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Abstract

Vaccines are a crucial tool for controlling infectious diseases, yet rarely offer perfect protection.
"Vaccine efficacy" describes a population-level effect measured in clinical trials, but
mathematical models used to evaluate the impact of vaccination campaigns require specifying
how vaccines fail at the individual level, which is often impossible to measure. Does 90%
efficacy imply perfect protection in 90% of people and no protection in 10% ("all-or-nothing"), or
that the per-exposure risk is reduced by 90% in all vaccinated individuals (“leaky”), or
somewhere in between? Here we systematically investigate the role of vaccine failure mode in
controlling ongoing epidemics. We find that the difference in population-level impact between
all-or-nothing and leaky vaccines can be substantial when R0 is higher, vaccines efficacy is
intermediate, and vaccines slow but can’t curtail an outbreak. Comparing COVID-19 pandemic
phases, we show times when model predictions would have been most sensitive to
assumptions about vaccine failure mode. When determining the optimal risk group to prioritize
for limited vaccines, we find that modeling a leaky vaccine as all-or-nothing (or vice versa) can
change the recommended target group. Overall, we conclude that models of vaccination
campaigns should include uncertainty about vaccine failure mode in their design and
interpretation.
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Introduction

Vaccines have been a transformative tool for reducing the burden of infectious diseases
around the globe, from early inoculations against smallpox to mass vaccination campaigns for
over a dozen pathogens beginning in the 20th century. Since the launch of the World Health
Organization (WHO)’s Expanded Immunization Program in 1974, an estimated 154 million lives
have been saved and an estimated 9 billion years of life years gained [1] due to vaccines
against measles, tetanus, pertussis, tuberculosis, Haemophilus influenzae type B, invasive
pneumococcal disease, poliomyelitis, yellow fever, hepatitis B, rotavirus, diphtheria, rubella,
Japanese encephalitis, and meningitis A. Another study estimated ~50 million lives saved by
vaccines administered between 2000-2019 [2]. Since the beginning of the COVID-19 pandemic
in 2020, dozens of vaccines have been developed and administered to over 5 billion people
around the globe [3,4]. In the first year of vaccine administration alone, an estimated 14 million
lives were saved due to vaccination [5].

Vaccines stimulate a long-lived pathogen-specific immune response and can act to reduce the
probability that vaccinated individuals will acquire infection and transmit it to others, in addition
to reducing the likelihood of progressing to severe outcomes if infected. No vaccine is perfect,
and the efficacy (if measured in a randomized trial) or effectiveness (if measured in a real-world
setting) of a vaccine is defined as the percent reduction in disease occurrence among the
vaccinated group compared to the unvaccinated group [6,7]. While vaccine
efficacy/effectiveness (“VE”) is an important metric of risk reduction at the population level, it
does not specify how imperfect vaccines act at the individual level. For example, a vaccine that
is 80% effective at preventing infection could reduce the per-exposure risk of acquiring infection
in each individual identically by 80% (a “leaky” vaccine), or, could provide perfect protection for
80% of the vaccinated population and no protection for the remaining 20% (an “all-or-nothing”
vaccine), or, some combination of the two mechanisms [7–9]. It is typically very difficult to
measure the distribution of individual protection levels - since doing so requires long-term
follow-up with repeated and known exposures (e.g., experimental challenge studies) - and so
the mode of vaccine failure is typically unknown. Mathematical models used to predict or assess
the success of vaccination campaigns tend to vary in how they encode vaccine-derived
protection, but most typically assume only one of these failure modes.

Several mathematical modeling studies have focused specifically on when the mode of vaccine
failure can impact predictions about population-level vaccine impact. Early work focusing on the
statistical estimation of VE demonstrated that in long-term trials in which a substantial portion of
the population is infected during the trial period, the inferred VE can vary based on trial duration
and mode of vaccine failure [6,10,11]. This study and more recent work [12] pointed out that
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imperfect vaccines can be thought of more generally as creating population strata (or a
continuum of states) with differential susceptibility. McLean and Blower examined the impact of
a hypothetical HIV vaccine administered upon entry into a high-risk community and found that
all-or-nothing vaccine-induced protection was generally more impactful, especially over long
timescales [13]. Gomes et al. demonstrated that in a simple model of an endemic infection with
vaccination administered at birth, the prevalence of infection was lower when vaccine-induced
protection was distributed more heterogeneously across the population (i.e., closer to the
all-or-nothing extreme) [12]. Similarly, Magpantay et al found that infection levels were lower
with all-or-nothing vs leaky vaccines, and that leaky vaccines could lead to a “honeymoon”
period after introduction where prevalence is temporarily much lower than the eventual endemic
level [14]. Ragonnet et al. examined a model of vaccination at birth for an endemic infection and
found that vaccine failure mode, as well as the disease transmissibility and the extent of natural
immunity from prior infections, interacted to determine how vaccine efficacy determined
population-level impact [15]. Importantly, all of these studies concluded that these differences in
population-level impact of vaccination occurred even when the average efficacy, and hence the
effective reproduction number under vaccination and the critical vaccination coverage needed
for disease eradication, remained the same between vaccine failure modes.

In the case of emerging epidemics like COVID-19, many of the assumptions employed in
previous models assessing the impact of vaccine failure mode are less appropriate. For
emerging epidemics, vaccines are typically administered to large portions of the population at
once (not just infants or young children) and in the middle of the outbreak (not before), and the
impact of interest is the cumulative portion infected within some time period during the epidemic
phase (not the eventual endemic prevalence), and the effect of demographic change (e.g.,
births and deaths) is often negligible on the timescale of pathogen spread. Thus, there is a need
to understand when and how vaccine failure mode influences the population-level effects of
vaccination during an epidemic. In this study, we extend previous work to examine how the
distribution of individual-level vaccine efficacy influences final epidemic size as a function of
timing and speed of vaccine roll-out, overall vaccine coverage, baseline transmission rates, and
average vaccine efficacy.

Methods

Modeling imperfect vaccines

To systematically examine how vaccine failure mode influences predictions of population-level
impacts of vaccination, we used a simple compartmental infectious disease model (Figure 1). In
the absence of vaccination, individuals can be classified as susceptible to infection (S), exposed
but not yet infectious (E), infectious (I), or recovered and immune (R). We assume that the
population is well-mixed, that the total population size is constant, and that demographic events
such as births and deaths can be ignored on the timescale of the epidemic. Recovered
individuals are assumed to be completely immune to reinfection, and all unvaccinated
individuals have equal susceptibility. Vaccination moves susceptible individuals into one of two
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vaccinated groups: in vaccinated-and-protected individuals (VR) the per exposure contact rate is
reduced with efficacy εL (i.e., efficacy of “leaky” protection), while in vaccinated-but-susceptible
individuals (VS) the per exposure contact rate is unchanged (efficacy of zero). A fraction εA of
individuals receiving the vaccine move to VR while the remaining fraction 1-εA move to VS (εA is
the efficacy of “all-or-nothing” protection). This model allows us to consider a continuum of
scenarios between a leaky vaccine and an all-or-nothing vaccine, while still considering only two
strata of vaccinated individuals. The “leaky” extreme of vaccination is represented as 100% of
vaccinated individuals moving to the vaccinated-and-protected state ( εA = 1, 0<εL<1), while the
all-or-nothing extreme is encoded as 100% protection from infection in the
vaccinated-and-protected class (0<εA<1, εL = 1). A vaccine that acts through some combination
of these mechanisms can be represented by intermediate parameter values. Note that
throughout the paper, vaccine efficacy is used only to describe the reduction in the per contact
risk of infection (e.g., VE against infection), and we ignore additional effects a real-world vaccine
might have, such as reducing the risk of symptomatic or severe disease if infected, reducing the
duration of infectiousness, reducing pathogen shedding during infection, or synergizing with
infection-induced immunity. Thus, we assume that the duration of the latent period (σ) and
infectious period (ˠ), the infectiousness of infected individuals (β), and the perfect life-long
immunity conferred by infection are all identical regardless of vaccination status at the time of
infection.

Figure 1: Mechanisms of vaccine failure. A) The two mechanisms of vaccine failure/protection. Shade
of blue represents the degree of susceptibility before and after vaccination. With all-or-nothing protection,
some individuals are completely protected (gray shade, no remaining susceptibility), while others maintain
baseline susceptibility (dark blue). For leaky protection, all individuals experience the same reduction in
susceptibility after vaccination (light blue). B) Schematic of the full compartmental model consisting of
individuals susceptible to infection (S), infected but not yet infectious (E), infectious (I), recovered and
immune (R), vaccinated-and-protected individuals (VR), and vaccinated-but-susceptible individuals (VS). β
is the per-contact-infectiousness of an infected individual, σ is the rate at which infected individuals
become infectious (1/σ average duration of latent period), and ˠ is the rate of recovery (1/ ˠ average
duration of infectiousness). Vaccination occurs at rate 𝑣(𝑡). εA is the proportion of individuals protected at
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all by vaccination, while εL is the degree of protection in protected individuals. For all-or-nothing
protection, εL = 1 and efficacy is described by εAwith 0<εA<1. For leaky protection, εA = 1 and efficacy is
described by εLwith 0<εL<1.

