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Abstract 

Pretraining electronic health record (EHR) data through language models by treating patient trajectories as natural 

language sentences has improved various medical tasks. However, EHR pretraining models have never been 

utilized in adverse drug event (ADE) prediction. Here, we propose a novel pretraining scheme for common data 

model (CDM) based EHR data, named CDM-BERT. We utilized diagnosis, prescription, measurement, and 

procedure domains from observational medical outcomes partnership (OMOP)-CDM. We newly adopted domain 

embedding (DE) to simplify pretraining procedure and to improve comprehension of medical context. ADE 

prediction was selected as a finetuning task. For drug groups, we included nonsteroidal anti-inflammatory drugs 

(NSAID), anticoagulants (AC), glucocorticoids (GC), and chemotherapy (Chemo). For corresponding adverse 

events, we selected peptic ulcer (PU), intracranial hemorrhage (ICH), osteoporosis (OP), and neutropenic fever 

(NF), respectively. CDM-BERT was validated by internal and external datasets with 510,879 and 419,505 adult 

inpatients. CDM-BERT outperformed all the other baselines in all cohorts, demonstrating the effectiveness of DE 

(area under the receiver operating characteristic curve (AUROC) of 0.977, 0.908, 0.980, 0.989 for NSAID-PU, 

AC-ICH, GC-OP, Chemo-NF cohorts in internal validation, and 0.967, 0.960, 0.972, 0.959 in external validation, 

respectively). We also identified important features for each cohort, and several prior studies and clinical 

knowledge suggested the results. CDM-BERT has demonstrated its potential as a foundation model through its 

prediction performance, interpretability, and compatibility.  
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Main 

Hospitals generate a lot of data every day, including diagnoses, measurements, prescriptions, procedures, and 

more, which are stored in electronic health records (EHR). The adoption of EHR has greatly increased in many 

countries. The rate of EHR adoption now exceeds 96%, 94%, 88%, and 96% in the US, UK, China, and South 

Korea (hereafter Korea), respectively.1-3 The widespread use of EHR has increased the amount of healthcare data, 

and numerous studies have been conducted using those data for various medical tasks, such as disease prediction, 

patient status monitoring, and diagnosis support.4-6 For multicenter study, early works tried to use data from 

multiple hospitals; however, it was challenging to combine different EHR databases from each hospital without 

losing information because each database has its own purpose, structure, and terminology.7 To overcome this 

problem, an observational medical outcomes partnership (OMOP)-common data model (CDM), which enables 

the transformation of different databases to a standardized format, was developed.8,9 Using OMOP-CDM 

(hereafter CDM), statistical models or artificial intelligence methodologies for EHR data analysis can be shared 

throughout hospitals, and the analysis results can be validated externally using data from separate populations. 
With the availability of large patient data, deep learning-based EHR analysis models have been 

developed, and learning patient representation through pretraining has become an area ripe for exploration.10-15 

As the pretraining-finetuning paradigm has achieved tremendous success in natural language processing, several 

studies proposed EHR pretraining models that learn patient representations from the sequential sets of medical 

codes corresponding to sentences in natural language. For pretraining tasks, most of those prior studies utilized 

bidirectional encoder representation from transformers (BERT)16, one of the most famous models for 

contextualizing sequential inputs, especially natural language. As original BERT masks some of the tokens (words) 

from the sequential inputs (sentences) and infers the right tokens for the masked parts, BERT-based EHR 

pretraining models mask some of the medical codes and infer proper medical codes using unmasked preceding 

and following medical history. Prior studies achieved great performance in predicting several diseases, such as 

pancreatic cancer13, heart failure14, and non-accidental trauma10, when finetuned initially pretrained models 

compared to initially randomized (not pretrained) models. 
EHR pretraining models exhibited great performance in various medical tasks, but no study has dealt 

with adverse drug event (ADE) prediction using EHR pretraining models. A tertiary hospital has good-quality 

inpatient records since all medical events that occur in the hospital are recorded in the EHR database. Therefore, 

EHR data from tertiary hospitals is well suited for monitoring the condition of hospitalized patients, especially 
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the risk of ADE.  

In this study, we propose CDM-BERT, a novel EHR pretraining foundation model for ADE prediction 

using CDM-based EHR data. CDM-BERT was pretrained with records from four domains (diagnosis, 

measurement, prescription, and procedure) in the CDM schema. We newly introduced domain embedding (DE) 

to distinguish medical codes according to their characteristics (Fig. 1a). For the masked language model (MLM), 

codes were randomly masked, and CDM-BERT was trained to infer the masked tokens of specific domains with 

preceding and following history along with age and date. We internally and externally validated CDM-BERT with 

several drug groups and corresponding adverse events from two locally separate tertiary hospitals in Korea. CDM-

BERT outperformed the initially randomized model and the model pretrained without DE. For the qualitative 

analysis of the results, we deduced the importance of features at the cohort and patient levels and demonstrated a 

correspondence between the results and background clinical knowledge. 
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Fig. 1. Workflow of the CDM-BERT and adverse drug event (ADE) prediction. a, CDM-BERT uses four 

tables (condition_occurrence, measurement, drug_exposure, and procedure_occurrence) from the CDM schema. 

Each patient trajectory consists of records sorted by time. All trajectories start with [CLS] token and gender token 

and are divided by [SEP] token for every day. Patient trajectory embedding is the summation of codes, age, date, 

and domain embeddings. Domain embedding has five tokens corresponding to special tokens and four tables from 
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the CDM schema. b, For the case group, ADE occurred within four weeks after prescription, and the prediction 

timepoint was four weeks before the occurrence of adverse events. Each patient trajectory before the prediction 

timepoint was utilized to predict the occurrence of ADE. c, For internal validation, we finetuned the pretrained 

foundation model to predict ADE and evaluated the prediction model. For external validation, we utilized three 

types of pretrained models: For type I, we transferred the foundation model pretrained by the internal dataset and 

finetuned the model with the external dataset. For type II, to mitigate the gap in data distribution between two 

separate hospitals, we used the external dataset to additionally pretrain the foundation model initially pretrained 

by the internal dataset. For type III, we pretrained the foundation model only using the external dataset. 
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Results 

Study population 

We used records of 510,879 and 419,505 adult patients (aged over 18) who were hospitalized for at least three 

days at two separate tertiary hospitals in Korea, Seoul National University Hospital (SNUH) and Ajou University 

Medical Center (AUMC), respectively. We randomly split patients into development (80%) and hold-out test (20%) 

datasets (Fig. 1c). The development dataset was used to pretrain a model and to finetune the pretrained model for 

ADE prediction. The hold-out test datasets were used to evaluate the performance of ADE prediction models. The 

baseline characteristics of the datasets are summarized in Table 1. The number of medical codes per patient was 

higher in the external dataset, while the vocabulary size was higher in the internal dataset. We aggregated the 

vocabulary sets of the two hospitals’ development datasets, and the size of the final vocabulary was 41,536, with 

around 7,000 codes overlapped. Even though those two hospitals share the same data structure and vocabulary 

system, many mapped codes were different. The distribution of comorbidities was also different between the two 

hospitals. The rates of dementia, renal disease, and malignant tumor were higher in the internal dataset, while the 

rest of the comorbidities were higher in the external dataset. 

