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Abstract 21 
Background 22 

Clonal haematopoiesis (CH), the disproportionate expansion of a haematopoietic stem cell and its 23 

progeny, driven by somatic DNA mutations, is a common age-related phenomenon that engenders an 24 
increased risk of developing myeloid neoplasms (MN). At present, CH is identified by targeted 25 

sequencing of peripheral blood DNA, which is impractical to apply at population scale. The complete 26 

blood count (CBC) is an inexpensive, widely used clinical test. Here, we explore whether machine 27 
learning (ML) approaches applied to CBC data could predict individuals likely to harbour CH and 28 

prioritise them for DNA sequencing. 29 

 30 
Methods 31 

The UK Biobank was filtered to identify 431,531 participants with paired CBC and whole exome 32 

sequencing (WES). Somatic mutations were previously identified from blood WES using Mutect2 to 33 
classify individuals with CH driver mutations. Using 18 CBC indices/features and basic demographics 34 

(age and sex), we trained a range of tree-based ML classifiers to infer as binary output, the presence/ 35 
absence of CH.  36 
 37 
Findings 38 

Using Random Forest (RF) classifiers, we predicted the presence/absence of CH driven by mutations 39 
in one of five genes known to confer a high-risk of incident MN (JAK2, CALR, SF3B1, SRSF2 and 40 
U2AF1). We subsequently developed a unified, optimised RF classifier for high-risk CH driven by any 41 

of these genes and assessed its performance (median AUC 0.85). However, the low prevalence of high-42 
risk CH implies that our model cannot be generalised to population scale without compromising its 43 

sensitivity (20.1% using stringent cutoff probability score).   44 
 45 

Interpretation 46 

We showcase a proof-of-concept that the presence of high-risk CH can be inferred from CBC 47 

perturbations using RF classifiers. The future integration of raw blood cell analyser data can help 48 

improve the performance of our model and facilitate its application at scale.  49 

 50 
Funding 51 

Cancer Research UK.  52 

 53 
 54 
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Research in context 56 
Evidence before this study 57 

We searched PubMed for articles published, in English, between database inception and 5th of June 58 

2024, using the terms “clonal hematopoiesis” AND (“machine learning” OR “artificial intelligence”). 59 
We additionally searched for the terms “clonal hematopoesis” AND “complete blood count”. We found 60 

18 research articles: one article used ML approaches (XGBoost classifiers) to differentiate clonal 61 

haematopoiesis “driver” mutations from “passenger” mutations, but none linked machine learning 62 
frameworks to complete blood count data for predicting the presence of clonal haematopoiesis. 63 

Progression from clonal haematopoiesis to myeloid neoplasia is known to be associated with several 64 

blood count parameters; two recent publications developed clonal haematopoiesis risk stratification 65 
tools that incorporated blood count indices in their final risk prediction models (Gu et al. Nature 66 

Genetics, Weeks et al. NEJM Evidence). However, we found no study assessing whether blood count 67 

indices could be used to infer the presence of clonal haematopoiesis. 68 
 69 

Added value of this study  70 
Here we show that CH driven by mutations in genes associated with high risk of progression to myeloid 71 
neoplasia can be reliably differentiated using ML approaches applied on peripheral blood indices; 72 
however, low-risk forms of CH (driven by mutations in the DNMT3A or TET2 genes) cannot be reliably 73 

inferred from CBC indices. While optimising the model we identified challenges in upscaling its 74 
applicability; we propose that the integration of single-cell resolution “raw” blood analyser data might 75 
overcome these issues. Previous efforts to enhance the scalability of CH screening focused on reducing 76 