This model is represented by the following system of ordinary differential equations:

where the state variables S, VS, VR, E, I, and R are proportions of the population. A vaccination
campaign is described by a time dependent vaccination rate 𝑣(𝑡), which describes the proportion
of the population vaccinated per unit time. We consider two models of vaccination campaigns (i)
a “rapid” vaccination campaign taking place instantaneously at time tV and targeting a fraction fV
of the population,

where δ is the Dirac delta function. And (ii) a “rolling” vaccine campaign beginning at time tV at
initial rate vmax and continuing until a portion fV of the population are vaccinated,

where H is the Heaviside step function.

The basic reproduction number for this model, assuming vaccination takes place before the
epidemic begins and reaches a total fraction fV vaccinated, is:

where R0 is the value in the absence of vaccination. This results in a critical vaccinated fraction
to prevent disease emergence:
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If vaccination begins after the epidemic has begun, then assuming an instantaneous vaccination
campaign targeting only susceptible individuals and beginning after a fraction fR have already
been infected and are immune to reinfection, the critical vaccination coverage is reduced to

For our study of the effect of different kinds of vaccination, we chose model parameters to
correspond roughly with the timescale of COVID-19 transmission.

Symbol Parameter Unit Value

β Transmissibility
(Probability of transmission per susceptible
contact per day)

days-1 varied, 0.25 - 0.75

σ Progression rate
(1/average duration of latent period)

days-1 1/4

ˠ Recovery rate
(1/average duration of infectious period)

days-1 1/4

R0 Basic reproduction number - varied, 1-3

εA All-or-nothing vaccine efficacy
(fraction of population receiving any protection
from vaccine)

- varied, 0-1

εL Leaky vaccine efficacy
(fractional reduction in per-exposure risk of
infection in individuals protected by vaccination)

- varied, 0-1

𝑣(𝑡) Vaccination rate
(fraction of susceptible population vaccinated per
day)

days-1 varied

Table 1. Summary of parameters and symbols used in the model. Values that weren’t varied
are those based roughly on COVID-19.

Comparing ‘All-or-Nothing’ and ‘Leaky’ Vaccines
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In order to systematically compare the two modes of vaccine failure, we focused on nine
different general regimes. First, we varied the time at which the vaccine was administered.
Vaccination began either (i) at the beginning of the epidemic, (ii) when 10% of the population
was immune (R state), or (iii) 25% of the population was immune. Next, for the rapid vaccination
model we varied the percent of the population vaccinated and focused on 50%, 75% and 100%
coverage levels. For the “rolling”, continuous vaccination model, we fixed the coverage to 75%
and instead varied the rate at which susceptible people get vaccinated. We considered 1%, 3%
and 5% of susceptible and unvaccinated individuals to get vaccinated daily until the desired
coverage is reached.

For each of these nine scenarios, we varied the R0 values from 1.0 to 3.0 and vaccine efficacy
from 50% to 100%, and the herd immunity threshold fv

* was calculated at each point based on
its R0 value and vaccine efficacy. The impact of each of the vaccine failure mechanisms (

) were evaluated by calculating the percent reduction of the final epidemic size𝑉𝐼
𝐴𝑂𝑁

,  𝑉𝐼
𝐿𝑒𝑎𝑘𝑦

compared to that of without vaccination. Note, the differences in vaccine impact ( ) were∆𝑉𝐼
calculated by subtracting the percentage reduction of the leaky vaccine from the all-or-nothing
vaccine, as the all-or-nothing vaccine demonstrated a greater percentage reduction for all
scenarios.

where corresponds to the number of cumulative infections at the end of the epidemic (final𝑅
𝑖
∞ 

epidemic size) for the no vaccination, vaccination by all-or-nothing or by leaky vaccines.

Parameter combinations for which the R0 value was too low for the disease to reach the target
% population immunity before the vaccine campaign started was excluded from the final
comparison.

Analysis was done in Python 3.0, and our code is open-source and available on Github:
https://github.com/diane-lee-01/VaccineEfficacy

Model for exploring vaccine allocation decisions
In order to explore how the choice of the vaccine failure mode affects vaccine allocation
decisions, we consider a modification of the compartmental model described above – the
population is split into two equally-sized groups where the groups can differ in terms of their
relative infectiousness, susceptibility, chance of developing severe disease if infected, and
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vaccine efficacy (see SI Methods for full model equations). All other parameters are the same
for each group and there is no other structure in the population (that is, it is fully-connected:
individuals are equally likely to have potentially-infectious contacts with other individuals in
either population). We assume only one group can be vaccinated (an instantaneous vaccine
administered at the start of the epidemic) and for each mode of vaccine failure (‘leaky’ and
‘all-or-nothing’), we calculate the vaccine impact (defined as the percentage reduction of the
infected population compared to without vaccination) of vaccinating either of the two groups
over a range of parameter values. The group associated with the higher impact of vaccination is
considered to be the optimal vaccination choice. We then compare whether this choice varies or
stays the same for the two modes of vaccine failure.

We focus on three scenarios where the differences between the groups are associated with
trade-offs such that it is unclear which group should be vaccinated to achieve the maximum
reduction in the final epidemic size. In all three scenarios, one group is more susceptible, but
additionally is either less infectious, experiences lower vaccine efficacy, or has a lower
propensity for severe disease if infected. For each of these scenarios we consider three
sub-scenarios with different combinations of baseline vaccine efficacies (VE) and
coverage-levels: (i) 50% VE, 80% coverage, (ii) 80% VE, 50% coverage, and (iii) 80% VE, 80%
coverage. We then explore how the difference in vaccine impact between vaccinating one group
versus the other changes in these sub-scenarios by varying R0 and the parameters related to
the relative differences between the two groups; for example, for the first we vary the relative
reduction in infectiousness in one group compared to the relative reduction in susceptibility of
the other (see Supplemental Methods for more details). We quantify vaccine impact as
percentage reduction of the final epidemic size (in the total population - both groups combined)
compared to that of without vaccination. We compare vaccine impact when only one group vs
only the other is vaccinated to decide the “optimal” group to vaccinate. However, we assume
that if the magnitude of difference in vaccine impact is less than 1%, then it doesn’t matter which
group is vaccinated. Finally, we compare these allocation decisions across the parameter space
for the two models of vaccine failure, and identify regions where they differ, that is, where the
leaky model chooses one group to vaccinate whereas all-or-nothing chooses the other group.
Note, for the scenario where groups differ by propensity for severe infection, we focus on the
total number of severe infections as the outcome of interest instead of the final epidemic size.

Results

When does vaccine failure mode matter?

To understand when the choice of the vaccine failure mode affects model outcomes, we
compared predictions for the final epidemic size when we assumed either all-or-nothing or leaky
vaccine-induced protection. We found many instances when the two assumptions led to large
differences in model predictions. For example, we considered an epidemic spreading with
R0=2.5 and infecting 90% of the population in the absence of vaccination, and simulated
vaccinating 50% of the population prior to the start of the epidemic with either a leaky or
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all-or-nothing vaccine with 60% efficacy (Figure 2A/B). In the very early stages of the epidemic,
we found that vaccination slows down the spread of the epidemic similarly for both types of
vaccine failure. However, their effect on the epidemic diverges as population immunity
increases. The all-or-nothing vaccine leads to a lower epidemic peak that is reached earlier as
compared to the leaky one, and has a lower final attack rate – 50% (all-or-nothing) versus 63%
(leaky) of the population infected by the end of the epidemic.

The difference in vaccine impact between the two modes of vaccine failure is highly dependent
upon model parameters, such as the timing of vaccine administration, vaccine coverage,
vaccine efficacy, and R0 in the absence of vaccination (Figure 3). We defined the vaccine impact
as the reduction in the final epidemic size compared to the scenario without any vaccination,
and then we compared the vaccine impact between leaky and all-or-nothing vaccines (see
Methods for more details). We find that the impact of all-or-nothing vaccines is always greater
than or equal to that of leaky vaccines, with the difference in impact being more significant when
the vaccine efficacy is intermediate ( ), the epidemic is spreading rapidly (high R0), the~ 50%
vaccine is administered before substantial spread of the epidemic, and more people are
vaccinated. Overall, the difference in vaccine impact is substantial ( ) for a large portion (~≥ 5%

) of the parameter space we considered, with the maximum difference being around in35% 30%
the final epidemic size.

