Father and Child Cohort Study The Norwegian
Mother, Father, and Child Cohort Study (MoBa) is a pregnancy-based cohort
that recruited participants between 1999 and 2008 [28] . The participation rate
among pregnant women was 41%, and the cohort includes approximately 95,000
mothers, 75,000 fathers, and 114,000 children. Since March 2020, active adult
participants have been invited to answer electronic questionnaires with questions
related to the COVID-19 pandemic every 14-30 days, covering topics such as
the onset of symptoms and testing activity [29]. The number of responses was
high throughout the pandemic, with between 100 000 and 70 000 respondents.

From January 2022 to June 2022 information about the incidence of self-reported
positive SARS-CoV-2 tests in the MoBa cohort was systematically extracted
from the questionnaires. If a participant reported a positive test result along
with a test date, we used the reported date directly. If no test date was provided,
we estimated it based on the reported onset of symptoms. If neither a test date
nor symptoms were reported, a test date was randomly sampled from the period
covered by the questionnaire.

5

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 1, 2024. ; https://doi.org/10.1101/2024.09.30.24314638doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.30.24314638
http://creativecommons.org/licenses/by/4.0/


Estimating Growth Rate

Our goal is to estimate the exponential growth rate over time, r(t). With a
time-series of incidence measurements, I(t), we estimate the growth rate by the
logarithmic derivative of a suitably smoothed version of this time series, S[I(t)]

r(t) = dlog(S[I(t)])
dt

We smooth the incidence by the best fitting exponential function over a rolling
window of length 2l + 1 centred at t by using a negative binomial regression
with dispersion κ on the incidence data in the time-window [t − l, t + l].

I(t) ∼ NegBin(exp(b0 + r(t) ∗ τ + b1 ∗ weekend), κ), τ ∈ [t − l, t + l]

where b0, r(t) and b1 are regression coefficients and we include a possible week-
end effect. The amount of smoothing is controlled by the length of the time-
window, 2l + 1. In the main results we use a window length of 25 days and in
the Supplementary Materials we include sensitivity analysis for other choices of
l.

For indicators providing daily incidence data, we use this regression model di-
rectly. For deaths, where there are only aggregated weekly data, we first disag-
gregate the data to a daily frequency using a Bayesian Gaussian Process model,
similar to the model for estimating incidence from prevalence, which will be
discussed in the following. For the “Proportion Positive” and the “Proportion
Positive - Cohort” indicators we include the total number of responses or test
events as an offset in the negative binomial model.

In the case of indicators measuring prevalence we first estimate incidence curves
from the prevalence data and then use the regression model to calculate the
growth rates. To ensure that we propagate the uncertainty we generate multiple
sampled incidence trajectories and estimate the growth rates for each trajectory.
We combine all the estimates from the different incidence trajectories into an
overall growth rate by sampling from the sampling distribution of the regression
coefficients. We use two methods for estimating the prevalence. For the “GP
Consultations” and “Hospital Prevalence” indicators”, the prevalence is given as
a simple proportion of COVID-19 consultations or admissions compared to all
consultations or admissions. For the “Proportion Positive - Survey” indicator
we want to estimate the symptomatic prevalence of those surveyed, however,
not everyone with symptoms chose to get tested. We therefore assume that
the test positivity rate is equal among all participants who report having cold
symptoms and use a Bayesian model for estimation.

Once we have estimated the prevalence, we estimate the incidence following
[30]. Similarly following [31], we estimate relative incidence from wastewater
data using the same approach as when estimating incidence from prevalence.
See the Supplementary Materials for more details.
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With available estimates of the growth rates over time for each indicator we
want to evaluate potential systematic delays between them. We use hospital
admissions as a reference and estimate a relative delay for the other indicators
by finding the constant time-shift that maximises the Pearson correlation with
the growth rate based on hospitalisations. Hospital admissions was chosen as
the reference since it was one of the key indicator used to track the pandemic in
real time. We find the optimal time-shift for each indicator and year separately
and globally for all four years. For the rest of the analysis, we use the growth
rates obtained after shifting by the estimated yearly delays. Next, we estimate
the Pearson correlation matrix between all the data sources taking into account
the uncertainty by using a Monte-Carlo approach where we sample from the
sampling distribution of the growth rates and calculate the correlation coefficient
with uncertainty in the overlapping time periods.

We combine samples from the individual growth rates from each indicator and
estimate an overall growth rate using a meta-analytic framework with random
effects and smoothing over time. With this approach we can also estimate the
heterogeneity, I2, quantifying how much of the uncertainty is captured by the
sampling uncertainty of the individual growth rates. A high I2 value indicates
that there is significant heterogeneity between the data sources that is not just
due to the sampling uncertainty. The combined growth rate can then be trans-
lated to a reproduction number[10] by considering how the generation time has
changed during the pandemic. We also calculate an associated relative incidence
based on the combined growth rate.