DNA sequencing costs. Here, we provide a proof-of-concept that an extensively used clinical test, the 77 
CBC, can, using machine learning approaches, predict individuals more likely to harbour high-risk CH, 78 

who should be prioritised for genetic testing.  79 
 80 

Implications of all the available evidence  81 

Our study proposes a model for predicting high-risk CH mutations by applying a Random Forest 82 

classifier on CBC indices; this represents an important step towards scalable screening for identifying 83 

individuals at high risk of developing myeloid neoplasia in the future. This is an attractive approach, as 84 

it relies solely on a routine, inexpensive test. Despite good sensitivity, the low prevalence of high-risk 85 
CH leads to a low positive predictive value that precludes the use of the predictive model as a 86 

population-wide pre-screening tool. To overcome this, we propose the future integration of raw blood 87 

analyser data into models like ours to improve the performance and scalability of this approach.  88 
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Introduction 89 
Haematopoiesis, the formation of the cellular components of blood, occurs continuously throughout 90 

life. At steady state, haematopoiesis generates 4-5 x 1011 cells per day1–4 and this vast output is 91 

maintained by a small pool of 50,000-200,000 multipotent haematopoietic stem cells (HSCs)5 through 92 
a cascade of differentiation and proliferation. Somatic mutations accumulate during life, and though 93 

most are inconsequential, some can enhance cellular fitness and are positively selected in 94 

physiologically normal tissues6–8.  Clonal haematopoiesis (CH) is an age-related phenomenon that arises 95 
when a HSC acquires a somatic driver mutation (i.e. one that increases its fitness), leading to clonal 96 

expansion of the cell and its progeny9,10. Large population-based studies revealed that the most 97 

commonly mutated genes in CH are involved in epigenetic regulation (DNMT3A, TET2, ASXL1), signal 98 
transduction (JAK2, GNB1), DNA damage response and apoptosis (TP53, PPM1D), and splicing 99 

(SF3B1, SRSF2, U2AF1)9–14. The prevalence of CH increases with advancing age to affect at least 20% 100 

of those over 70 years, in whom the phenomenon is almost universally detectable when deep sequencing 101 
approaches are employed9–14.  102 

 103 
A hallmark of CH is the associated increased risk of incident myeloid neoplasms (MN), a molecularly 104 
heterogenous group of blood cancers that include acute myeloid leukaemia (AML), myelodysplastic 105 
syndromes (MDS) and myeloproliferative neoplasms (MPN). The overall rate of progression to MN is 106 

low (0.5-1% per annum)9, but the risk and nature of malignant progression vary according to the mutant 107 
driver gene, the size of the clone, and the selection pressures to which the clone is exposed15,16. Recent 108 
advances have facilitated the precise estimation of the risk of progression from CH to MN16,17, such that 109 

individuals at high risk can be identified and prioritised for clinical follow-up. CH may precede the 110 
development of MN by years9–11,15,16,18, and this provides a window during which high-risk clones could 111 

be intercepted and targeted to avert or delay the development of MN. 112 
 113 

A key impediment to prospective myeloid cancer prevention programmes is the lack of a scalable test 114 

to identify CH. At present, CH is identified by Next Generation Sequencing (NGS) of blood DNA 115 

targeted to a panel of genes recurrently mutated in MN. However, NGS is not performed in routine 116 

clinical practice and is impractical and costly to perform at scale. An alternative approach is to leverage 117 

low-cost, scalable, routine clinical tests to identify individuals likely to harbour CH who can be 118 
prioritised for sequencing. The complete blood count (CBC) is an inexpensive, routine clinical test, and 119 

CBC indices such as the red cell distribution width (RDW) and mean cell volume (MCV) are associated 120 

with progression from CH to MN18. We therefore sought to explore whether machine learning (ML) 121 
models could predict individuals with CH based on CBC features by analysis of paired CBC and whole 122 

exome sequencing (WES) data from 431,531 United Kingdom Biobank (UKB) participants. 123 
 124 

Methods 125 
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Study design and participants 126 
We utilised data from the UKB (https://www.ukbiobank.ac.uk/), a population-based cohort of 502,536 127 

volunteers recruited to the United Kingdom recruited between 2006-2010 and aged between 37 and 73 128 

years at recruitment19. Participants’ data was accessed under approved UKB applications number 56844 129 
and 69328.  130 