In the previous examples, we approximated a rapid vaccination campaign by assuming all
vaccines were administered instantaneously at a fixed time during the epidemic. We also
considered more gradual, continuous vaccination campaigns (“rolling vaccination”, Figures
2C,D) and similarly found that vaccine failure mode could influence model predictions. For
example, we simulated vaccinating 5% of unvaccinated individuals daily after the start of the
epidemic with either a leaky or all-or-nothing vaccine with 60% efficacy until a coverage of 50%
was reached. The difference between the two is more pronounced later in the epidemic and the
all-or-nothing vaccine had a lower final epidemic size (49%) compared to the leaky vaccine
(60%). Considering a wide range of parameter values, we find that the difference in vaccine
impact is more sensitive to the rate at which vaccination occurs rather than the final coverage
levels (Figure 4, see Suppl. Fig S1). The difference between all-or-nothing versus leaky
vaccines is more significant when the vaccine efficacy is intermediate ( ), the epidemic is~ 50%
spreading rapidly (high R0), the daily rate of vaccination is high, and when the campaign starts
earlier in an epidemic.
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Figure 2: Vaccine failure mode determines impact of vaccination campaign. Time course of infection
in the absence of vaccination (red lines), compared to a scenario with administration of a vaccine with
either leaky (blue line) or all-or-nothing (green line) mode of protection. For the rapid vaccination scenario
(A, B), 50% of the population is vaccinated prior to the start of the epidemic. For the rolling vaccination
scenario (C, D), 5% of the susceptible individuals are vaccinated daily after the start of the epidemic until
50% of the population is vaccinated. Results are shown for R0 = 2.5, and vaccine efficacy = 60%.

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 30, 2024. ; https://doi.org/10.1101/2024.09.30.24314493doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.30.24314493
http://creativecommons.org/licenses/by/4.0/


Figure 3: Difference in impact between all-or-nothing and leaky vaccines for rapid vaccine
administration. Vaccine impact is defined as the percent reduction in the final epidemic size, compared
to a scenario with no vaccination. The heatmap color indicates the difference in vaccine impact between
all-or-nothing vs leaky vaccines, for a range of values for disease transmissibility (R0, x axis), vaccine
efficacy (VE, y axis), timing of vaccine administration (rows, vaccine is administered all at once, at a fixed
point in the epidemic), and vaccine coverage (columns, proportion of population vaccinated). The red line
separates regions in the parameter space where the fraction vaccinated (fv) is greater (above) or less
(below) than the critical vaccination threshold (f*v, aka herd immunity threshold). Uncolored hashed
regions correspond to parameter combinations where disease R0 was too small for the epidemic to reach
the target size for vaccine administration (so vaccine was never administered).
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Figure 4: Difference in impact between all-or-nothing and leaky vaccines for rolling vaccine
administration. Vaccine impact is defined as the percent reduction in the final epidemic size, compared
to a scenario with no vaccination. The heatmap color indicates the difference in vaccine impact between
all-or-nothing vs leaky vaccines, for a range of values for disease transmissibility (R0, x axis), vaccine
efficacy (VE, y axis), timing of beginning of vaccine administration in terms of epidemic size (rows), and
speed of the vaccination campaign (proportion of unvaccinated population vaccinated per day). In all
cases final vaccine coverage is 75%. See Methods for more details on how rolling vaccination was
implemented. Uncolored hashed regions correspond to parameter combinations where disease R0 was
too small for the epidemic to reach the target size for vaccine administration (so vaccine was never
administered).

The difference in population-level protection offered by leaky vs all-or-nothing vaccines with
identical efficacy can be explained by comparing breakthrough infections – the number of
vaccinated individuals that eventually become infected – between the two models. Both
all-or-nothing and leaky vaccines lead to equal instantaneous reduction in population
susceptibility by reducing the per-exposure infection risk. However, if the epidemic is not
immediately curtailed and continues to circulate in unvaccinated individuals, vaccinated
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individuals may be exposed multiple times. In the case of all-or-nothing protection, regardless of
the number of exposures, only (1-VE)% of vaccinated individuals can ever become infected. In
contrast, for leaky vaccines, after multiple exposures it is possible that all vaccinated individuals
eventually get infected. Even if vaccine efficacy and coverage is the same in both models, the
leaky model is always associated with an equal or a larger number of breakthrough infections as
compared to the all-or-nothing model (See SI Methods for derivation). Intuitively, this occurs
because for a fixed R0 in the all-or-nothing model the average susceptibility of the next infected
individual is always greater than in the leaky model and hence susceptibility drains out of the
population more quickly leading to a smaller epidemic size. This difference is highest in the
regime where multiple exposures are possible (high R0) and when vaccine efficacy is
intermediate (VE~50%), because if vaccine efficacy is high, both vaccine types are associated
with few breakthrough infections and if vaccine efficacy is low, both are associated with a large
number of breakthrough infections. This effect is related to two previous findings in the modeling
literature: 1) In clinical trials measuring vaccine efficacy or observational studies of vaccine
effectiveness, multiple exposures during the study period could bias estimates of VE downwards
for leaky vaccines [8,10,11,16,17], and 2) Populations with high heterogeneity in disease
susceptibility (due to natural variation as well as vaccine-induced protection) tend to support
smaller epidemics than those with uniform susceptibility [12,18–24].

Applications to COVID-19 vaccine impact predictions
Throughout the COVID-19 pandemic, models have been used to assess the impact of
vaccination campaigns and to guide decisions about optimal vaccine allocation. Very few
considered how the choice of modeling vaccine failure might affect conclusions (for some
exceptions, see [25–28]). Our results demonstrate that the difference in model predictions
between these two assumptions can vary substantially depending upon the nature of the
outbreak and the details of the vaccination campaign. Next, we examine some scenarios
inspired by real-world vaccination campaigns that occurred during specific waves of the
COVID-19 pandemic to assess whether the choice of the mode of vaccine failure would have
appreciably affected model outcomes (see Supplemental Methods for details).

First we consider the scenario in which an epidemic wave is rapidly controlled via vaccination,
as was seen in Israel in the late fall of 2020 through winter of 2021 when a large wave of
SARS-CoV-2 infections emerged just as vaccines became available. We estimate 10% prior
immunity to approximate the size of the epidemic prior to the start of their respective epidemic
waves (see Supplemental Methods). To roughly recreate the vaccine campaigns in Israel during
this time, vaccine administration was assumed to be rolling from the start of the outbreak, and
occurred at a rate that ensured ~20% of the population was vaccinated each month until a total
coverage of 60% was reached. R0 was chosen such that the effective R0at the start of the
outbreak was ~1.5. Since these waves occurred when the non-variant-of-concern strains of
SARS-CoV-2 were circulating (i.e., Alpha), we assume that the vaccine efficacy against any
infection was around 90% [29]. In such situations of rapid epidemic control via vaccination, we
find that the choice of the vaccine failure model has no observable effect on the predicted final
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epidemic size, with 37% of the population being infected under both the models (Figure 5, first
column).

Motivated by the SARS-CoV-2 Delta variant wave that occurred during the summer of 2021 in
the US, our next scenario considers the situation where a highly effective vaccine was
administered prior to an outbreak, but without adequate coverage. Here we estimate prior
immunity nationally to be 20%, based on seroprevalence of antibodies against SARS-CoV-2 N
protein at the beginning of June 2021 [30,31], roughly when the epidemic wave began [32]. We
assumed a vaccine coverage of 50% before the wave began, estimated from data on the
percent of fully vaccinated individuals in the US by June-July 2021 [3,4], and assumed a
vaccine efficacy of 80%, based on mRNA vaccine efficacy against any infection for the Delta
variant [29]. We assumed vaccine impact projections were being made early in the wave, when
R0 was estimated at 3 (1.5 in the presence of infection and vaccine-induced immunity), and
assumed no further interventions or pathogen evolution. We find that the choice of vaccine
failure mode for such a situation has a small but significant effect on the final epidemic size —
54% of the population is predicted to get infected under the leaky vaccine as opposed to 49%
under the all-or-nothing one (Figure 5, middle column). Note that these simulations are not
meant to recreate the exact observed epidemic course - but to reflect simplified versions of
vaccine impact projections that may have been conducted early on during these waves/vaccine
campaigns.