 

Table 1. Baseline characteristics of datasets 

 Internal dataset (SNUH) External dataset (AUMC) 
The number of patients 510,879 419,505 
Mean age (SD) 55.09 (17.19) 53.84 (18.75) 
Male sex 47.10% 50.51% 
Median days of hospitalization (IQR) 28 (15, 63) 30 (14, 71) 
Median number of codes per patient (IQR) 476 (228, 1130) 627 (283, 1545) 
Vocabulary size 26,417 22,551 
Comorbidities   

Myocardial infarction 1.18% 2.57% 
Congestive heart failure 2.04% 2.98% 
Peripheral vascular disease 1.28% 1.83% 
Cerebrovascular disease 7.57% 9.81% 
Dementia 4.98% 3.46% 
Pulmonary disease 5.86% 8.51% 
Connective tissue disease 1.63% 4.34% 
Peptic ulcer disease 3.80% 6.03% 
Mild liver disease 5.25% 8.63% 
Liver disease 0.70% 1.71% 
Uncomplicated diabetes 8.10% 14.36% 
Complicated diabetes 1.50% 4.64% 
Paraplegia and hemiplegia 0.50% 1.70% 
Renal disease 4.05% 4.02% 
Malignant tumor 23.70% 18.37% 
Metastatic carcinoma 0.82% 1.11% 

SNUH, Seoul National University Hospital; AUMC, Ajou University Medical Center; SD, standard deviation; 
IQR, interquartile range 

 

For drug groups, we included nonsteroidal anti-inflammatory drugs (NSAID), anticoagulants (AC), 
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glucocorticoids (GC), and chemotherapy (Chemo). For corresponding adverse events, we selected peptic ulcer 

(PU), intracranial hemorrhage (ICH), osteoporosis (OP), and neutropenic fever (NF), respectively. The 

information on all drugs included in each drug group is summarized in Supplementary Table 1, and all concept 

IDs for each adverse event are summarized in Supplementary Table 2. For ADE prediction, we first included all 

patients with the target drug, and patients with no adverse event were included in the control group. For the case 

group, we set a prediction timepoint to a certain period before the adverse event occurrence. Then, patients with 

any prescription for the target drugs between the prediction timepoint and the date of the adverse event were 

included in the case group. Patients with records less than 50 were excluded. For the control group, we randomly 

selected prediction timepoint to minimize potential bias caused by selection criteria. 

Patient demographics of each cohort from both hospitals are summarized in Extended Data Table 1. As 

the prediction timepoint moved back to the past and the monitoring period for adverse events increased, the 

number of patients in each case group also increased, except for the Chemo-NF cohort. For the Chemo-NF cohort, 

more patients were excluded due to a lack of previous records than those included by an increased monitoring 

period. 

 

Pretraining process 

As we adopted DE to prevent an MLM from finding unnecessary medical codes from other domains, the validation 

losses of MLMs were much lower with DE (Supplementary Fig. 1). This result indicates that searching proper 

codes for masked places was much easier with a hint of domain. For external validation, we introduced three types 

of CDM-BERT (Fig. 1c): For type I, we used the CDM-BERT pretrained with the internal dataset without 

additional pretraining. For type II, we used the external dataset (AUMC) to additionally pretrain the CDM-BERT 

initially pretrained by the internal dataset (SNUH). For type III, we initially pretrained the CDM-BERT using the 

external dataset. The validation loss of type II pretrained models was much lower than the type III, even though 

those models were pretrained by the same external dataset. In addition, even with a few epochs, the validation 

loss of the type II models showed convergence (Supplementary Fig. 1b). 

 

Performance evaluation 

We evaluated ADE prediction performance with four models: Initially randomized models with and without DE, 

CDM-BERT pretrained without DE, and CDM-BERT. For internal validation, we pretrained CDM-BERT with 

the internal dataset for 100 epochs and finetuned the model using each cohort dataset. During the finetuning 
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process, the area under the receiver operating characteristic curve (AUROC) for prediction was calculated for 

every 100 batches, and the finetuning process was stopped if the AUROC did not increase for ten cycles (1000 

batches). The CDM-BERT outperformed all the other models in all metrics in all cohorts (Table 2). The pretraining 

process improved AUROC and area under the precision-recall curve (AUPRC) for all cohorts (CDM-BERT 

without DE), but the adoption of DE improved the performance much more. When the model was initialized with 

randomized weights, the adoption of DE hardly influenced the performances.  

 

Table 2. Internal validation of finetuned models for all cohorts. 

 AUROC AUPRC Sensitivity Specificity Precision F1-score 

NSAID (PU)       

Randomized without DE 0.848 
(0.833-0.864) 

0.044 
(0.029-0.060) 

0.836 
(0.832-0.839) 

0.727 
(0.724-0.731) 

0.025 
(0.024-0.027) 

0.049 
(0.047-0.051) 

Randomized with DE 0.848 
(0.833-0.864) 

0.044 
(0.029-0.060) 

0.836 
(0.832-0.839) 

0.727 
(0.723-0.731) 

0.025 
(0.024-0.027) 

0.049 
(0.047-0.051) 

CDM-BERT without DE 0.954 
(0.946-0.962) 

0.357 
(0.349-0.365) 

0.909 
(0.906-0.911) 

0.870 
(0.867-0.873) 

0.056 
(0.054-0.058) 

0.105 
(0.103-0.108) 

CDM-BERT 0.977 
(0.971-0.984) 

0.668 
(0.661-0.675) 

0.942 
(0.940-0.944) 

0.916 
(0.913-0.918) 

0.087 
(0.084-0.089) 

0.159 
(0.156-0.162) 

AC (ICH)       

Randomized without DE 0.769 
(0.739-0.799) 

0.022 
(0.000-0.799) 

0.753 
(0.749-0.758) 

0.683 
(0.678-0.688) 

0.016 
(0.015-0.018) 

0.032 
(0.030-0.034) 

Randomized with DE 0.769 
(0.739-0.799) 

0.022 
(0.000-0.799) 

0.753 
(0.749-0.758) 

0.683 
(0.678-0.688) 

0.016 
(0.015-0.018) 

0.032 
(0.030-0.034) 

CDM-BERT without DE 0.822 
(0.797-0.848) 

0.040 
(0.015-0.065) 

0.836 
(0.831-0.840) 

0.670 
(0.665-0.675) 

0.017 
(0.016-0.019) 

0.034 
(0.032-0.036) 

CDM-BERT 0.908 
(0.886-0.931) 

0.206 
(0.183-0.228) 

0.840 
(0.836-0.844) 

0.863 
(0.859-0.867) 

0.041 
(0.039-0.043) 

0.078 
(0.075-0.081) 

GC (OP)       

Randomized without DE 0.874 
(0.856-0.892) 

0.095 
(0.077-0.112) 

0.827 
(0.823-0.830) 

0.794 
(0.790-0.797) 

0.036 
(0.034-0.037) 

0.068 
(0.066-0.071) 