 131 

To derive a dataset for use in our ML pipeline, we excluded UKB participants with any missing CBC 132 
variables and those without WES data. Since CH is defined by the presence of a leukaemia-associated 133 

somatic driver mutation in an individual without an apparent blood neoplasm, participants with a 134 

previous diagnosis of a haematological malignancy were excluded from the final dataset, as were those 135 
who developed an incident haematological malignancy within 30 days of recruitment to the UKB. After 136 

exclusions, 431,531 participants were retained for downstream analyses. 137 

 138 
Variable selection 139 

We extracted all CBC variables measured in the UKB (n=22), and augmented the feature set with the 140 
participants’ age and sex. Some CBC variables are closely related or derived from one another; to assess 141 
collinearity we computed a pairwise Spearman’s rank correlation coefficient (rs) and excluded variables 142 

with a |rs| ³0.9. This led us to exclude haematocrit, high light scatter reticulocyte count and the total 143 

white blood cell count, whilst retaining their highly correlated counterpart features (haemoglobin 144 

concentration, reticulocyte count and neutrophil count, respectively). Nucleated red blood cell count 145 
(NRBC) was also excluded as it exhibited near-zero variance (106 unique values, NRBC=0 in 98.9% 146 
of UKB participants).  147 
 148 
Identification of clonal haematopoiesis from whole exome sequencing data 149 

CH was identified from whole exome sequencing (WES) of blood DNA from 431,531 UKB participants 150 

as previously described16 (see Supplement). UKB participants were subsequently labelled as “any-151 

driver-CH” or “no CH” based on the presence or absence of a driver mutation(s) at VAF ³2%. For input 152 

to gene-specific models of CH, we additionally labelled UKB participants by driver gene (e.g. “TET2-153 

CH”, “SRSF2-CH”, etc vs “no CH”). Individuals with ³2 driver mutations were labelled on the gene 154 

with the highest VAF. 155 

 156 
Supervised machine learning model development 157 

Having derived ground truth levels from WES data, ML models were subsequently built for “any-158 
driver-CH” (variant allele frequency, VAF, ≥ 2% with a driver mutation in any CH gene), “large clone 159 

any-driver-CH” (as previous but VAF ≥ 10%), and each driver gene CH subtype.  160 

 161 
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To develop a binary classifier for predicting the presence/absence of CH, we trained and evaluated a 162 
selection of tree-based machine learning models: Decision Trees, Random Forests and Extreme 163 

Gradient Boosting (XGBoost) Trees. Tree-based approaches were preferred since the set of input 164 

features was heterogeneous (continuous and categorical); moreover, these models, augmented with 165 
statistical analyses, may also capture the interaction between features. Aside from the assessment of 166 

near-zero variance and collinearity, no further pre-processing was applied to the input dataset.  167 

 168 
All 18 CBC parameters were used as features, in addition to basic demographic data (age at sampling 169 

and sex). Since the UKB CH dataset was imbalanced, with significantly more controls (no CH) than 170 

cases (CH), a random down-sampling was performed to achieve a 1:1 ratio of cases:controls in the input 171 
data, to enhance model training and convergence; this down-sampling process was repeated ten times 172 

iteratively (Supplementary Figure 1). Subsequently, down-sampled datasets were partitioned on 80:20 173 

training:test ratio.  174 
 175 

All models were built using ten repeats of ten-fold cross-validation setups; a grid-search approach was 176 
used to tune the relevant hyperparameters (Supplementary Table 1). To avoid technical bias from the 177 
down-sampling step, a modified cross-validation was applied, training and evaluating each ML model 178 
ten times iteratively, each time using a different random down-sample of the majority (control) class, 179 

thereby quantifying the robustness and stability of each model to variation in the subset of control 180 
samples or train/test partition (Supplementary Figure 1). Model performance was assessed on the 181 
unseen test data, on receiver operating characteristic (ROC) curves and area under the curve (AUC), in 182 

addition to sensitivity and specificity. 183 
 184 

From the Random Forests models, we determined variable importance by computing the mean decrease 185 
in node impurity from splitting on each feature (measured by Gini index), averaged across all trees and 186 

across each of the ten repeats of model-building, using the importance() function from the randomForest 187 

package in R (v4.7.1)21. The consistency across top-ranked variables per driver was visualised using 188 

quantitative Venn diagrams (upset plots, ComplexUpset package) on the top two variables. The feature 189 

selection was performed by ranking all n features by importance, in descending order, and iteratively 190 

excluding the least informative feature, to determine a minimum set of highly predictive features.  191 
 192 