Finally we focus on a situation in which a partially effective vaccine is administered with high
coverage before an outbreak. We were motivated by the Omicron variant wave that occurred in
the winter of 2021/2022 in countries that had especially high mRNA vaccination coverage; for
example, Portugal [4]. Given the immune evasive properties of Omicron, we assumed there to
be no prior immunity in the population against infection. We assume vaccine coverage to be
90% which was estimated from data on the percent of fully vaccinated individuals by December
2021 [3], and vaccine efficacy was assumed to be 50% (in reality, studies give a wide range of
estimates, and find strong dependence on time since last dose and whether a booster dose was
received [33–37]). We chose an R0 of 2.3 such that on average about 10% of the population is
infected each month until the epidemic ends, roughly based on the initial speed of the Omicron
wave. For this scenario, we find there would be large differences in the predicted final epidemic
size under the two models of vaccine failure — 41% of the population gets infected under the
leaky vaccine as opposed to 27% under the all-or-nothing one (Figure 5, last row).
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Figure 5 Differences between the two vaccine failure models for scenarios motivated by the
COVID-19 pandemic. Each column describes a different setting during the COVID-19 pandemic that
motivated the choice of parameters and vaccination campaign for the simulation. Top row: Data, reported
COVID-19 cases over time for the country motivating the scenario, with the shaded region in time
highlighting the time period of interest. Middle row: Data, reported proportion of the population vaccinated
against COVID-19 over time. Bottom row: Simulation results, showing cumulative infections over time in
the absence of vaccination (red line) and in the presence of vaccination, where vaccine offers leaky (blue)
or all-or-nothing (green) protection. More details on each scenario are provided in the Supplemental
Methods.
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Vaccine allocation decisions
Real-world vaccination campaigns face constraints due to limited vaccine supplies, high vaccine
costs, and the speed with which they can be administered. Mathematical models are a useful
tool to compare different vaccine distribution strategies – such as prioritizing groups based on
age, comorbidities, or other risk factors – and to find the one that leads to the largest reduction
in population-level disease burden [25,38–41]. To ensure a robust public health response,
modelers should characterize the uncertainty in the optimal predicted strategy due to model
assumptions. Here we focus on understanding whether and how the assumed mode of vaccine
failure affects vaccine allocation decisions generated from models. We create a simple model of
a heterogeneous population for which decisions about vaccine allocation may be debated. We
consider a well-mixed population divided into two groups of equal size that may differ in their
infectiousness, susceptibility, vaccine efficacy and disease severity (Figure 6, see Methods for
more details). We assume only one group can be vaccinated, and use our model to determine
which allocation strategy (Group 1 or Group 2) would result in the largest reduction in the final
epidemic size. We consider three scenarios where the differences in disease risk between the
groups is such that without the aid of a model, there is ambiguity about which group should be
vaccinated.

In our first scenario, one group has higher infectiousness (propensity to transmit if infected) but
the other is more susceptible to infection (Figure 6). As expected, we find that the optimal
vaccination strategy is parameter dependent, but we also observe that the two models of
vaccine failure can lead to conflicting conclusions. There are regions of parameter space where
if we assume vaccine-induced protection is all-or-nothing, the optimal strategy is to vaccinate
the more susceptible group, but if we assume leaky protection, the less susceptible/more
infectious group should be vaccinated. These are not always regimes where the difference
between the two vaccine allocation strategies is minimal - sometimes the difference in predicted
vaccine impact between the two allocation strategies can be ~20%. These conflicting model
conclusions occur in parameter regimes where the relative differences in infectiousness and
susceptibility are similar between the two groups, such that each contributes similarly to overall
R0 in the absence of vaccination. The region of discrepancy gets amplified with higher overall R0

values). These results hold qualitatively for other values of the vaccine efficacy and coverage,
but the effect of increasing R0 is not as pronounced for vaccines with a higher efficacy (Suppl.
Fig. S2).

We can understand this finding as follows. When assuming all-or-nothing protection, the optimal
strategy is determined by which of the two groups contributes more to R0 in the absence of
vaccination (diagonal line separates blue and orange regions in the top line of Figure 6, see SI
for details). Since all-or-nothing protection implies that some vaccinated individuals are fully
protected, vaccinating the group with the higher contribution to R0 is always the best strategy to
lower the number of breakthrough infections and thus overall epidemic size. However, this
simple rule isn’t necessarily true for leaky vaccines. If the overall force of infection is large
enough, it may not be optimal to vaccinate the more susceptible group even when they
contribute more to R0. These more-susceptible-yet-vaccinated individuals may still have enough
remaining susceptibility to experience breakthrough infections due to multiple exposures. In
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such situations, vaccinating the less susceptible group is more favorable since post-vaccination
susceptibility - and thus breakthrough infections - are lower. Said another way, when vaccine
protection is leaky, it can sometimes be better to vaccinate a relatively unimportant group if
doing so would effectively eliminate their contribution to transmission - thus creating something
akin to the perfectly protected group that results from administration of vaccines with
all-or-nothing protection.

We considered two other scenarios that would lead to ambiguities in which risk group would be
optimal to vaccinate (Figure 6, bottom two rows). In one example, the vaccine is more
efficacious against infection for one group, but the other group is more susceptible to infection.
In another example, one group has a higher chance of developing severe disease if infected,
but the other is more susceptible to infection. In this scenario, vaccinating the more susceptible
group will always produce fewer cumulative infections, but the metric for an optimal vaccine
becomes the prevention of severe infections. We again find conflicting predictions for the
optimal vaccine allocation strategy depending on the way vaccine failure is modeled. In some
parameter regimes, especially when baseline R0 is high, the leaky model of vaccine protection
would suggest it would be optimal to vaccinate the more susceptible group, but the alternative
all-or-nothing model of vaccine efficacy would instead conclude that it would be optimal to
vaccinate the group more at risk for severe outcomes or for which the vaccine is more
efficacious. We also considered scenarios where the groups don’t differ in susceptibility, but
face other tradeoffs - for example, one group has higher infectiousness while the other has
higher vaccine efficacy. We found there is rarely a discrepancy in predictions of the optimal
vaccination strategy between models of leaky vs all-or-nothing vaccines in these cases (Suppl.
Fig. S3).
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Figure 6 : Optimal vaccine allocation strategy depends on mode of vaccine failure. Plots show the
difference in vaccine impact between vaccinating Group 2 (more susceptible) vs Group 1 (more
infectious, higher vaccine efficacy, or higher risk of severe infection) as a function of the degree of the
differences in susceptibilities between the two groups, for a fixed pre-vaccination R0, vaccine coverage
(50%) and vaccine efficacy (80%). The optimal vaccine allocation decision (“vaccinate Group 1” vs
“vaccinate Group 2”) is the one that maximizes the vaccine impact. The heatmap color either shows the
magnitude of the difference in predicted vaccine impact between the decisions to allocate vaccine to
either only Group 1 or only Group 2 (purple/orange scale), or indicates regions in the parameter space
where the optimal vaccination strategy is the same (blue) or different (red) for the two modes of vaccine
failure. See Methods for more details.
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Discussion

Mathematical models are a critical tool for predicting and evaluating the impact of interventions
like vaccination to control infectious diseases. In constructing models, a set of common but
often poorly articulated assumptions revolve around how observed population-averaged
parameters are distributed across individuals; for example, the distribution of individual-level
infectivity, contact patterns, duration of infectiousness, susceptibility, or intervention efficacy.
Here we show that when modeling vaccines that reduce infection risk during epidemics, the
choice between choosing to model imperfect vaccines as having “leaky” vs “all-or-nothing”
efficacy can have a significant impact on model predictions. Assuming “all-or-nothing” protection
- in which a vaccine either offers complete or no protection - always results in more optimistic
predictions of population-level vaccine impact relative to models where the vaccine is assumed
to lead to a uniform per-exposure risk reduction across vaccine recipients (“leaky” protection).
This difference is more extreme for outbreaks spreading with higher basic reproduction
numbers, for vaccines with intermediate efficacy, and for vaccine campaigns that slow spread
without curtailing it entirely, and can lead to differences of up to 30% in calculations of infections
averted by vaccination. Using highly simplified models, we highlighted how this effect could
have affected predictions made during COVID-19, concluding that it was likely to be largest
when estimating residual vaccine impact during the emergence of the Omicron variant at the
end of 2021. Our overall conclusion is that the choice of how to model vaccine failure mode is a
modeling decision that should be clearly disclosed and ideally included as an axis of uncertainty
in model output, just as uncertainty in the value of specific parameters or other aspects of model
structure would be.

One of the more common use-cases for mathematical models of vaccines is to compare
strategies for allocating limited vaccines among different risk groups - for example, those who
contribute more to onward transmission versus those who are at higher risk of severe outcomes
if infected; or the very young versus the very old. The qualitative predictions of these scenario
comparison analyses, i.e. “prioritize vaccinating Group A over Group B”, are generally assumed
to be more robust to specific model assumptions than quantitative predictions about specific
cases averted. However, we show here that the choice of how to model vaccine failure mode
can sometimes reverse the conclusions about optimal allocation. Furthermore, we note that
even if the two models of vaccine failure agree on the optimal vaccination strategy, using the
wrong model can result in substantial under or over estimation of the vaccine impact, especially
if the optimal strategy involves vaccinating the more susceptible group (Figure S4). For
example, in the scenario where groups differ in infectiousness vs susceptibility, we find that
even when both models agree that the optimal vaccination strategy is to vaccinate the more
susceptible/less infectious group, using an all-or-nothing model of vaccine failure when in fact
the vaccine failure mode was leaky can lead to more than 20% overestimation in the vaccine
impact (Figure S4C). Therefore, models should specifically evaluate the robustness of their
conclusions to their underlying assumptions about vaccine failure mode.
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There are several important assumptions to keep in mind with our analysis. We only examined
two extreme models for vaccine failure - identical (but imperfect) protection in all vaccinated
individuals (leaky), versus an extreme binary distribution of protection (all or nothing). In reality,
vaccine effects may be somewhere in between; for example, some individuals may get no
protection but those who are protected may have a more complex distribution of protection
levels. We haven’t considered that the vaccine failure model could differ between subgroups in
the population, for example by age, immune status, pathogen strain, or prior infection history.
Our model doesn’t include any other individual-level heterogeneities, such as baseline variation
in the degree of susceptibility or infectiousness. We did not examine another dimension of
vaccine failure - waning of protection levels over time since vaccination - or models that
combine failure via waning with failure in leaky versus all-or-nothing models. The leaky versus
all-or-nothing dichotomy may also exist for infection-induced immunity, but in our simple models
we have assumed natural immunity is complete in all individuals. Ragonnet et al. found that the
degree of protection conferred by prior infection modulated the difference between vaccine
impact predicted by leaky vs all-or-nothing models for endemic infections, concluding - like us -
that the main driver of differences was the number of breakthrough infections post-vaccination,
but they did not explore the distribution of this infection-induced immunity [15]. Prior theoretical
and experimental studies have found that one of the more significant manifestations of the
difference between leaky vs all-or-nothing vaccines is in the relationship between exposure
dose (i.e., inoculum size) and infection risk [19,42]. Consequently, the importance of differences
between these vaccine failure modes could vary between settings and over time depending on
factors that modulate this dose, such as use of antimicrobial therapy, use of personal protective
equipment like masks, behavior changes, or general health status.