Randomized with DE 0.874 
(0.856-0.892) 

0.095 
(0.077-0.113) 

0.827 
(0.823-0.830) 

0.793 
(0.789-0.797) 

0.035 
(0.034-0.037) 

0.068 
(0.066-0.070) 

CDM-BERT without DE 0.908 
(0.894-0.922) 

0.170 
(0.156-0.184) 

0.860 
(0.857-0.864) 

0.794 
(0.791-0.798) 

0.037 
(0.035-0.039) 

0.071 
(0.069-0.074) 

CDM-BERT 0.980 
(0.971-0.989) 

0.753 
(0.744-0.762) 

0.933 
(0.930-0.935) 

0.955 
(0.953-0.957) 

0.159 
(0.156-0.163) 

0.272 
(0.268-0.277) 

Chemo (NF)       

Randomized without DE 0.833 
(0.817-0.848) 

0.140 
(0.124-0.156) 

0.867 
(0.862-0.872) 

0.669 
(0.662-0.676) 

0.072 
(0.068-0.076) 

0.132 
(0.127-0.137) 

Randomized with DE 0.833 
(0.817-0.849) 

0.140 
(0.124-0.156) 

0.867 
(0.862-0.872) 

0.668 
(0.661-0.675) 

0.071 
(0.068-0.075) 

0.132 
(0.127-0.137) 

CDM-BERT without DE 0.971 
(0.966-0.976) 

0.704 
(0.698-0.709) 

0.933 
(0.929-0.936) 

0.890 
(0.885-0.895) 

0.200 
(0.194-0.206) 

0.329 
(0.322-0.337) 

CDM-BERT 0.989 
(0.985-0.993) 

0.909 
(0.905-0.912) 

0.953 
(0.950-0.956) 

0.948 
(0.945-0.951) 

0.350 
(0.343-0.358) 

0.512 
(0.505-0.520) 

Bold indicates the best. Sensitivity, specificity, precision, and F1-score were calculated by Youden’s index. Confidence intervals (CIs) of 
AUROC and AUPRC were calculated by DeLong's method. CIs of sensitivity, specificity, precision, and F1-score were calculated by Wilson's 
method. NSAID, nonsteroidal anti-inflammatory drugs; PU, peptic ulcer; AC, anticoagulants; ICH, intracranial hemorrhage; GC, 
glucocorticoids; OP, osteoporosis; Chemo, chemotherapy; NF, neutropenic fever; AUROC, area under the receiver operating characteristic 
curve; AUPRC, area under the precision-recall curve 

 

For external validation, we used the type II and III models pretrained by the external dataset for ten 

epochs. The adoption of DE improved AUROC and AUPRC of the type I and II models in all cohorts (Table 3). 
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For the type I CDM-BERT, even though the CDM-BERT was pretrained from the different hospital data (SNUH) 

and there was no additional pretraining, the AUROC was much higher than the randomized model in all cohorts 

(AUROC from 0.814 to 0.947 in NSAID-PU cohort, from 0.769 to 0.940 in AC-ICH cohort, from 0.901 to 0.923 

in GC-OP cohort, and from 0.918 to 0.934 in Chemo-NF cohort). For the type II and III CDM-BERT, the type II 

CDM-BERT exhibited higher AUROC and AUPRC in all cohorts. Considering those two models were pretrained 

for the same ten epochs, the model initially pretrained by the other dataset (type II) was more effective than the 

initially randomized model (type III). Like internal validation results, the adoption of DE had minimal effect on 

performance in initially randomized models. The receiver operating characteristic (ROC) curves and precision-

recall (PR) curves of internal and external validations are summarized in Fig. 2. Since the proportion of patients 

with adverse events was much less than those without (Extended Data Table 1), most models overpredicted the 

risk of adverse events (Extended Data Fig. 1). 

 

Table 3. External validation of finetuned models for all cohorts. 

 AUROC AUPRC Sensitivity Specificity Precision F1-score 

NSAID (PU)       

Randomized without DE 0.814 
(0.798-0.830) 

0.070 
(0.054-0.086) 

0.804 
(0.800-0.808) 

0.691 
(0.686-0.696) 

0.042 
(0.040-0.044) 

0.079 
(0.076-0.082) 

Randomized with DE 0.814 
(0.798-0.830) 

0.070 
(0.054-0.086) 

0.804 
(0.800-0.808) 

0.690 
(0.685-0.695) 

0.041 
(0.039-0.044) 

0.079 
(0.076-0.082) 

CDM-BERT without DE (Type I) 0.834 
(0.819-0.848) 

0.077 
(0.063-0.092) 

0.793 
(0.788-0.797) 

0.724 
(0.719-0.729) 

0.046 
(0.044-0.048) 

0.086 
(0.083-0.089) 

CDM-BERT (Type I) 0.947 
(0.938-0.956) 

0.575 
(0.566-0.584) 

0.847 
(0.843-0.851) 

0.904 
(0.901-0.907) 

0.128 
(0.124-0.131) 

0.222 
(0.218-0.226) 

CDM-BERT without DE (Type II) 0.919 
(0.908-0.929) 

0.278 
(0.268-0.289) 

0.867 
(0.864-0.871) 

0.826 
(0.822-0.830) 

0.077 
(0.074-0.079) 

0.141 
(0.137-0.144) 

CDM-BERT (Type II) 0.971 
(0.964-0.978) 

0.712 
(0.705-0.719) 

0.908 
(0.905-0.911) 

0.930 
(0.927-0.933) 

0.178 
(0.174-0.182) 

0.297 
(0.292-0.302) 

CDM-BERT without DE (Type III) 0.857 
(0.844-0.871) 

0.118 
(0.104-0.132) 

0.883 
(0.879-0.886) 

0.679 
(0.674-0.684) 

0.044 
(0.042-0.046) 

0.083 
(0.081-0.086) 

CDM-BERT (Type III) 0.925 
(0.913-0.936) 

0.435 
(0.423-0.446) 

0.857 
(0.853-0.861) 

0.839 
(0.836-0.843) 

0.082 
(0.079-0.084) 

0.149 
(0.145-0.153) 

AC (ICH)       

Randomized without DE 0.769 
(0.738-0.799) 

0.043 
(0.013-0.074) 

0.735 
(0.729-0.741) 

0.678 
(0.672-0.684) 

0.022 
(0.020-0.024) 

0.043 
(0.040-0.045) 

Randomized with DE 0.769 
(0.738-0.799) 

0.044 
(0.013-0.074) 

0.735 
(0.729-0.741) 

0.678 
(0.672-0.683) 

0.022 
(0.020-0.024) 

0.043 
(0.040-0.045) 

CDM-BERT without DE (Type I) 0.856 
(0.831-0.881) 

0.265 
(0.240-0.290) 

0.774 
(0.768-0.779) 

0.790 
(0.785-0.795) 

0.035 
(0.033-0.037) 

0.067 
(0.064-0.070) 

CDM-BERT (Type I) 0.940 
(0.923-0.958) 

0.570 
(0.552-0.588) 

0.855 
(0.850-0.859) 

0.891 
(0.887-0.895) 

0.072 
(0.068-0.075) 