To assess the scalability of the final model in a “real-life” setting, i.e. with class imbalance (more 193 

controls (no CH) than cases (CH), we added unseen control cases to the test set to match the prevalence 194 
of CH cases in the test set to the prevalence of CH cases in the UKB cohort. We examined the trade-off 195 

of sensitivity (which is independent of prevalence), positive predictive value (which is dependent on 196 
prevalence) and the model prediction score, using this to determine the optimal cut-off score, that 197 

minimises the false positives whilst retaining adequate sensitivity.   198 
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 199 
All ML models were built using the Caret v6.0.91 package in R v3.6.320. A full list of packages used is 200 

available in Supplementary Methods. All code used to implement our ML framework is publicly 201 

available on GitHub: https://github.com/billydunn/chic.  202 
 203 

Results 204 

After excluding those with missing CBC data (n=32,670), missing WES data (n=36,368), or a prevalent 205 
diagnosis of a haematological malignancy (n=1840), CH (VAF ≥2%) was identified in 20,860/431,531 206 

(4.8%) UKB participants, of whom 7637/20,860 (36.6%) had large clone CH (VAF ≥10%; Figure 207 

1,Table 1). Using this UKB dataset, we developed a range of tree-based models using our ML 208 
framework, which we henceforth refer to as CHIC (Clonal Haematopoiesis Inference from Counts). 209 
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 210 
Table 1: Clonal haematopoiesis proportions in the filtered cohort (n = 431,531). 211 

 212 

We firstly examined whether CH could be predicted from CBC data in the UKB using models agnostic 213 
to underlying driver mutations (henceforth “any-driver-CH”). Using CHIC we generated binary 214 

classifiers (CH/no CH) of any-driver CH using tree-models with 18 CBC variables augmented with age 215 

and sex as features. Classifiers of any-driver CH were better than random, but with limited performance 216 
across all model types (median AUC on unseen test set 0.62, 0.64 and 0.62 for DT, RF and XGB models 217 

respectively) (Figure 2A).  218 
 219 

Driver n Proportion (%) Male (%) Large Clone (%)

No driver 410671 95.17 45.82 N/A

Multiple drivers 868 0.2 54.26 70.16

DNMT3A non-R882 8885 2.06 40.89 33.04

TET2 4530 1.05 47.77 36.95

Other driver 1866 0.43 47.27 25.35

DNMT3A R882 1708 0.4 41.74 43.62

ASXL1 1706 0.4 64.54 43.38

PPM1D 720 0.17 56.39 31.81

TP53 402 0.09 54.23 31.59

SRSF2 260 0.06 77.69 61.54

SF3B1 211 0.05 68.25 59.24

GNB1 178 0.04 32.02 76.97

JAK2 167 0.04 50.3 80.24

CALR 104 0.02 60.58 57.69

IDH2 70 0.02 64.29 62.86

U2AF1 53 0.01 75.47 100
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CH is a molecularly heterogenous entity, and we posited that the nature and strength of the CBC 220 
phenotype conferred by a somatic mutation may vary according to the specific driver gene. We trained 221 

driver gene-specific binary classifiers (with labels driver gene CH/no CH) using the same input 222 

variables as for the any-driver CH models. The most prevalent forms of CH, driven by mutations in 223 
DNMT3A and TET2, were not robustly detectable; this conclusion held for DNMT3A-R882 hotspot 224 

mutations, which are associated with a slightly higher risk of transformation to AML16 (median AUC 225 

0.60, 0.62 and 0.64 for DNMT3A-R882, DNMT3A-non R882 and TET2 RF models respectively) (Figure 226 
2B). By contrast, CH driven by lower prevalence but higher risk driver mutations in the genes JAK2, 227 