The reason that imperfect vaccines are typically assumed to fail by either “leaky” or
“all-or-nothing” modes is because generally it is impossible to measure the distribution of
vaccine effects across individuals, especially on the timescale in which mathematical models
are needed for decision making. Measuring the distribution of protection levels requires a setting
where either the number of exposures or size of exposure doses can be quantified in relation to
protection [8,12,18–20,42–46]; the relationship between either exposure metric and the
proportion of the population infected can be analyzed mathematically to extract the distribution
of susceptibilities. Other than challenge studies - which are expensive in animal models and
very rarely ethically suitable in humans - there are few situations in which such a relationship
can be obtained. A recent study of COVID-19 risk in vaccinated prisoners used the co-location
of infected individuals with their recently-infected contacts (shared cell, same cell-block, or
none) as a proxy for exposure intensity, and the observed relationship suggested a leaky mode
of vaccine failure [47]. Even if there is an immune marker inferred or strongly suspected to be a
correlate of protection, the distribution of this marker does not necessarily need to match the
distribution of the degree of protection [9]. For example, a unimodal, continuous distribution of
neutralizing antibody levels across a population could still be consistent with all-or-nothing
protection if the relationship between antibody level and per-exposure probability of infection is
step-like. Zachreson et al. used observed relationships between cohort-level neutralizing
antibodies and protection against COVID-19 in vaccine trials [48] to propose a consistent model

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 30, 2024. ; https://doi.org/10.1101/2024.09.30.24314493doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.30.24314493
http://creativecommons.org/licenses/by/4.0/


of individual-level protection, showing that when combined with waning antibody levels over
time, complex distributions in between the leaky and all-or-nothing extremes can arise [49].

Our results build upon prior work over the past 50 years showing that the distribution of vaccine
effects across individuals will impact estimates of vaccine efficacy in clinical or field trials
[8,10,11] and model predictions of infections averted by vaccines [12–15,50]. We focus on the
context of vaccines administered to the general population during an outbreak (as opposed to
routine childhood vaccinations for endemic infections) and systematically evaluate parameter
regimes where the choice of failure mode has the largest impact on predictions. We also
explicitly focus on when predictions of optimal allocation decisions can be sensitive to the mode
of vaccine failure, which some prior studies have done but only in a disease/scenario specific
context [25,26,28]. Our observation that all-or-nothing vaccines always provide equal or greater
population-level protection is in agreement with other models [12–15], and a prior study of
childhood vaccination for endemic diseases found a similar relationship with vaccine efficacy,
transmissibility, and likelihood of breakthrough infections when examining how the
post-vaccination endemic equilibrium varied with failure mode [15].

Theoretically, since vaccine failure mode impacts disease dynamics, it should be possible to
infer failure mode from comparing model predictions to data if there is enough certainty about
other model parameters. To understand the persistence of pertussis (whooping cough)
transmission despite decades of using vaccines with high efficacy, Domenech de Celles used
detailed age-stratified time-series data on pertussis cases before and after vaccination to show
that models assuming some degree of “all-or-nothing” failure combined with waning over time
were best supported by the data, as opposed to a model of leaky vaccine failure [50]. Prior
modeling work by this group showed that vaccine failure mode affects the average age of
infection in models of childhood vaccination for endemic diseases, making this identification
possible [14]. More generally, retrospective modeling of vaccination campaigns could assist in
identification of the failure mode, as long as other important disease mechanisms are
reasonably well understood, like any major risk-group specific difference in susceptibility,
infectiousness, or vaccine efficacy, as well as the role of waning vaccine-induced protection or
antigenic drift.

For prospective vaccine impact modeling studies, our results imply that the vaccine failure
model should be included as an axis of uncertainty. In addition, these findings highlight the
benefit of clinical trials designed with the longitudinal follow-up required to differentiate vaccine
failure modes [11], and suggest that ethical, human challenge studies that could allow
identification of the failure model should be considered [51,52].

Funding
Funding for this work was supported by the Centers for Disease Control and Prevention
(75D30121F00005 - ALH and 6NU38FT000012 - ALH, AAN) and the National Institutes of Health

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 30, 2024. ; https://doi.org/10.1101/2024.09.30.24314493doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.30.24314493
http://creativecommons.org/licenses/by/4.0/


(DP5OD019851 - ALH, AAN, TA, DAL and R01AI146129 - MZL). The contents of this paper are solely the
responsibility of the authors and do not necessarily represent the official views of the funding agencies.

References

1. Shattock AJ, Johnson HC, Sim SY, Carter A, Lambach P, Hutubessy RCW, et al.
Contribution of vaccination to improved survival and health: modelling 50 years of the
Expanded Programme on Immunization. The Lancet. 2024;403: 2307–2316.
doi:10.1016/S0140-6736(24)00850-X

2. Toor J, Echeverria-Londono S, Li X, Abbas K, Carter ED, Clapham HE, et al. Lives saved
with vaccination for 10 pathogens across 112 countries in a pre-COVID-19 world. Stanley
M, Harper DM, Soldan K, editors. eLife. 2021;10: e67635. doi:10.7554/eLife.67635

3. Mathieu E, Ritchie H, Ortiz-Ospina E, Roser M, Hasell J, Appel C, et al. A global database
of COVID-19 vaccinations. Nat Hum Behav. 2021;5: 947–953.
doi:10.1038/s41562-021-01122-8

4. Mathieu E, Ritchie H, Rodés-Guirao L, Appel C, Giattino C, Hasell J, et al. Coronavirus
Pandemic (COVID-19). Our World Data. 2020 [cited 2 Aug 2024]. Available:
https://ourworldindata.org/covid-vaccinations

5. Watson OJ, Barnsley G, Toor J, Hogan AB, Winskill P, Ghani AC. Global impact of the first
year of COVID-19 vaccination: a mathematical modelling study. Lancet Infect Dis. 2022;22:
1293–1302. doi:10.1016/S1473-3099(22)00320-6

6. Halloran ME, Longini IM Jr, Struchiner CJ. Design and Interpretation of Vaccine Field
Studies. Epidemiol Rev. 1999;21: 73–88. doi:10.1093/oxfordjournals.epirev.a017990

7. Crowcroft NS, Klein NP. A framework for research on vaccine effectiveness. Vaccine.
2018;36: 7286–7293. doi:10.1016/j.vaccine.2018.04.016

8. Smith PG, Rodrigues LC, Fine PEM. Assessment of the Protective Efficacy of Vaccines
against Common Diseases Using Case-Control and Cohort Studies. Int J Epidemiol.
1984;13: 87–93. doi:10.1093/ije/13.1.87

9. WHO. Correlates of vaccine-induced protection: methods and implications. Geneva,
Switzerland: World Health Organization; 2013. Report No.: WHO/IVB/13.01. Available:
https://apps.who.int/iris/handle/10665/84288

10. Halloran ME, Haber M, Longini IM Jr. Interpretation and Estimation of Vaccine Efficacy
under Heterogeneity. Am J Epidemiol. 1992;136: 328–343.
doi:10.1093/oxfordjournals.aje.a116498

11. Halloran M, Longini I, Struchiner C. Design and Analysis of Vaccine Studies. Springer;
2009. doi:10.1007/978-0-387-68636-3

12. Gomes MGM, Lipsitch M, Wargo AR, Kurath G, Rebelo C, Medley GF, et al. A Missing
Dimension in Measures of Vaccination Impacts. PLOS Pathog. 2014;10: e1003849.
doi:10.1371/journal.ppat.1003849

13. McLean AR, Blower SM. Imperfect vaccines and herd immunity to HIV. Proc R Soc Lond B
Biol Sci. 1993;253: 9–13. doi:10.1098/rspb.1993.0075

14. Magpantay FMG, Riolo MA, de Cellès MD, King AA, Rohani P. Epidemiological
Consequences of Imperfect Vaccines for Immunizing Infections. SIAM J Appl Math.
2014;74: 1810–1830. doi:10.1137/140956695

15. Ragonnet R, Trauer JM, Denholm JT, Geard NL, Hellard M, McBryde ES. Vaccination
Programs for Endemic Infections: Modelling Real versus Apparent Impacts of Vaccine and
Infection Characteristics. Sci Rep. 2015;5: 15468. doi:10.1038/srep15468

16. Lipsitch M, Goldstein E, Ray GT, Fireman B. Depletion-of-susceptibles bias in influenza
vaccine waning studies: how to ensure robust results. Epidemiol Infect. 2019;147: e306.