0.132 
(0.128-0.137) 

CDM-BERT without DE (Type II) 0.943 
(0.927-0.959) 

0.573 
(0.557-0.589) 

0.838 
(0.833-0.842) 

0.900 
(0.897-0.904) 

0.076 
(0.073-0.080) 

0.140 
(0.136-0.144) 

CDM-BERT (Type II) 0.972 
(0.963-0.981) 

0.673 
(0.664-0.681) 

0.957 
(0.955-0.960) 

0.853 
(0.849-0.858) 

0.060 
(0.057-0.063) 

0.113 
(0.109-0.117) 

CDM-BERT without DE (Type III) 0.921 
(0.902-0.940) 

0.469 
(0.450-0.487) 

0.838 
(0.833-0.842) 

0.865 
(0.861-0.870) 

0.058 
(0.055-0.061) 

0.108 
(0.104-0.112) 

CDM-BERT (Type III) 0.909 
(0.887-0.930) 

0.532 
(0.511-0.554) 

0.791 
(0.785-0.796) 

0.869 
(0.864-0.873) 

0.056 
(0.053-0.059) 

0.104 
(0.101-0.108) 

GC (OP)       

Randomized without DE 0.901 
(0.885-0.917) 

0.249 
(0.232-0.265) 

0.809 
(0.804-0.814) 

0.840 
(0.835-0.844) 

0.066 
(0.063-0.069) 

0.122 
(0.118-0.125) 

Randomized with DE 0.901 0.249 0.809 0.839 0.065 0.121 
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(0.884-0.917) (0.232-0.265) (0.804-0.814) (0.835-0.843) (0.063-0.068) (0.117-0.125) 

CDM-BERT without DE (Type I) 0.919 
(0.906-0.933) 

0.311 
(0.298-0.325) 

0.842 
(0.837-0.846) 

0.851 
(0.847-0.855) 

0.073 
(0.070-0.076) 

0.135 
(0.131-0.139) 

CDM-BERT (Type I) 0.923 
(0.909-0.937) 

0.318 
(0.304-0.332) 

0.822 
(0.817-0.826) 

0.873 
(0.870-0.877) 

0.083 
(0.080-0.086) 

0.151 
(0.147-0.155) 

CDM-BERT without DE (Type II) 0.930 
(0.918-0.942) 

0.323 
(0.311-0.336) 

0.859 
(0.855-0.863) 

0.850 
(0.846-0.854) 

0.074 
(0.071-0.077) 

0.136 
(0.132-0.140) 

CDM-BERT (Type II) 0.973 
(0.965-0.980) 

0.635 
(0.627-0.643) 

0.922 
(0.919-0.925) 

0.916 
(0.912-0.919) 

0.132 
(0.129-0.136) 

0.232 
(0.227-0.237) 

CDM-BERT without DE (Type III) 0.929 
(0.916-0.943) 

0.318 
(0.305-0.331) 

0.899 
(0.896-0.903) 

0.815 
(0.810-0.819) 

0.064 
(0.061-0.066) 

0.119 
(0.115-0.122) 

CDM-BERT (Type III) 0.945 
(0.934-0.957) 

0.379 
(0.368-0.391) 

0.892 
(0.888-0.895) 

0.878 
(0.874-0.882) 

0.093 
(0.089-0.096) 

0.168 
(0.164-0.172) 

Chemo (NF)       

Randomized without DE 0.918 
(0.893-0.942) 

0.236 
(0.212-0.261) 

0.892 
(0.884-0.899) 

0.805 
(0.795-0.814) 

0.053 
(0.048-0.058) 

0.099 
(0.093-0.107) 

Randomized with DE 0.918 
(0.893-0.942) 

0.236 
(0.212-0.261) 

0.892 
(0.884-0.899) 

0.805 
(0.795-0.814) 

0.053 
(0.048-0.058) 

0.099 
(0.093-0.107) 

CDM-BERT without DE (Type I) 0.909 
(0.885-0.933) 

0.117 
(0.093-0.141) 

0.904 
(0.896-0.910) 

0.788 
(0.779-0.798) 

0.049 
(0.045-0.055) 

0.094 
(0.087-0.101) 

CDM-BERT (Type I) 0.934 
(0.915-0.953) 

0.210 
(0.191-0.229) 

0.928 
(0.921-0.934) 

0.832 
(0.823-0.841) 

0.063 
(0.058-0.069) 

0.118 
(0.111-0.126) 

CDM-BERT without DE (Type II) 0.938 
(0.921-0.955) 

0.237 
(0.220-0.254) 

0.880 
(0.872-0.887) 

0.864 
(0.855-0.872) 

0.073 
(0.067-0.079) 

0.135 
(0.127-0.143) 

CDM-BERT (Type II) 0.951 
(0.937-0.966) 

0.368 
(0.354-0.383) 

0.988 
(0.985-0.990) 

0.768 
(0.758-0.778) 

0.049 
(0.044-0.055) 

0.094 
(0.087-0.101) 

CDM-BERT without DE (Type III) 0.933 
(0.910-0.955) 

0.278 
(0.255-0.300) 

0.940 
(0.934-0.945) 

0.798 
(0.789-0.808) 

0.054 
(0.049-0.059) 

0.102 
(0.095-0.109) 

CDM-BERT (Type III) 0.925 
(0.902-0.948) 

0.231 
(0.208-0.254) 

0.831 
(0.822-0.840) 

0.867 
(0.859-0.875) 

0.071 
(0.065-0.077) 

0.130 
(0.123-0.138) 

Bold indicates the best. Sensitivity, specificity, precision, and F1-score were calculated using Youden’s index. Confidence intervals (CIs) of 
AUROC and AUPRC were calculated using DeLong's method. CIs of sensitivity, specificity, precision, and F1-score were calculated using 
Wilson's method. Type I indicates the foundation model initially pretrained by the internal dataset. Type II indicates the foundation model 
that was initially pretrained by the internal dataset and was additionally pretrained by the external dataset. Type III indicates the foundation 
model that was pretrained only by the external dataset. NSAID, nonsteroidal anti-inflammatory drug; PU, peptic ulcer; AC, anticoagulant; 
ICH, intracranial hemorrhage; GC, glucocorticoid; OP, osteoporosis; Chemo, chemotherapy; NF, neutropenic fever; AUROC, area under the 
receiver operating characteristic curve; AUPRC, area under the precision-recall curve 
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Fig. 2. Receiver operating characteristic (ROC) and precision-recall (PR) curves of internal and external 

validations. a, ROC and PR curves of internal validation. b, ROC and PR curves of external validation. The 

prediction cutoff point of each finetuned model was set at Youden’s index, which maximizes the sum of sensitivity 

(true positive rate) and specificity (1 - false positive rate). For both internal and external validation, most of the 

blue lines (for models randomized without DE) are invisible because they were overlapped by the green lines (for 

models randomized with DE).  
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Analysis of different prediction timepoints 

We set the prediction timepoint to four weeks before the occurrence of adverse events. However, given that 

adverse events can vary in timing for different drugs and circumstances, we conducted additional experiments by 

setting the prediction timepoints to two, eight, and twelve weeks before the occurrence of adverse events. For 

external validation, we utilized the type II CDM-BERT because it was the best-performing type in the internal 

validation. The CDM-BERT exhibited the best AUROC and AUPRC in all cohorts with all timepoints, only except 

the Chemo-NF cohort of the external dataset with the prediction timepoint of twelve weeks (Supplementary Tables 

3-5). Adoption of DE was effective in most cases with different prediction timepoints. No distinct pattern of 

performance change according to the prediction timepoint was found. ROC and PR curves are summarized in 

Supplementary Figs. 2-4 and calibration plots are summarized in Supplementary Figs. 5-7.  