CALR, SF3B1, SRSF2 and U2AF1 performed well (median AUC 0.94, 0.91, 0.84, 0.82, 0.84 228 

respectively for RF models) (Figure 2B). Since Random Forests (RF) models generally exhibited the 229 
best performance across the driver genes (Figure 2B, Supplementary Table 2), we focused on further 230 

developing and exploring RF models.  231 

 232 
CH is strongly associated with age, whilst some driver genes exhibit sex bias. To understand the 233 

influence of age and sex in the RF models, we trained each set of driver gene-specific RF models in 234 
three iterations: i) with age and sex as the only features, ii) with CBC indices as the features, whilst age- 235 
and sex-matching cases to controls (to capture the predictive performance of CBC alone), and iii) with 236 
age, sex and CBC indices as features, without age- and sex-matching of cases/controls (to capture the 237 

predictive performance of both basic demographics and CBC indices). The performance of models 238 
trained with only age and sex as features was generally poor (median AUC <0.75 in all cases, Figure 239 
2C); an exception was the age/sex-only model of SRSF2-CH, in line with the sharp rise in prevalence 240 

of SRSF2-CH with advancing age and its strong association with male sex15. 241 
 242 

Classifiers of CH driven by high-risk genes JAK2, CALR, SF3B1, SRSF2 and U2AF1 also performed 243 
best when using CBC indices as features and age/sex matching cases to controls in the training and test 244 

sets. The predictability of the presence of CH driven by mutations in splicing factor genes (SF3B1, 245 

SRSF2 and U2AF1) was augmented when age and sex were added as features and age/sex matching 246 

was omitted. Acknowledging the age and sex predictive power, we added these features to CBC indices 247 

in subsequent models.  248 

 249 
Since CH with mutations in any of JAK2, CALR, SF3B1, SRSF2 or U2AF1 was more predictable from 250 

CBC indices and more clinically relevant (associated with high risk of progression to MN), we next 251 

combined all predictors into a single binary classifier of “high-risk CH”,  to predict the presence/absence 252 
of a mutation in any of these five genes (training on input data labelled as “high-risk CH” vs “no high-253 

risk CH”). The resulting median AUC was 0.85 on the unseen test set, Figure 3A); the model also 254 
predicted the presence of large (VAF ≥10%) high-risk clones (median AUC on unseen test set 0.90, 255 

Supplementary Figure 2).  256 
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 257 
To further refine the classifier of high-risk CH with VAF ≥2%, we performed iterative feature selection, 258 

incrementally excluding the least discriminative feature, to obtain the minimal stable set of highly 259 

discriminative features; this demonstrated that our classifier of high-risk CH had undiminished 260 
performance using only six features: age at blood sampling, red cell distribution width (RDW), platelet 261 

count, platelet distribution width (PDW), platelet crit and mean corpuscular haemoglobin (MCH) 262 

(Figure 3B-C). We therefore chose this compact high-risk CH model to explore further, selecting the 263 
model that most closely approximated the median AUC across the ten models built using our iterative 264 

pipeline. 265 

 266 
Next, we assessed the optimal prediction score cut-off (threshold) for our compact high-risk CH model 267 

by examining the trade-off between sensitivity and positive predictive value (PPV) (Figure 3D). In our 268 

UKB cohort, high-risk CH was rare (795/431,531 UKB participants, prevalence 0.18%): since the PPV 269 
is strongly influenced by the prevalence of positive cases, this necessitated the use of a stringent 270 

prediction score cut-off to minimise the number of false positives. To achieve this, we chose a cut-off 271 
probability of 0.925, giving a PPV of 8.1% and sensitivity of 20.1% in our unseen test cohort 272 
(n=86,306), whilst maintaining the specificity and negative predictive value (NPV) of >99.5% (Table 273 
2). 274 

 275 
Table 2: Confusion matrix for predictions made by the classifier of high-risk CH on the unseen test set 276 

(n=86,306), using the previously determined stringent cutoff to determine whether the classifier 277 

predicts the positive class (high-risk CH) or the negative class (no high-risk CH).  278 

 279 

85782365
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A key limitation of the UKB is the low WES coverage, with the driver genes JAK2, SF3B1 and U2AF1 280 
all having a median coverage of ≤ 31 reads16, rendering variant calling insensitive to smaller clones. As 281 

such, we examined outcomes for the 365 “false positive” cases identified by our high-risk CH classifier, 282 

and found that 38/365 (10.4%) developed MN at a median of 5.2 years from sampling. By contrast, 283 
only 317/85,782 (0.4%) percent of “true negatives” developed MN. Since CH is the shared precursor 284 

of the vast majority of MNs, these observations strongly suggest that the “false positive” individuals 285 

had CH below the limit of detection of WES.  286 
 287 

To further explore this hypothesis, we searched for low VAF hotspot mutations amongst 38 individuals 288 

who developed MPN, but were not found to have this hotspot mutation by standard variant calling. To 289 
do so, we used “pileup” to detect hotspot mutant reads that were filtered out by the stringent criteria of 290 

standard calling; this revealed that 13/38 of apparently false positives who developed incident MN had 291 

detectable CH mutations by this method, including 11 with driver mutations in JAK2, a low coverage 292 
gene. This strongly suggests that we underestimated our model performance due to the constraints of 293 