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 30, 2024. ; https://doi.org/10.1101/2024.09.30.24314493doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.30.24314493
http://creativecommons.org/licenses/by/4.0/


doi:10.1017/S0950268819001961
17. Kahn R, Schrag SJ, Verani JR, Lipsitch M. Identifying and Alleviating Bias Due to

Differential Depletion of Susceptible People in Postmarketing Evaluations of COVID-19
Vaccines. Am J Epidemiol. 2022;191: 800–811. doi:10.1093/aje/kwac015

18. Gomes MGM, Águas R, Lopes JS, Nunes MC, Rebelo C, Rodrigues P, et al. How host
heterogeneity governs tuberculosis reinfection? Proc R Soc B Biol Sci. 2012;279:
2473–2478. doi:10.1098/rspb.2011.2712

19. Ben‐Ami F, Ebert D, Regoes RR. Pathogen Dose Infectivity Curves as a Method to
Analyze the Distribution of Host Susceptibility: A Quantitative Assessment of Maternal
Effects after Food Stress and Pathogen Exposure. Am Nat. 2010;175: 106–115.
doi:10.1086/648672

20. Smith DL, Dushoff J, Snow RW, Hay SI. The entomological inoculation rate and
Plasmodium falciparum infection in African children. Nature. 2005;438: 492–495.
doi:10.1038/nature04024

21. Hawley DM, Pérez-Umphrey AA, Adelman JS, Fleming-Davies AE, Garrett-Larsen J,
Geary SJ, et al. Prior exposure to pathogens augments host heterogeneity in susceptibility
and has key epidemiological consequences. bioRxiv; 2024. p. 2024.03.05.583455.
doi:10.1101/2024.03.05.583455

22. Rose C, Medford AJ, Goldsmith CF, Vegge T, Weitz JS, Peterson AA. Heterogeneity in
susceptibility dictates the order of epidemiological models. arXiv; 2020.
doi:10.48550/arXiv.2005.04704

23. Dwyer G, Elkinton JS, Buonaccorsi JP. Host Heterogeneity in Susceptibility and Disease
Dynamics: Tests of a Mathematical Model. Am Nat. 1997;150: 685–707.
doi:10.1086/286089

24. Miller JC. Epidemic size and probability in populations with heterogeneous infectivity and
susceptibility. Phys Rev E. 2007;76: 010101. doi:10.1103/PhysRevE.76.010101

25. Bubar KM, Reinholt K, Kissler SM, Lipsitch M, Cobey S, Grad YH, et al. Model-informed
COVID-19 vaccine prioritization strategies by age and serostatus. Science. 2021;371:
916–921. doi:10.1126/science.abe6959

26. Buckner JH, Chowell G, Springborn MR. Dynamic prioritization of COVID-19 vaccines
when social distancing is limited for essential workers. Proc Natl Acad Sci. 2021;118.
doi:10.1073/pnas.2025786118

27. Yaladanda N, Mopuri R, Vavilala HP, Mutheneni SR. Modelling the impact of perfect and
imperfect vaccination strategy against SARS CoV-2 by assuming varied vaccine efficacy
over India. Clin Epidemiol Glob Health. 2022;15. doi:10.1016/j.cegh.2022.101052

28. Riley S, Wu JT, Leung GM. Optimizing the Dose of Pre-Pandemic Influenza Vaccines to
Reduce the Infection Attack Rate. PLOS Med. 2007;4: e218.
doi:10.1371/journal.pmed.0040218

29. Higdon MM, Wahl B, Jones CB, Rosen JG, Truelove SA, Baidya A, et al. A Systematic
Review of Coronavirus Disease 2019 Vaccine Efficacy and Effectiveness Against Severe
Acute Respiratory Syndrome Coronavirus 2 Infection and Disease. Open Forum Infect Dis.
2022;9: ofac138. doi:10.1093/ofid/ofac138

30. CDC. COVID Data Tracker: 2020-2021 Nationwide COVID-19 Infection- and
Vaccination-Induced Antibody Seroprevalence (Blood donations). In: COVID Data Tracker
[Internet]. 28 Mar 2020 [cited 5 Sep 2024]. Available:
https://covid.cdc.gov/covid-data-tracker

31. Jones JM, Stone M, Sulaeman H, Fink RV, Dave H, Levy ME, et al. Estimated US
Infection- and Vaccine-Induced SARS-CoV-2 Seroprevalence Based on Blood Donations,
July 2020-May 2021. JAMA. 2021;326: 1400–1409. doi:10.1001/jama.2021.15161

32. Hodcroft EB. CoVariants: SARS-CoV-2 Mutations and Variants of Interest. 2021 [cited 5
Sep 2024]. Available: https://covariants.org

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 30, 2024. ; https://doi.org/10.1101/2024.09.30.24314493doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.30.24314493
http://creativecommons.org/licenses/by/4.0/


33. Andrews N, Stowe J, Kirsebom F, Toffa S, Rickeard T, Gallagher E, et al. Covid-19 Vaccine
Effectiveness against the Omicron (B.1.1.529) Variant. N Engl J Med. 2022;386:
1532–1546. doi:10.1056/NEJMoa2119451

34. Gram MA, Emborg H-D, Schelde AB, Friis NU, Nielsen KF, Moustsen-Helms IR, et al.
Vaccine effectiveness against SARS-CoV-2 infection or COVID-19 hospitalization with the
Alpha, Delta, or Omicron SARS-CoV-2 variant: A nationwide Danish cohort study. PLOS
Med. 2022;19: e1003992. doi:10.1371/journal.pmed.1003992

35. Buchan SA, Chung H, Brown KA, Austin PC, Fell DB, Gubbay JB, et al. Estimated
Effectiveness of COVID-19 Vaccines Against Omicron or Delta Symptomatic Infection and
Severe Outcomes. JAMA Netw Open. 2022;5: e2232760.
doi:10.1001/jamanetworkopen.2022.32760

36. Bloomfield LE, Ngeh S, Cadby G, Hutcheon K, Effler PV. SARS-CoV-2 Vaccine
Effectiveness against Omicron Variant in Infection-Naive Population, Australia, 2022 -
Volume 29, Number 6—June 2023 - Emerging Infectious Diseases journal - CDC. [cited 9
Sep 2024]. doi:10.3201/eid2906.230130

37. Lau JJ, Cheng SMS, Leung K, Lee CK, Hachim A, Tsang LCH, et al. Real-world COVID-19
vaccine effectiveness against the Omicron BA.2 variant in a SARS-CoV-2 infection-naive
population. Nat Med. 2023;29: 348–357. doi:10.1038/s41591-023-02219-5

38. Matrajt L, Eaton J, Leung T, Dimitrov D, Schiffer JT, Swan DA, et al. Optimizing vaccine
allocation for COVID-19 vaccines shows the potential role of single-dose vaccination. Nat
Commun. 2021;12: 3449. doi:10.1038/s41467-021-23761-1

39. Optimizing Influenza Vaccine Distribution | Science. [cited 5 Sep 2024]. Available:
https://www-science-org.proxy1.library.jhu.edu/doi/10.1126/science.1175570

40. Bansal S, Pourbohloul B, Meyers LA. A Comparative Analysis of Influenza Vaccination
Programs. PLOS Med. 2006;3: e387. doi:10.1371/journal.pmed.0030387

41. Harris RC, Sumner T, Knight GM, White RG. Systematic review of mathematical models
exploring the epidemiological impact of future TB vaccines. Hum Vaccines Immunother.
2016;12: 2813–2832. doi:10.1080/21645515.2016.1205769

42. Langwig KE, Gomes MGM, Clark MD, Kwitny M, Yamada S, Wargo AR, et al. Limited
available evidence supports theoretical predictions of reduced vaccine efficacy at higher
exposure dose. Sci Rep. 2019;9: 3203. doi:10.1038/s41598-019-39698-x

43. Furumoto WA, Mickey R. A mathematical model for the infectivity-dilution curve of tobacco
mosaic virus: Theoretical considerations. Virology. 1967;32: 216–223.
doi:10.1016/0042-6822(67)90271-1

44. Furumoto WA, Mickey R. A mathematical model for the infectivity-dilution curve of tobacco
mosaic virus: Experimental tests. Virology. 1967;32: 224–233.
doi:10.1016/0042-6822(67)90272-3

45. Halloran ME, Longini IM, Struchiner CJ. Estimability and Interpretation of Vaccine Efficacy
Using Frailty Mixing Models. Am J Epidemiol. 1996;144: 83–97.
doi:10.1093/oxfordjournals.aje.a008858

46. Edlefsen PT. Leaky vaccines protect highly exposed recipients at a lower rate: implications
for vaccine efficacy estimation and sieve analysis. Comput Math Methods Med. 2014;2014:
813789. doi:10.1155/2014/813789

47. Lind ML, Dorion M, Houde AJ, Lansing M, Lapidus S, Thomas R, et al. Evidence of leaky
protection following COVID-19 vaccination and SARS-CoV-2 infection in an incarcerated
population. Nat Commun. 2023;14: 5055. doi:10.1038/s41467-023-40750-8

48. Khoury DS, Cromer D, Reynaldi A, Schlub TE, Wheatley AK, Juno JA, et al. Neutralizing
antibody levels are highly predictive of immune protection from symptomatic SARS-CoV-2
infection. Nat Med. 2021; 1–7. doi:10.1038/s41591-021-01377-8

49. Zachreson C, Tobin R, Szanyi J, Walker C, Cromer D, Shearer FM, et al. Individual
variation in vaccine immune response can produce bimodal distributions of protection.