 

Model interpretation 

For the interpretation of each finetuned model, we utilized the attention scores of all patients with adverse events. 

Each finetuned model was based on CDM-BERT (type II for external validation). We used the attention scores of 

the last self-attention layer among six self-attention layers in CDM-BERT. To prevent routine medical events (e.g., 

normal saline, blood pressure, and electrocardiogram) that repeatedly appear in trajectories to be excessively 

important, attention scores of the same tokens were initially averaged at the trajectory level. Additionally, to avoid 

very rare codes becoming important, we excluded the codes that were present in fewer than 5% of patients with 

adverse events. We reported the top 10 most important features from each domain, and various features relevant 

to each drug and adverse event were included in the top 10 (Fig. 3 and Extended Data Fig. 2). 
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Fig. 3. Feature importance of models finetuned with the internal dataset. Top 10 important features in each 

domain. Feature importance was deduced based on attention scores in the model. To prevent routine medical 

events (e.g., normal saline, blood pressure, and electrocardiogram) that repeatedly appear in trajectories to be 

excessively important, attention scores of the same tokens were initially averaged at the trajectory level, and then 
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the scores of each token were finally averaged. For each cohort, the length of the longest bar was fixed to be the 

same, and the lengths of all the rest of the features were normalized accordingly. 

 

For the NSAID-PU cohort in the internal validation, the model mainly focused on NSAIDs and aspirin 

prescription patterns for predicting PU. Celecoxib was the most important, even though it is known to be 

associated with a lower risk of gastrointestinal adverse events (such as PU).17,18 This might be due to patients 

switching to celecoxib after experiencing gastrointestinal symptoms while taking other NSAIDs; indeed, patients 

who took celecoxib were prescribed an average of 3.1 NSAIDs, while those not taking celecoxib were prescribed 

an average of 1.6 NSAIDs. Clopidogrel is usually prescribed with aspirin for the prevention of cardiovascular 

events.19 Clopidogrel can be associated with several diagnoses and procedures regarding cardiovascular diseases 

(angina pectoris, hypertension, cerebral infarction, and all of the included procedures). Gastric symptoms such as 

chest pain and nonulcer dyspepsia were also important. In the external validation, similarly, the model paid 

attention to NSAIDs and aspirin prescription patterns. For diagnosis, several conditions that are usually treated 

by NSAIDs (headache, joint pain, and pain caused by periodontitis) were important, and like the internal 

validation, chest pain was one of the main factors. Headache can be associated with another important feature, 

cerebral infarction. Valid medical context existed; however, more investigation is needed into the reason why 

cardiovascular diseases were important in the NSAID-PU cohort. 

For the AC-ICH cohort in the internal validation, the models perceived aspirin and heparin prescription 

patterns as important for ICH prediction. The most important diagnosis was skin lesion, which might be related 

to bruising or petechiae caused by AC, and clinicians might have simply coded the condition as a skin lesion rather 

than its own name.20,21 Headache and dizziness, which are the main symptoms of ICH, were also important.22,23 

The second most important diagnosis, hypercholesterolemia, is closely related to cardiovascular disease and can 

be associated with ICH.24,25 For measurements, lipid profile (triglyceride, HDL-cholesterol, LDL-cholesterol), 

which is a direct indicator for assessing hypercholesterolemia, and prothrombin time (PT) and fibrinogen, which 

are primarily focused on ICH patients,26-28 were included in the top 10 most important measurements. The models 

also closely observed procedures for diagnosis of cerebrovascular diseases, such as computed tomography (CT) 

of brain and transcranial Doppler (TCD) ultrasonography. The feature importance calculation result of the internal 

validation well-reflected prior knowledge regarding AC and ICH, but an unexpected feature (gastroesophageal 

reflux disease (GERD)) still existed. In the external validation, there were many features regarding heart diseases: 

coronary arteriosclerosis, preinfarction syndrome, angiography of coronary artery, and transthoracic 
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echocardiography. Compared to the internal validation, the model paid less attention to the measurement, but 

several factors associated with heart disease (aPTT and creatine kinase-MB)29,30 were included in the top 10. 

Accordingly, in this cohort, the patients with heart disease might have developed cerebrovascular disease as well. 

For the GC-OP cohort in the internal validation, similar to the NSAID-PU cohort, the model considered 

the GC prescription pattern to be important. Vertebral compression fracture (VCF), low back pain, and various 

types of arthritis were closely related to OP. The second most important diagnosis, gastritis, is another major 

adverse event of glucocorticoid.31,32 Two conditions regarding breast cancer (primary malignant neoplasm of 

breast and malignant tumor of breast) were also included. This can be associated with the clinical knowledge that 

breast carcinoma frequently metastasizes to bone (approximately 70% of patients with breast cancer have bone 

metastases), and endocrine therapy to treat breast cancer can cause osteoporosis.33-35 For measurement, ionized 

calcium is one of the main indicators of OP,36 and glycated hemoglobin (HbA1c) can increase by the abuse of 

GC.37,38 Most relevant procedures include dual energy X-ray absorptiometry (DEXA) for diagnosing osteoporosis, 

followed by multiple imaging techniques to screen bone abnormalities. In the external validation, GC prescription 

pattern, several types of arthritis, and gastric disease (GERD with esophagitis) were also important, but unlike the 

internal validation, pneumonia, chronic obstructive pulmonary disease (COPD), and asthma were included in the 

top 10. This reflects frequent prescriptions of GC to prevent exacerbation of inflammatory airway disease. Bone 

metastases of breast cancer patients in the internal validation and patients with respiratory diseases in external 

validation were important, respectively. 

For the CT-NF cohort in the internal validation, several drugs for chemotherapy (docetaxel, cisplatin, 

cyclophosphamide, rituximab, carboplatin, and paclitaxel) were included. Netupitant and palonosetron are drugs 

for preventing chemotherapy-induced nausea and vomiting.39,40 Patients who had experienced breast cancer were 

more likely to suffer from NF in this cohort. Chronic type B viral hepatitis is closely related to hepatocellular 

carcinoma. For measurement, carcinoembryonic antigen, which is an indicator for cancer diagnosis and 

monitoring,41 and inflammation-related features such as C reactive protein (CRP) and erythrocyte sedimentation 

rate (ESR) were included in the top 10 most important measurements. Central venous catheter (CVC) and PET 

CT FDG, which are closely associated with cancer, were important procedures. Screening colonoscopy is essential 

for the detection of colon cancer, and Nulytely is used for bowel cleansing prior to colonoscopy.42,43 Several types 

of CT and ultrasonography guided puncture and spiration of abdomen, which are procedures for the detection of 

cancer, were also included. Iron stain method, which is usually executed for the detection of hematologic 

malignancy, one of the highest-risk cancers for NF, was another important procedure.44,45 In the external 
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validation, fluorodeoxyglucose (FDG) F18, gadobutrol, and iohexol, which are contrast medium drugs for cancer 

detection, were focused on more than chemotherapy drugs. Contrary to the internal validation, it is notable that 

agranulocytosis, which usually precedes NF,46 was included in the top 10. 