WES.  294 
 295 
Further examination of cases identified by CHIC revealed an enrichment in cases with thrombocytosis, 296 
suggestive of undiagnosed or unannotated MPN rather than CH (Supplementary Figure 3). Similarly, a 297 

few cases had cytopenias that would fall into the diagnostic criteria for CCUS (clonal cytopenia of 298 
undetermined significance) or MDS22. To overcome this, we constrained our training/test sets to 299 
individuals without cytopenias, thrombocytosis or erythrocytosis, (see Supplementary Methods) and 300 

retrained our high-risk classifier. This led to only a minor reduction in performance (median AUC on 301 
unseen test set 0.80, Supplementary Figure 4), however, this exacerbated the trade-off between 302 

sensitivity and PPV, leading to sensitivity and PPV of only 11.3% and 2.0% respectively at our proposed 303 
cutoff probability of 0.875 (Supplementary Figure 4).    304 

 305 

In  addition to their use for prediction, CHIC ML models could also uncover novel associations between 306 

driver mutations and CBC indices. By evaluating variable importance across all the driver-gene-specific 307 

classifiers, and summarising the overlap between the top two features in each model (Figure 4A), we 308 

observed known or expected associations: age was highly predictive across models, JAK2-CH and 309 
CALR-CH shared platelet count and platelet crit as important features whilst MCV was predictive of 310 

SF3B1-CH. Unexpected associations were also revealed: for example, the basophil count was 311 

discriminative for predicting the presence GNB1-CH only, whilst eosinophil count was discriminative 312 
for the presence of IDH2-CH. Examining the distribution of each of these CBC variables in the UKB, 313 

we found that individuals with GNB1-CH had a significantly increased basophil count (p = 5.93 x 10-314 
11, Wilcoxon Rank Sum test), with a 4.5-fold increase in the prevalence of basophilia >0.1 x 109/L and 315 

8.6-fold increase in the prevalence of basophilia >0.2 x 109/L, relative to participants without a GNB1 316 
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driver mutation (13.8% vs 3.2% and 5.0% vs 0.6% for basophilia >0.1 and >0.2 x 109/L, n = 317 
178/431,353 for GNB1 mutant/wild-type respectively) (Figure 4B). Individuals with IDH2-CH had 318 

significantly lower eosinophil counts (p = 3.63 x 10-10, Wilcoxon Rank Sum test) and a propensity to 319 

eosinopenia, with 12/92 (13.0%) participants with IDH2-CH having absolute eosinopenia (eosinophils 320 
= 0 x 109/L ) and 45/92 (48.9%) having an eosinophil count <0.1 x 109/L, by contrast individuals without 321 

IDH2 mutations had rates of eosinopenia of 2.9%/20.8% for absolute/<0.1 eosinopenia respectively (n 322 

= 70/431,461 for IDH2 mutant/wild-type respectively) (Figure 4C). Only IDH2-CH demonstrated a 323 
significant association between eosinophil count and clone size (rs = -0.51, p = 2.67 x 10-7); we observed 324 

no such association between GNB1-CH and basophil count (rs = 0.13, p = 0.09) (Supplementary Figure 325 

5), though of note basophils are the rarest of the white blood cell subsets and as a result their counts are 326 
zero-biased, which may have confounded any putative association.  327 

 328 

Discussion  329 
We developed the CHIC framework and assessed a RF classifier that predicts the presence of high-risk 330 