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 30, 2024. ; https://doi.org/10.1101/2024.09.30.24314493doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.30.24314493
http://creativecommons.org/licenses/by/4.0/


Vaccine. 2023;41: 6630–6636. doi:10.1016/j.vaccine.2023.09.025
50. Domenech de Cellès M, Magpantay FMG, King AA, Rohani P. The impact of past

vaccination coverage and immunity on pertussis resurgence. Sci Transl Med. 2018;10:
eaaj1748. doi:10.1126/scitranslmed.aaj1748

51. Abo Y-N, Jamrozik E, McCarthy JS, Roestenberg M, Steer AC, Osowicki J. Strategic and
scientific contributions of human challenge trials for vaccine development: facts versus
fantasy. Lancet Infect Dis. 2023;23: e533–e546. doi:10.1016/S1473-3099(23)00294-3

52. Eyal N, Lipsitch M, Smith PG. Human Challenge Studies to Accelerate Coronavirus
Vaccine Licensure. J Infect Dis. 2020;221: 1752–1756. doi:10.1093/infdis/jiaa152

53. Reicher S, Ratzon R, Ben-Sahar S, Hermoni-Alon S, Mossinson D, Shenhar Y, et al.
Nationwide seroprevalence of antibodies against SARS-CoV-2 in Israel. Eur J Epidemiol.
2021;36: 727–734. doi:10.1007/s10654-021-00749-1

54. Diekmann O, Heesterbeek JAP, Roberts MG. The construction of next-generation matrices
for compartmental epidemic models. J R Soc Interface. 2010;7: 873–885.
doi:10.1098/rsif.2009.0386

Supplement

Supplementary Methods

Derivation for number of breakthrough infections for the two models of
vaccine failure for a simple infection model

To provide intuition behind why the number of breakthrough infections for a leaky vaccine are
always equal to or greater than those for an all-or-nothing (AON) vaccine (with the same
efficacy and coverage), we consider a simplified infection model with a constant force of
infection and compare the number of breakthrough infections under the two models of vaccine
failure. Suppose every unvaccinated individual has probability of getting infected per𝑝 
exposure. For a leaky vaccine with efficacy , the probability that a vaccinated individual is𝑣

𝑒

infected given exposures is given by,𝑛 (≥ 1)

where and . If individuals are vaccinated then the number of𝑣'
𝑒

= (1 − 𝑣
𝑒
)  0 ≤ 𝑣'

𝑒
< 1 𝑁

𝑣

breakthrough infections after exposures is given by,𝑛

For an AON vaccine, the probability that a vaccinated individual is infected given n exposures is
either (for those fully protected) or0

for those still susceptible after vaccination. As a result, if individuals are vaccinated, the𝑁
𝑣

number of breakthrough infections after exposures is given by,𝑛
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First consider the two limits of exposure: and . When ,𝑛 = 1 𝑛 →  ∞ 𝑛 = 1

And when ,𝑛 →  ∞

Finally, using the series expansion for around zero, for a general number of exposures(1 − 𝑥)𝑛

, the number of breakthrough infections is given by,𝑛

Comparing the two expressions term-by-term we see that after the first term which is shared by

both, each of the following terms in (i.e., in ) are smaller or at most equal to the𝐼𝐿
𝑣,𝑛

𝑋
𝑛

corresponding terms in as they have higher powers of and . Therefore,𝑌
𝑛

𝑣'
𝑒

 0 ≤ 𝑣'
𝑒

< 1

for all , which implies that , that is, the number of breakthrough𝑋
𝑛 

≤  𝑌
𝑛

𝑛 𝐼𝐿
𝑣,𝑛

≥  𝐼𝐴𝑂𝑁
𝑣,𝑛

infections (given a fixed number of exposures) for a leaky vaccine are always greater than or
equal to an all-or-nothing one.

Parameters for applications to COVID-19 vaccine impact

We obtained data on vaccine coverage (defined here as % of individuals who received at least
one dose of vaccine), case incidence (daily reported cases per million individuals in the
population, 7 day rolling average, right aligned), and real-time effective reproduction number
from Our World In Data [3,4]. We identified the variants responsible for the phase of the
epidemic of interest from CoVariants.org [32].
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Scenario: Rapid control of epidemic wave via concurrent vaccination - Alpha wave in fall
2020/winter 2021 in Israel

We defined this wave in Israel as starting Nov 15 2020, peaking around Jan 15 2021, and
concluding around March 15 2021. Vaccination began for the first time in mid December, with
around 20% vaccinated per month until reaching ~ 60% vaccinated by the conclusion of the
wave. Estimating the proportion of the population with immunity from prior infection at the time
of this wave was more complicated than in the US setting, as recurring national serosurveys
were not conducted in Portugal. However, Reicher et al estimated seroprevalence in Sept 2020
of 4.5%, and a seroprevalence-to-detected-case ratio ~4.5 which had decreased over time [53].
Between this time (which was within an smaller pre-Alpha wave) and the start of the Alpha wave
in mid November, cumulative incidence of reported cases increased from ~1.7% about 3.6%, a
1.9% increase, suggesting an increase in seroprevalence of around 8.5% (with ratio of 4.5 -
assuming no further improvement in case detection, so likely an overestimate). We thus
approximated immunity from prior infection at the start of the Alpha wave as 10%. During the
period of exponential growth throughout Dec 2020, Reff varied from 1.25 - 1.4, which with 10%
prior immunity (and no vaccination), corresponds to around R0 between 1.4-1.55, which we
approximated as R0 = 1.5.

Scenario: Pre-outbreak vaccination with high efficacy - Delta wave in summer 2021,
United States

We defined this wave as starting July 1, 2021, peaking in early September, and continuing
through the end of October. On July 1 2021, 48% of the population was fully vaccinated and
54% had at least one dose, so we approximated vaccine coverage (fV) as 50%. We assumed no
extra vaccines occurred during the outbreak - although in reality vaccine coverage increased to
58% fully vaccinated and 65% with at least one dose by Nov 1 2021. Vaccine efficacy (VE) was
approximated as 80%, based on estimates of mRNA vaccine efficacy against infection for the
Delta variant [29], which dominated during this wave. We abstained data on cumulative prior
infections (fR) from a seroprevalence survey measuring presence of the SARS-CoV-2
nucleocapsid protein (to differentiate from immunity due to vaccination), collected from a
national sample of blood donors [30,31]. During the June 2021 round of sampling, 20.6% of
individuals were estimated to be seropositive nationally, so we approximated immunity from
prior infection at 20%. During the period of exponential growth centered around Aug 1, 2021, Reff

peaked at 1.5. To estimate R0 in the absence of immunity from prior infection and vaccination,
we used the formula Reff = R0*(1-fR-fV*VE). We assume some overlap between prior infection
and vaccination based on the assumption that vaccination status is independent of prior
infection status. Thus, if vaccine coverage is 50%, we expect that 10% of that occurs in those
with immunity from prior infection (which is assumed to be perfect protection), so only 40% is in
previously uninfected individuals. Thus, Reff ~ R0*(1-0.2-0.4*0.8) = R0*0.48, so R0 = 3.1. We
thus approximated R0 = 3 during this wave.
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Scenario: Pre-outbreak vaccination with intermediate efficacy - Omicron wave in fall
2021/winter 2022 in countries with widespread mRNA vaccine coverage (e.g. Portugal)
We defined this Omicron-variant-driven wave in Portugal as starting on Dec 1 2021, peaking
late January, and continuing until early March. On Dec 1, 81% of the population was fully
vaccinated and 89% had at least one dose; these increased to 84% and 93% by March. We
assumed 90% coverage (fV) for the duration of the wave. Vaccine efficacy (VE) was roughly
approximated as 50% for this period, based on estimates of mRNA vaccine efficacy against
infection for the Omicron variant (in reality, studies give a wide range of estimates, and find
strong dependence on time since last dose and whether a booster dose was received [33–37]).
Due to the lack of protection against infection with Omicron conferred by prior infection with
pre-Omicron variants, we assumed effectively 0% of the population had immunity from prior
infection. During the period of exponential growth between Dec 1 2021 and Jan 15 2022, the
effective reproduction number varied between 1.25 to 1.55, so using Reff = R0*(1-fR-fV*VE) ~
R0*(1-0-0.9*0.5) we get a range for R0 of 2.3 - 2.8. We chose R0 = 2.3 which gave approximately
10% of the population infected each month during the first few months. Note that a similar
phenomenon happened in Singapore, but later - from around mid January to early May 2022.