In addition to cohort-level interpretation, patient-level interpretation is also available using CDM-

BERT. We reported a sample of patient-level interpretation in the Chemo-NF cohort (Extended Data Fig. 3). 

Patient-level interpretation allows clinicians to understand which records and timepoints were important for 

predicting ADE for each patient. 
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Discussion 

We have proposed, externally validated, and qualitatively analyzed CDM-BERT, which is a model pretrained on 

structured EHR data, especially CDM-based EHR data. CDM schema consists of several domains, and we utilized 

data from four domains, including diagnosis, measurement, prescription, and procedure. We newly adopted DE 

in CDM-BERT to let an MLM focus only on a necessary domain, and DE improved the performance of almost 

all the finetuning tasks. For external validation, we utilized three types of CDM-BERT: a model initially pretrained 

by the internal dataset (type I), a model pretrained by the internal dataset and additionally pretrained by the 

external dataset (type II), and a model pretrained only by the external dataset (type III). Among the three types, 

the type II CDM-BERT outperformed all the other models, demonstrating the effectiveness of the model initially 

pretrained by a different dataset and the potential of CDM-BERT as a foundation model. The qualitative analysis 

with the importance of features at the cohort and patient levels was available, and the attention scores of each 

finetuned model well-reflected the characteristics of the corresponding cohort.  

 We validated that the initially pretrained model works with another dataset. In the external validation, 

the type I CDM-BERT outperformed initially randomized models in all cohorts, even though they were never 

aware of the external dataset. In addition, the type II CDM-BERT achieved significantly improved performance 

with only ten training epochs. Given that only 7,000 codes were common between the two hospitals, which had 

26,417 and 22,551 codes, respectively, it is noteworthy that the model pretrained with numerous unknown codes 

remained effective. Additional pretraining successfully resolved the disparity of different datasets and improved 

performance. The initially pretrained model was also effective in terms of time efficiency. It took around six hours 

to pretrain the external dataset for one iteration with a single graphic processing unit (GPU). Considering we spent 

around a week for 100 iterations with four multiple GPUs, the ability to develop a strong pretrained model with 

fewer epochs can be especially attractive to smaller institutions with limited computational resources. 

 The qualitative analysis of the finetuned models showed a reasonable context of ADE prediction in each 

cohort. One interesting thing was that the important features reflected not only prior clinical knowledge but also 

cohort characteristics. In the NSAID-PU cohort, several conditions usually treated by NSAID and symptoms for 

PU were included in both internal and external validation, but celecoxib and procedures for patients with heart 

disease were only focused on in the internal validation. In the GC-OP cohort, various types of arthritis and gastric 

adverse events that might have been caused by GC were important in both internal and external validation. 

However, only internal validation reflected the clinical knowledge that breast carcinoma frequently metastasizes 
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to bone,33,34 while external validation identified pneumonia and COPD as medical conditions associated with GC. 

This result is also exhibited in the baseline characteristics of datasets shown in Table 1. The internal dataset had a 

higher percentage of patients with malignant tumors (23.70%) than the external dataset (18.37%). Conversely, the 

external dataset had a higher percentage of patients with pulmonary disease (8.51%) than the internal dataset 

(5.86%). 

  There are several studies that dealt with the EHR pretraining model, but this is the first study that dealt 

with ADE. Hospital data has clear pros and cons for EHR pretraining: The upside is that the patient data generated 

within the hospital is real-time and of very high quality, and the downside is that it is very difficult to access data 

outside the hospital. Survey data can supplement historical medical records to some extent, but it is not enough. 

Accordingly, it is difficult to predict diseases, mortality, and readmission, which are very affected by data outside 

the hospital, using in-hospital data.12-15,47 To maximize the advantages of hospital data, we applied the EHR 

pretraining model to ADE prediction for inpatients. A pretraining model can learn changes before and after taking 

medication. Thus, the pretraining process included a deep understanding of drug reactions, and CDM-BERT was 

effective in various ADE prediction tasks. 

 Compatibility is a significant advantage of CDM-BERT. OMOP CDM is an open community data 

standard and is represented in more than 19 countries, with more than 200 million patient records, and more than 

2,500 collaborators.7,48 CDM-BERT pretrained by the dataset from one hospital can be applied to, enhanced by, 

and validated by many other global hospital datasets.8,9 In addition, there is a national institution called Health 

Insurance Review and Assessment Service (HIRA) in Korea that has claims data converted to OMOP CDM 

format, and claims data can complement the lack of patient follow-up in hospital data.49-51 A large scale model 

through federated learning algorithms is also available.52 Several studies have already conducted multi-

institutional data analysis via the federated learning framework for OMOP CDM data.53,54 CDM-BERT trained by 

data at the regional or national level can serve as a foundation model for various tasks in addition to in-hospital 

tasks such as ADE prediction. 

 This study has several limitations. First, we defined cohorts very roughly, even though several critical 

exclusion criteria might exist for proper cohort analysis, and patients who might have already suffered ADE were 

included in the case group. For example, VCF, which is usually caused by osteoporosis,55 was the most important 

feature for predicting osteoporosis in the internal dataset. To mitigate this problem, we conducted additional 

analysis with longer prediction timepoints to deal with different durations of drugs. The models that predicted 

ADE before twelve weeks also performed well (Supplementary Table 5), and VCF was not detected as an 
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important feature anymore (Supplementary Fig. 8). Second, there were irrelevant important features for each 

cohort. For example, speech audiometry, which is extraneous with all the ADE in this study, was found in the 

NSAID-PU, AC-ICH, and GC-OP cohorts, even though it might be associated with age, as PU, ICH, and OP 

usually occur in aged patients. Overfitting, black-box, or weak cohort definition might have influenced the 

irrelevant results, but further investigation is needed. Third, the percentage of shared medical codes between the 

internal and external datasets was too low. Although this discrepancy demonstrated the effectiveness of the model 

pretrained with numerous unknown codes, alternatives to mitigate the inconsistency of vocabulary should be 

investigated more. Fourth, CDM-BERT was only trained by structured EHR data. For future work, we are 

planning to utilize several unstructured medical data and combine those data types with CDM-BERT. 