CH from just five CBC variables and an individual’s age. This approach, named Clonal Haematopoiesis 331 
Inference from Counts (CHIC), can discriminate between individuals with and without mutations in 332 
five CH genes associated with high-risk of developing MN. Notably, CHIC retained an ability to 333 
discriminate high-risk CH cases from controls even amongst individuals without cytopenias, 334 

erythrocytosis or thrombocytosis, suggesting it may highlight individuals that may not otherwise come 335 
to medical attention. CHIC is an important first step towards developing a scalable screening test to 336 
identify individuals likely to harbour high-risk CH, who would then be prioritised for targeted NGS. 337 

This would not only vastly reduce the number needed to screen (NNS) per case of high-risk CH 338 
identified, but it would also justify the need to perform genetic testing. Even with its current limitations, 339 

the use of CHIC with a stringent cut-off probability on individuals without cytopenia or thrombo-340 
/erythrocytosis would still markedly reduce the NNS from 727 to 40 individuals per case of high-risk 341 

CH (based on the prevalence of high-risk CH in an unselected population vs in those predicted as having 342 

high-risk CH by CHIC). The implementation of a scalable screening test would represent a significant 343 

milestone in myeloid cancer prevention, by addressing a key bottleneck in recruitment to interventional 344 

studies. 345 

 346 
However, despite its promising metrics as a screening test, the performance of CHIC in an unselected 347 

population was limited by the rarity of high-risk CH, necessitating ceding sensitivity to achieve an 348 

acceptable PPV. Performance was further reduced for the restricted analysis of individuals without 349 
cytopenias or thrombo-/erythrocytosis. By re-training our model in this population, we found that CHIC 350 

was still able to discriminate individuals with and without high-risk CH, but the resultant small 351 
reduction in AUC (0.80 vs 0.85) exacerbated the difficulty in balancing sensitivity and PPV, precluding 352 

its use at population scale.   353 
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 354 
One approach for enhancing the performance of CHIC is to target its use on a population with a higher 355 

prevalence of high-risk CH. CHIC was trained within the age constraints of the UKB, but since the 356 

prevalence of high-risk mutations in splicing factors (SF3B1, SRSF2, U2AF1) rises sharply over the age 357 
of 70 years, we anticipate that application of CHIC in an older population would result in improved 358 

performance. Similarly, targeting CHIC to individuals with a polygenic15,23 or monogenic24 359 

predisposition to CH is also likely to improve its performance/PPV.  360 
 361 

An alternative approach would be to integrate higher-resolution CBC data into the CHIC classifier, to 362 

improve its ability to identify high-risk CH. Some of the most discriminative CBC indices for high-risk 363 
CH are derived summary stastics e.g. RDW, PDW and MCH calculated from single-cell measurements 364 

(i.e. RDW is a measure of variation in red cell volumes). The integration of the raw or otherwise 365 

summarised single-cell measurements has the potential to improve the prediction of high-risk CH, for 366 
example by revealing a fraction of cells with distinct indices arising from the CH clone or identifying 367 

other characteristic patterns of variation in these measurements; such raw (or “non-classical”) CBC 368 
traits have recently been exploited to explore genetic associations with blood cell morphology25.  369 
 370 
Beyond MN prevention, CH is of wider public health relevance due to its association with non-371 

haematological disorders, most notably atherosclerotic heart disease. Since JAK2-CH exhibits the 372 
strongest association with cardiovascular outcomes26, and was also the most amenable to prediction in 373 
our study, we anticipate that CHIC may also have utility in the primary prevention of cardiovascular 374 

disease by facilitating the identification of individuals with JAK2-CH. By retrofitting CH screening on 375 
to a routine blood test, we believe our CHIC approach presents an important step towards scalable, 376 

practical and inexpensive ML-based screening for high-risk CH and provides a proof-of-concept that 377 
individuals with high-risk CH can be differentiated from those without, based on CBC indices. 378 

 379 

Data sharing  380 

All data used in this study are publicly available from the UK Biobank (https://www.ukbiobank.ac.uk/). 381 

Researchers may apply for access to the UK Biobank data via the Access Management System 382 