More details are presented in the Supplementary Materials. The procedures de-
scribed above were implemented using the R-programming language [32], with
all the Bayesian methods implemented using the RStan package [33]. All the
code and data are available at http://github.com/folkehelseinstitutet/covid19_trend.

Results
In Figure 1 we show the weekly aggregated indicators on a logarithmic scale for
all the included surveillance indicators. The figure shows the multiple waves of
the COVID-19 epidemic in Norway and highlights which time periods the differ-
ent indicators were available. Figure 2 shows the estimated time shifts for each
indicator that maximises the correlation with hospitalisations. Most of the indi-
cators have a positive shift indicating that they occur prior to hospitalisations,
while deaths have a negative shift indicating that they are delayed compared
with hospitalisations. There is variation in the time-shifts by year, in some cases
the variation is significant, for example for the GP Consultations and the indi-
cators for cases and proportion positive cases. The figure also shows that the
correlations between the various indicators and hospitalisations can vary from
year to year.

In Figure 3 we show the estimated and shifted growth rates for each year from
2020 to the end of 2023. These growth rates show the large initial surge in
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Figure 1: Weekly aggregated data for all the included surveillance indicators
plotted on a logarithmic scale. For the prevalence-type indicators we include a
95% confidence interval for the estimated proportions, Norway 2020-2023.RAT:
rapid antigen tests, GP: general practitioner

infections in early 2020 followed by a drop after the lockdown in the middle
of March. In early 2021, we see high growth rates associated with the Alpha-
wave in Norway. The autumn of 2021 sees a resurgence of transmission due to
the Delta-variant and later the Omicron(BA1/BA2) wave starting in December
2021. After the large Omicron wave there is another wave in the summer of
2022, dominated by the Omicron BA4/5 variants. In both 2022 and 2023 we
see a winter wave with a peak in December followed by a rapid decline.

Apart from early 2020, the growth rate mostly stayed between -10% to 10% in-
dicating that Norway never again experienced such rapid growth as in the early
phase of the pandemic. Overall the different indicators give a fairly consistent
view of the growth rate. This is also supported by the high correlation coeffi-
cients in Figure 4, with no correlations below 0.5 and most being significantly
higher. In January 2022, while the growth rate for hospitalisations remained
negative, many of the other indicators indicated an escalating pandemic. Addi-
tionally, the growth rate for newly confirmed cases becomes negative at least a
month before the other indicators.

In Figure 5, we show the combined overall growth rate, the estimated
heterogeneity(I2) of the indicators, the estimated reproduction number and
estimates of relative incidence based on the growth rates. When comparing
the overall growth rate to the rates for cases and hospitalisations we can see
multiple times of disagreement, especially around early 2022. The heterogeneity
between the growth rates from the different indicators varies significantly over
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Figure 2: Estimated time-shifts for each indicator that maximises the correlation
with hospitalisations admissions(A) per year and for all years combined and
(B) estimated correlation between the indicator and hospital admissions (B).
Positive time-shifts means that the indicator grows prior to hospitalisations and
negative time-shift means that they are delayed, Norway 2020-2023.
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Figure 3: Estimated growth rates for all surveillance indicators after applying
a yearly time-shift(delay) to maximise the correlation with hospital admissions,
Norway 2020-2023. The shaded regions show the 95% confidence intervals.

Figure 4: Estimated Pearson correlation coefficients with 95% confidence inter-
vals between the estimated, time-shifted growth rates of the different surveil-
lance indicators, Norway 2020-2023.
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the time with both early 2020 and early 2022 being examples of periods with
high heterogeneity. Figure 5D clearly shows that the Omicron peak in early
2022 was the highest with an incidence more than 10 times greater than
observed during 2020.

Discussion
In this study we demonstrate that estimating and visualising growth rates from
many different surveillance indicators can provide a more complete picture of
the spread of COVID-19 than only considering laboratory confirmed cases or
hospitalisations. We also show that including new indicators from cohort stud-
ies, syndromic surveillance, hospital prevalence and wastewater surveillance im-
proves our understanding of the COVID-19 epidemic. This combined approach
was published in weekly surveillance reports and provided useful real-time in-
formation to inform the pandemic response in Norway [3].