 In conclusion, CDM-BERT has demonstrated its potential as a foundation model through its prediction 

performance, interpretability, and compatibility. The adoption of domain embedding was effective in almost all 

cases, simplifying the pretraining procedures and improving comprehension of a medical context. The model 

interpretability for each cohort was supported by several prior studies and clinical knowledge. Enhanced code 

systems to mitigate vocabulary inconsistency and CDM-BERT combined with unstructured data types are 

suggested for future works. 
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Methods 

Data curation 

This study used data from the SNUH (internal dataset) between January 2001 and December 2023 and the AUMC 

(external dataset) between January 2004 and December 2023. Both hospitals operate EHR database based on 

OMOP CDM version 5.3.7 We collected data from four domains (tables) of CDM schema, diagnosis 

(condition_occurrence), prescription (drug_exposure), measurement (measurement), and procedure 

(procedure_occurrence). Terminologies of diagnosis and procedure, measurement, and prescription are based on 

SNOMED CT56, Rx-Norm57, and LOINC58, respectively. 

To screen patients with high-quality records, we included patients who had been hospitalized for at least 

three days in the study population, and patients under 18 were excluded. Data were randomly split into training 

(70%), validation (10%), and test (20%) datasets. CDM-BERT was pretrained using only training and validation 

datasets of the internal dataset. For each cohort, we first included patients who were prescribed the target drug. 

Those who were diagnosed with corresponding adverse events within four weeks after the prescription were 

included in the case group (Fig. 1b) and those who had no record of adverse events were included in the control 

group. This process was implemented independently from training, validation, and test datasets. 

The Institutional Review Board (IRB) of Seoul National University Hospital (IRB approval No. 2204-

001-1310) approved the study with a waiver of informed consent, considering that our study used retrospective 

and observational EHR data. The approval aligns with the principles outlined in the Declaration of Helsinki, the 

Korean Bioethics and Safety Act (Law No. 16372), and the Human Research Protection Program–Standard 

Operating Procedure of Seoul National University Hospital.  

 

Record tokenization 

Each diagnosis or procedure record was tokenized by its corresponding concept ID in SNOMED-CT. For each 

prescription, we added ‘short’ at the end of the corresponding concept ID in Rx-Norm if its duration was shorter 

than four weeks and ‘long’ if it was more than four weeks (Fig. 1a). This process was to distinguish prescription 

type, considering inpatients are usually prescribed daily (or with every meal), while outpatients typically receive 

prescriptions for longer periods. Each measurement item was categorized into ten tokens divided into deciles, and 

we added a corresponding decile number between 0 and 9 at the end of its corresponding concept ID in LOINC 

(Fig. 1a). For example, in Fig. 1a, ‘40162672_short’ indicates prescription of amitriptyline hydrochloride 10mg 
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oral tablet with less than 4 weeks, and ‘3026910_2’ indicates low level (between 2nd and 3rd decile) of gamma-

glutamyl transferase (GGT). We only utilized numerical measurement items because the items with natural 

language results were unstructured and unformatted to tokenize. Regarding special tokens, we utilized five special 

tokens: [PAD], [MASK], [UNK], [CLS], and [SEP]. [PAD] was used to align patient trajectories with different 

lengths to the same lengths, and [MASK] was used for the MLM process. Tokens that were not in the training 

dataset of the internal dataset were replaced with [UNK]. Every trajectory starts with [CLS] considering 

representation usage for various downstream tasks. Like BERT used [SEP] to separate two sentences, we inserted 

[SEP] between all different dates. The token counts for each domain in each dataset are summarized in 

Supplementary Table 6. Ages were simply inserted as integer tokens, and dates were grouped by integer tokens 

increasing by one. We used five tokens for domains: special tokens, diagnosis, measurement, prescription, and 

procedure (Fig. 1a).  

 

Trajectory construction and embedding 

All tokens were sorted in order of time for each patient, and the maximum trajectory length was set to 2048, 

covering more than 85% of all trajectories. All trajectories start with [CLS] and gender tokens. For pretraining, 

trajectories that were longer than the maximum length were sliced into non-overlapping sub-trajectories with the 

maximum length to prevent potential dependency among trajectories from a single patient. For finetuning, we 

first removed tokens from four (for additional experiments, two, eight, and twelve) weeks prior to the adverse 

event and used the latest 2048 tokens instead of slicing them into sub-trajectories. Trajectories with less than 50 

tokens were excluded because predicting ADE in patients with too little information was not considered to be 

worthwhile. All short trajectories were padded to a length of 2048, aligning them with the same length for mini-

batch training. For each token embedding, corresponding embeddings of age, date, and domain tokens were added.  

 

Model training 

CDM-BERT is based on BERT16 architecture, with six layers, eight attention heads, and a hidden dimension of 

256. We aggregated the vocabulary sets from the internal and external datasets, and the final vocabulary size was 

41,536. However, we set the embedding size of vocabulary to be 50,000, considering future additional medical 

codes. For age, date, and domain embedding, we set the embedding size to 180, 1024, and 20, respectively. The 

size of domain embedding was decided considering additional domains like unstructured data (e.g., X-ray, 

electrocardiogram, and nursing report). For pretraining, we randomly masked 30% of tokens except special tokens 
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for each trajectory, and CDM-BERT was trained to infer the masked tokens of specific domains with preceding 

and following history along with age, date, and domain. CDM-BERT was pretrained with 100 epochs where the 

training loss (cross entropy (CE) loss) became stable (Supplementary Figure 1a), and we selected the model with 

the minimum CE loss during the training. The formula of CE loss is as follows: 

CE loss =   ∙ log   
where  is the number of class (41,536 in this study),   is the true label, and  is the estimated probability 

for the class . The learning rate and dropout rate were set to 5e-5 and 0.1, and the batch size was set to 16. We 

used four NVIDIA RTX A6000 GPUs for internal processes and four NVIDIA GeForce RTX 3090 Ti GPUs for 

external processes. It took around a week to train 100 epochs for both models with and without DE for both 

internal and external datasets. For finetuning for ADE prediction, we added feed forward neural network (FFNN), 

hyperbolic tangent (Tanh) activation function, dropout, and FFNN on the representation of the first token to yield 

a vector of size two for binary classification. Finetuning was trained to minimize binary CE loss for ADE 

prediction. We recorded the classification performance for every cycle of 100 batches, and the finetuning was 

stopped if the AUROC of the validation dataset did not improve for ten cycles (1000 batches). Considering 

extreme class imbalance and small batch size, we randomly oversampled the minority class to be one-tenth of the 

majority class during finetuning. It took around 53 seconds for training 100 batches (3200 trajectories). We used 

the same learning rate (5e-5) and dropout rate (0.1) of pretraining. For deep learning and BERT implementation, 

we used Pytorch (version 1.12.0) and HuggingFace package (version 4.41.2)59 in Python (version 3.8.10).  

 

Feature importance 

We calculated feature importance using attention matrices of model outputs in case groups. We averaged attention 

matrices of eight attention heads from the last layer of CDM-BERT to yield a final attention matrix (hereafter 

attention matrix). An attention matrix A for each trajectory is 2048 by 2048 matrix (all trajectories are aligned to 

have 2048 tokens), and an attention score A  indicates how closely ith and jth tokens are related.60 Note that ∑  = 1 ∀i ∈ (0, … ,2048).  We provided two types of qualitative analysis using attention matrix:  

comprehensive and individualized analysis. For comprehensive analysis, we first averaged the values of the same 

tokens in each row of the attention matrix to prevent repeatedly appearing tokens of routine medical events (e.g., 

normal saline, blood pressure, and electrocardiogram) from getting unnecessarily high scores. The original 2048 

by 2048 attention matrix becomes 2048 by V code-wise averaged attention matrix where V is the number of 
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non-duplicated tokens in the trajectory. Then, we extracted the maximum value among 2048 rows of each token. 