(https://www.ukbiobank.ac.uk/enable-your-research/apply-for-access). 383 
 384 

Code availability 385 

Scripts used to query the UK Biobank dataset are available from: 386 
https://github.com/IsabellaWithnell/Predicting_CH. Scripts used to implement the machine learning 387 

framework described in the manuscript are available from: https://github.com/billydunn/chic.  388 
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Figure Legends 397 
Figure 1: Final cohort derivation in the UK Biobank. We selected only those with all CBC 398 

parameters (that is, no missing indices) (n = 469,739). We apply further filtering to include only those 399 

who additionally have WES data available, to facilitate identification of CH. Concurrently, we compute 400 
Spearman correlation and select only one CBC parameter where two parameters exhibit high positive 401 

or negative correlation (|rs| ≥0.9). Finally, we exclude individuals who were annotated as having a 402 

prevalent diagnosis of a haematological malignancy, or those who had an incident diagnosis shortly 403 
after recruitment/blood draw (using an arbitrary threshold of within 30 days of recruitment). This gives 404 

us a final dataset of 431,531 participants, each labelled as “CH” or “no CH” for input into our 405 

downstream supervised ML pipeline.  406 
 407 

Figure 2: Performance of machine learning classifiers to predict the presence of clonal 408 

haematopoiesis. Panel A shows the receiver operating characteristic (ROC) curve for classifiers 409 
predicting any-driver CH using age, sex and 18 CBC parameters as features. DT = Decision Tree, RF 410 

= Random Forest and XGB = eXtreme Gradient Boosting models. In each case, the ROC curve for the 411 
model approximating the median AUC (area under the ROC curve) from ten repeats of model training 412 
is shown. Panel B shows the performance of driver gene-specific models across all three model types 413 
(DT, RF, XGB), using the same features. Boxplots are derived from the ten repeats of model building; 414 

whiskers show the range of AUC values. Panel C shows the performance of RF classifiers of driver 415 
gene-specific CH, using either: age and sex as the only features; or CBC features only (with age and 416 
sex matching of cases to controls, to capture the predictive performance of CBC indices alone); or age, 417 

sex and CBC features (without age and sex matching, thereby capturing the predictive performance of 418 
CBC indices in combination with basic demographics). 419 

 420 
Figure 3: Optimisation, Variable Importance and Performance of a classifier of high-risk CH. 421 

Panel A shows the ROC curve for this RF model, which has been constructed and AUC calculated 422 

based on performance in the unseen test set. Red, performance of model approximating the median 423 

AUC. Upper and lower bounds represent performance of the models with the maximum and minimum 424 

AUC from ten repeats of model training respectively. Panel B shows the impact of iterative feature 425 

selection on model performance (by AUC), demonstrating that performance is stable with only six 426 
features. Panel C shows variable importance (by Gini Index, scaled to the most important variable) of 427 

features in our six-feature classifier. Panel D shows the trade-off between sensitivity (blue) and positive 428 

predictive value (red) for this six-feature classifier. 429 
 430 

Figure 4: Machine learning models of driver gene CH for biological inference. Panel A shows an 431 
Upset plot generated by computing variable importance and summarising the overlap (vertical bars) 432 

between the top two most important variables in RF classifiers of driver gene CH. This captures 433 
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expected associations (JAK2 and CALR share platelet crit and platelet count as their top two variables), 434 
but also unveils unexpected associations, such as the importance of basophil count for predicting the 435 

presence of GNB1-CH and the importance of eosinophil count in predicting the presence of IDH2-CH. 436 

PCT = platelet crit, NE = neutrophil count, PLT = platelet count, RDW = red cell distribution width, 437 
EO = eosinophil count, BAS = basophil count, MCV = mean cell volume, RET = reticulocyte count, 438 

LY = lymphocyte count. Panel B shows a histogram of basophil counts in carriers of GNB1-CH (n = 439 

178) versus those without (n = 431,353); the basophil count is shifted to the right in those with GNB1-440 
CH, who have a relatively high prevalence of basophilia. Panel C shows the histogram of eosinophil 441 

counts in individuals with (n = 70) and without (n = 431,461) IDH2-CH; there is a higher proportion of 442 

absolute eosinopenia (i.e. eosinophil count = 0) in individuals with IDH2-CH. In both panels B and C, 443 
the y axis is density, to facilitate direct comparison between imbalanced classes.  444 

 445 
  446 
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