Model for exploring vaccine allocation decisions
We extend the SEIRV type model introduced in the main text to include two equal sized groups
of individuals. The two groups can differ in their susceptibilities , infectivities , they canα

𝑆𝑖
α

𝐼𝑖

have different vaccine efficacies (all-or-nothing) and (leaky), and different fraction ofε
𝐴𝑖

ε
𝐿𝑖

individuals vaccinated . The vaccine is modeled as instantaneous and is administered at time𝑓
𝑣𝑖

into the epidemic. This system is described by the following set of ODEs,𝑡
𝑣
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where the state variables , and are proportions of the population. For𝑆
𝑖

𝑉
𝑆𝑖

,  𝑉
𝑅𝑖

,  𝐸
𝑖
 ,  𝐼

𝑖
𝑅

𝑖

simplicity we assume , and = 0. R0 can be calculated using the next-generationσ
1

= σ
2
 γ

1
= γ

2
𝑡

𝑣

matrix method [54] and is given by,

Parameters used for exploring vaccine allocation decisions
For all scenarios we fix the average duration of latency ( ) and the average duration ofσ
infectiousness ( ) to 4 days and vary the other parameters while keeping pre-vaccination R0γ

fixed.∈  {2, 3} 

Infectivity susceptibility trade-off (Group 1 is more infectious and Group 2 is more
susceptible)
Since Group 1 is more infectious, we assume that the infectivity of Group 2 is reduced
compared to Group 1 by a factor , where is varied between 0 and 1,𝑚 𝑚

.α
𝐼2

=  𝑚 × α
𝐼1

 

Similarly, as Group 2 is more susceptible, we assume that the susceptibility of Group 1 is
reduced compared to Group 2 by a factor , where is varied between 0 and 1,𝑛 𝑛

.α
𝑆1

=  𝑛 × α
𝑆2

 

We assume . With this parameterization, the pre-vaccination R0 for this scenario isα
𝐼1

= α
𝑆2

= 1

given by,
𝑅

0
=  β

2γ (𝑛 + 𝑚)

We vary to keep R0 fixed as we vary and .β 𝑚 𝑛

The following values are used for vaccine efficacies and coverage-levels for the three
sub-scenarios :(𝑖 = 1, 2)

1. ,ε
𝐴𝑖

=  ε
𝐿𝑖

= 0. 5 𝑓
𝑣𝑖

= 0. 8

2. ,ε
𝐴𝑖

=  ε
𝐿𝑖

= 0. 8 𝑓
𝑣𝑖

= 0. 5

3. ,ε
𝐴𝑖

=  ε
𝐿𝑖

= 0. 8 𝑓
𝑣𝑖

= 0. 8
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Vaccine efficacy and susceptibility trade-off (Group 1 has higher vaccine efficacy and
Group 2 is more susceptible)
Since Group 1 has higher vaccine efficacy, we assume that the vaccine efficacy for Group 2 is
reduced compared to Group 1 by a factor , where is varied between 0 and 1,𝑛 𝑛

,ε
𝐴2

=  𝑛 × ε
𝐴1

 

.ε
𝐿2

=  𝑛 × ε
𝐿1

 

As Group 2 is more susceptible, we assume that the susceptibility of Group 1 is reduced
compared to Group 2 by a factor , where is varied between 0 and 1,𝑚 𝑚

.α
𝑆1

=  𝑚 × α
𝑆2

 

We assume . With this parameterization, the pre-vaccination R0 for thisα
𝑆2

= α
𝐼1

= α
𝐼2

= 1

scenario is given by,
𝑅

0
=  β

2γ (𝑚 + 1)

We vary to keep R0 fixed as we vary .β 𝑚

The following values are used for vaccine efficacies for Group 1 (Group 2’s are varied as above)
and coverage-levels (for both groups) for the three sub-scenarios :(𝑖 = 1, 2)

1. ,ε
𝐴1

=  ε
𝐿1

= 0. 5 𝑓
𝑣𝑖

= 0. 8

2. ,ε
𝐴1

=  ε
𝐿1

= 0. 8 𝑓
𝑣𝑖

= 0. 5

3. ,ε
𝐴1

=  ε
𝐿1

= 0. 8 𝑓
𝑣𝑖

= 0. 8

Disease severity and susceptibility trade-off (Group 1 more severe infections and Group
2 is more susceptible)
Since our model doesn’t explicitly consider different stages of infection severity, we assume that
at 1% of infections in Group 1 lead to severe disease. This is then reduced for Group 2 by a
factor , where is varied between 0 and 1.𝑚 𝑚

As for the first scenario, as Group 2 is more susceptible, we assume that the susceptibility of
Group 1 is reduced compared to Group 2 by a factor , where is varied between 0 and 1,𝑛 𝑛

.α
𝑆1

=  𝑛 × α
𝑆2
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We assume . With this parameterization, the pre-vaccination R0 for thisα
𝐼1

= α
𝐼2

= α
𝑆2

= 1

scenario is given by,
.𝑅

0
=  β

2γ (𝑛 + 1)

We vary to keep R0 fixed as we vary .β 𝑛

The following values are used for vaccine efficacies and coverage-levels for the three
sub-scenarios :(𝑖 = 1, 2)

1. ,ε
𝐴𝑖

=  ε
𝐿𝑖

= 0. 5 𝑓
𝑣𝑖

= 0. 8

2. ,ε
𝐴𝑖

=  ε
𝐿𝑖

= 0. 8 𝑓
𝑣𝑖

= 0. 5

3. ,ε
𝐴𝑖

=  ε
𝐿𝑖

= 0. 8 𝑓
𝑣𝑖

= 0. 8
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Supplementary Figures

Figure S1: Difference in impact between all-or-nothing and leaky vaccines for rolling vaccine
administration. Difference in vaccine impact for different levels of vaccine coverage and timing of
vaccination over a range of vaccine efficacies and R0 values for fixed rate of daily vaccination rate (5% of
the susceptible unvaccinated population). The colorbar indicates the difference in the percentage
reduction of the final epidemic size compared to that of without vaccination between leaky and
all-or-nothing vaccines. Red line separates regions in the parameter space where the fraction vaccinated
are greater (above) or less (below) than the herd immunity threshold. Uncolored hashed regions
correspond to parameter combinations where disease R0 was too small for the epidemic to reach the
target size for vaccine administration (so vaccine was never administered). See Methods for more details
on how rolling vaccination was implemented.
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Figure S2: Effect of the two modes of vaccine failure on optimal vaccine allocation decisions.
Results for scenario where Group 1 is more infectious than Group 2 but Group 2 is more susceptible than
Group 1 for an all-or-nothing or leaky vaccine with 80% efficacy and A)-C) 80% or D)-F) 50% coverage.
Plots show regions in the parameter space on varying infectiousness and susceptibility where the optimal
vaccination strategy is the same (blue) or different (red) for the two modes of vaccine failure for three
different values of pre-vaccination R0.

Figure S3: Effect of the two modes of vaccine failure on optimal vaccine allocation decisions.
Results for scenario where vaccine efficacy is higher for Group 1 than Group 2 but Group 2 is more
infectious than Group 1. B)-D) Regions in the parameter space on varying infectiousness and vaccine
efficacy where the optimal vaccination strategy is the same (blue) or different (red) for the two modes of
vaccine failure for fixed vaccine coverage (50%) for three different values of pre-vaccination R0.
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Figure S4: Difference in vaccine impact on vaccinating either of the groups with AON or leaky
vaccines. A)-C) Results for scenario with infectiousness and susceptibility trade-off. Difference in vaccine
impact on vaccinating B) Group 1 or C) Group 2 with all-or-nothing or leaky vaccines. The colorbar
indicates the difference in the percentage reduction of the final epidemic size compared to that of without
vaccination between all-or-nothing and leaky vaccines. (Middle row) Same as above for a scenario with
disease severity and susceptibility trade-off but the colorbar indicates the difference in the percentage
reduction of the final number of severe infections compared to that of without vaccination between
all-or-nothing and leaky vaccines. (Bottom row) Results for scenario with vaccine efficacy and
susceptibility trade-off, with the same metric of vaccine impact as in the top row. Results are for baseline

, baseline vaccine efficacy and coverage.𝑅
0

= 2 50% 80%
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