Instead of aggregating or averaging, we chose maximum value to exclude the potential effect from the trivial rows 

of special tokens such as [SEP] and [PAD]. Finally, each 2048 by 2048 attention matrix was transformed into a 

one-dimensional vector of size V. We called this vector as trajectory attention vector (TAV). The value of each 

element of TAV is as follows: 

TAV = max ∑ ∈,|,|  

where  is the index of code  in TAV and , is a set of indices of code  in the original attention matrix . TAV finally indicates the importance of all tokens in the trajectory. In each TAV, we excluded tokens that 

appeared in fewer than 5% of the patients in the case group. This process was to prevent irrelevant trivial tokens 

coincidently having high attention scores from becoming important features. Finally, we averaged all TAV values 

by tokens and selected the top 10 most important tokens (features) from each domain.  

For individualized analysis, we simply summed all rows of an attention matrix, then extracted the top 

10% of tokens with the highest values. This process was to enhance readability because most trajectories had 

hundreds of tokens. This allows clinicians to see which records at which time points were important in predicting 

ADE for each patient. 

 

Statistical analysis 

Characteristics (age, sex, and comorbidities) in internal and external cohorts were compared by calculating P-

values using the Student's t-test for age and the Fisher's exact test for the rest variables. To measure and compare 

the performances of the models, we mainly used F1-score. Besides, we additionally provided AUROC, AUPRC, 

sensitivity, specificity, and precision. Confidence intervals of F1-score, sensitivity, specificity, and precision were 

calculated by Wilson's method61, while those of AUROC and AUPRC were calculated by DeLong's method62. 

Statistical significance was set at α=0.05. All statistical analyses were performed using scikit-learn (version 1.0.2) 

in Python (version 3.8.10). 
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Extended Data Fig. 1. Calibration plots. a, calibration plots of all models in internal validation. b, calibration 

plots of all models in external validation. For both internal and external validation, the blue lines (for models 

randomized without DE) are invisible because they were overlapped by the green lines (for models randomized 

with DE). 
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Extended Data Fig. 2. Feature importance of models finetuned with the external dataset.   
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Extended Data Fig. 3. Patient-level feature importance sample (Chemo-NF). For individualized analysis, we 

simply summed all rows of an attention matrix as the sum of each row is 1, then extracted the top 10% of tokens 

with the highest values. This process was to enhance readability because most trajectories had hundreds of tokens. 

This allows clinicians to understand which records and timepoints were important in predicting drug adverse 

events for each patient. 
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Extended Data Table 1. Patient demographics of each drug-adverse event cohort. 

 
  Case group Control group  

 Prediction 
timepoint Count Age Male sex Count Age Male sex Incidence 

ratio 
SNUH (internal)         
NSAID (PU) 2 weeks 1880 64.89±12.45 40.48% 264925 55.11±15.99 58.32% 0.70% 

 4 weeks 2345 64.92±12.36 41.07% 264925 55.11±15.99 58.32% 0.88% 

 8 weeks 2880 65.08±12.20 41.81% 264925 55.11±15.99 58.32% 1.08% 

 12 weeks 3281 64.94±12.13 41.63% 264925 55.11±15.99 58.32% 1.22% 

AC (ICH) 2 weeks 883 63.90±14.45 47.45% 155586 61.28±14.33 46.26% 0.56% 

 4 weeks 1073 64.68±13.87 47.34% 155586 61.28±14.33 46.26% 0.68% 

 8 weeks 1262 65.50±13.54 47.54% 155586 61.28±14.33 46.26% 0.80% 

 12 weeks 1396 66.04±13.50 46.70% 155586 61.28±14.33 46.26% 0.89% 

GC (OP) 2 weeks 1544 63.09±13.43 73.83% 210180 56.15±15.31 54.30% 0.73% 

 4 weeks 1932 62.98±13.00 75.98% 210180 56.15±15.31 54.30% 0.91% 

 8 weeks 2286 62.80±12.59 78.17% 210180 56.15±15.231 54.30% 1.08% 

 12 weeks 2476 62.81±12.34 78.80% 210180 56.15±15.31 54.30% 1.16% 

Chemo (NF) 2 weeks 2064 56.62±14.17 62.35% 82803 58.14±12.98 50.11% 2.43% 

 4 weeks 2519 56.87±13.97 61.73% 82803 58.14±12.98 50.11% 2.95% 

 8 weeks 2354 57.11±13.88 61.17% 82803 58.14±12.98 50.11% 2.76% 

 12 weeks 2162 57.62±13.72 59.81% 82803 58.14±12.98 50.11% 2.54% 
AUMC (external)         
NSAID (PU) 2 weeks 2451 60.22±13.55 50.92% 176223 54.47±16.94 51.04% 1.37% 

 4 weeks 3043 60.04±13.57 50.51% 176223 54.47±16.94 51.04% 1.70% 

 8 weeks 3587 60.17±13.38 49.54% 176223 54.47±16.94 51.04% 1.99% 

 12 weeks 3903 60.15±13.42 48.94% 176223 54.47±16.94 51.04% 2.17% 

AC (ICH) 2 weeks 1099 58.99±14.34 45.13% 117407 60.24±15.57 45.53% 0.93% 

 4 weeks 1228 59.58±14.50 44.95% 117407 60.24±15.57 45.53% 1.04% 

 8 weeks 1397 60.53±14.39 44.52% 117407 60.24±15.57 45.53% 1.18% 

 12 weeks 1506 61.14±14.38 44.56% 117407 60.24±15.57 45.53% 1.27% 

GC (OP) 2 weeks 1744 61.87±12.10 82.00% 142083 53.80±16.54 48.64% 1.21% 

 4 weeks 1865 61.75±12.07 80.91% 142083 53.80±16.54 48.64% 1.30% 

 8 weeks 1995 61.62±12.14 80.80% 142083 53.80±16.54 48.64% 1.38% 

 12 weeks 2088 61.52±12.08 80.84% 142083 53.80±16.54 48.64% 1.45% 

Chemo (NF) 2 weeks 364 56.94±13.27 71.15% 34063 57.07±13.63 50.70% 1.06% 

 4 weeks 406 57.69±13.30 68.97% 34063 57.07±13.63 50.70% 1.18% 

 8 weeks 384 57.72±13.01 65.62% 34063 57.07±13.63 50.70% 1.11% 

 12 weeks 346 57.81±13.07 62.43% 34063 57.07±13.63 50.70% 1.01% 
SNUH, Seoul National University Hospital; AUMC, Ajou University Medical Center; NSAID, nonsteroidal anti-
inflammatory drugs; PU, peptic ulcer; AC, anticoagulants; ICH, intracranial hemorrhage; GC, glucocorticoids; OP, 
osteoporosis; Chemo, chemotherapy; NF, neutropenic fever 
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