Using multiple surveillance indicators allowed us to obtain more robust trend
estimates even when individual indicators were biased due to changes in epi-
demiology, data collection or policy. This is most clearly evident during the
Omicron wave in early 2022 where both the trend estimated from hospitalisa-
tions and confirmed cases gives a biased estimate of the growth rate due to
changes in severity[6] and changes in testing regimes. During this period, the
combined growth rate shows an increasing trend approximately three weeks be-
fore the trend in hospitalisations began increasing and the trend in confirmed
cases peaked approximately four weeks earlier than the combined growth rate.

The estimated time-shifts that maximised correlations show that all the indi-
cators apart from COVID-19 associated deaths provide an earlier measure of
growth than hospitalisation. Assuming similar delays in reporting for different
indicators, this is not unexpected, as more severe outcomes usually take some
time to develop. This indicates that these data sources are useful for predicting
hospitalisations, but for real-time predictions one would need to also take re-
porting delays and other practical considerations into account. The delays also
refer to the estimated incidence and not the directly measured prevalence. The
general pattern and size of the delays agree quite well with findings from the
UK [18].

We find strong correlations among the estimated growth rates from the different
surveillance indicators indicating that they describe the same underlying disease
transmission process. However, the weaker correlations between some indicators
suggest that they likely measure infections in populations that differ, such as
by geographic location or by age. The correlation patterns provide insight into
how the different indicators can be combined into a holistic surveillance system.
However, they also underscore the importance of repeated point-prevalences
studies [16,17] which would give the best possible estimate of infections in dif-
ferent age groups.

In addition to visualising all the individual growth rates together, we show that
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Figure 5: A) Estimate of the combined growth rate together with growth rates
from hospitalisations and positive cases with 95% confidence intervals; B) es-
timated heterogeneity between the growth rates from the different indicators;
C) estimated reproduction numbers based on the combined growth rate with a
95% confidence intervals; D) shows the estimated relative incidence based on
the combined growth rate on a logarithmic scale, Norway 2020-2023.
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they can all be combined into one overall growth rate. By using a random
effects meta-analysis framework we can combine all the estimated growth rates
and estimate heterogeneity. When the heterogeneity is large, it is crucial to also
consider all the individual indicators when interpreting the combined estimate.
This combined rate can be translated to a reproduction number. While the
early estimates of the reproduction number are very uncertain and difficult to
interpret due to large heterogeneity we find that the patterns in the reproduction
number estimates agree quite well with other estimates from Norway [4,5] during
the first year of the pandemic. Our estimates are in general somewhat closer to
one likely due to a shorter generation time.

In this paper we have used a retrospective approach to estimate trends, utilising
complete data that became available after the period for which the trend was
initially estimated. This gives a better retrospective estimate of the trend, but
is not feasible in real-time without a long delay. For real-time analysis of trend
further research is needed to understand which smoothing techniques provide
the best estimate of current trends based on all available data.

The main strengths of the presented approach is that it allows us to translate
the different indicators into a common numerical estimate of growth rates that
can be visualised together and combined. This allows an holistic description
of the trend where it is possible to overcome biases in individual indicators.
While the combined rates might be more robust, they still crucially depend on
all the individual indicators and their uncertainties and biases will feed into the
overall estimates. These biases include changes in testing requirements or health
seeking behaviour, changes in reporting and coding practises, changes in severity
of disease and non-representative samples. In addition, not all indicators in this
study are representative of the general population, making comparisons more
difficult. For example, the wastewater data only covers a geographical subset of
the population, and the cohort data had a different age profile than the whole
country. These differences highlight the benefits of not only presenting one
combined estimate, but showing all the estimates from the different sources so
that these potential differences can be interpreted. The proposed methods could
also be implemented on a local scale when local data is available.

The simple smoothing method used in this paper will not provide a perfect fit
to the underlying data especially for short time resolutions. More advanced
smoothing methods based for example on Gaussian Processes [9] could improve
the smoothing. The amount of smoothing of the trends corresponding to the
time-window used in the regression models in this paper is a key consideration
and must balance a trade-off between resolution and statistical uncertainty and
the inherent smoothing of the different indicators.

The core of the method is straightforward and could easily and rapidly be imple-
mented in a crisis-situation and it does not depend on any parameters or mech-
anistic understanding of the disease. It would also be possible to use prevalence
data directly instead of the pre-processing step of estimating incidence in the
early phases of a crisis. The method can easily be extended to indicators based
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on other types of data sources including self-reporting of symptoms, web-traffic
or mobility data.

In conclusion, using a large number of different surveillance indicators to esti-
mate growth rates that can be interpreted together was an essential part of the
surveillance of the COVID-19 pandemic in Norway and can be a powerful tool
for routine surveillance and a potential next pandemic.

Ethics statement
The study only uses anonymised aggregated data and therefore does not require
ethical approval.
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